Способ управления расходом топлива в газотурбинный двигатель

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД). Сущность изобретения заключается в том, что дополнительно при поступлении в процессе взлета самолета сигнала «Пожар в мотогондоле», формируемого противопожарной системой самолета, фиксируют текущее значение частоты вращения вентилятора и используют его в качестве заданного значения частоты вращения вентилятора в течение наперед заданного времени, по истечении которого прекращают подачу топлива в КС и выключают двигатель. Технический результат изобретения заключается в повышении качества управления расходом топлива в КС двигателя на взлете самолета, за счет чего даже при возникновении пожара в мотогондоле обеспечивается работа двигателя на режиме с располагаемой тягой, обеспечивающей нормальный взлет самолета, это повышает надежность работы двигателя, как элемента СУ самолета, и безопасность самого самолета.

 

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Известен способ управления ГТД реализованный в электронно-гидромеханической САУ супервизорного типа. Кеба И.В. «Летная эксплуатация вертолетных ГТД», М., «Транспорт», 1976 г., с.123-125.

Способ заключается в том, что с целью повышения точности управления управляющее воздействие гидромеханического регулятора корректируется в ограниченном диапазоне электронным корректором.

Недостатком известного способа является его низкая эффективность.

Наиболее близким к данному изобретению по технической сущности является способ управления расходом топлива в ГТД, заключающийся в том, что измеряют положение рычага (РУД) управления двигателем, частоты вращения вентилятора и его турбины (СТ), давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора, формируют заданное значение частоты вращения вентилятора как функцию от положения РУД, давления и температуры воздуха на входе в двигатель, задают предельные для данного двигателя значения температуры газов за турбиной газогенератора и частоты вращения СТ, сравнивают заданное значение частоты вращения вентилятора и измеренное, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора и измеренное, сравнивают предельное для данного двигателя значение частоты вращения СТ и измеренное, полученные рассогласования селектируют по минимуму с сигналом автомата приемистости (АП), отселектированную величину подают в пропорционально-интегральный (ПИ) регулятор, где формируют управляющее воздействие на дозатор расхода топлива, подаваемого в камеру сгорания (КС) двигателя, Работы ведущих авиастроительных компаний в обеспечении создания перспективных авиационных двигателей (аналитический обзор)», В.А. Скибин, В.И. Солонин, В.А. Палкин, М., ЦИАМ, 2010 г., с 42.

Недостатком известного способа является следующее.

Для двигателей нового поколения, например, двигателя ПД-14 разработки ОАО «Авиадвигатель», г.Пермь, входящего в состав силовой установки (СУ) самолета МС-21 разработки ОАО «Иркут», г.Москва, предъявляется следующее требование: двигатель в процессе взлета самолета должен обеспечить взлетную тягу даже в случае пожара в мотогондоле.

При использовании в САУ ПД-14 известного способа выполнить это требование невозможно в силу следующих причин.

При возникновении в мотогондоле двигателя пожара в первую очередь выходят из строя «внешние» датчики и их линии связи (датчики и линии связи, расположенные снаружи корпуса двигателя: датчики положения РУД давления и температуры воздуха на входе в двигатель). В отличие от них практически «до конца» работают датчики, расположенные в «горячей» части двигателя: термопары, датчики частоты вращения, расположенные в охлаждаемых опорах двигателя.

Электронный регулятор двигателя (для двигателя ПД-14 - это агрегат РЭД-14 разработки ОАО «СТАР», г.Пермь) и исполнительная часть САУ, обеспечивающая дозирование топлива в камеру сгорания и управление механизацией двигателя (для двигателя ПД-14 - это агрегат ДГ-14 разработки ОАО «СТАР»), имеют специальную защиту, позволяющую работать в условиях повышенной температуры окружающей среды.

Несмотря на это, при реализации в САУ известного способа управления потеря информации о положения РУД давлении и температуре воздуха на входе в двигатель, вызванная пожаром в мотогондоле двигателя, не позволит обеспечить поддержание взлетной тяги двигателя. Это снижает надежность работы СУ и безопасность самолета.

Целью изобретения является повышение надежности работы СУ и безопасности самолета.

Поставленная цель достигается тем, что в способе управления расходом топлива в ГТД, заключающемся в том, что измеряют положение РУД управления двигателем, частоты вращения вентилятора и СТ, давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора, формируют заданное значение частоты вращения вентилятора как функцию от положения РУД давления и температуры воздуха на входе в двигатель, задают предельные для данного двигателя значения температуры газов за турбиной газогенератора и частоты вращения СТ, сравнивают заданное значение частоты вращения вентилятора и измеренное, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора и измеренное, сравнивают предельное для данного двигателя значение частоты вращения СТ и измеренное, полученные рассогласования селектируют по минимуму с сигналом АП, отселектированную величину подают в ПИ-регулятор, где формируют управляющее воздействие на дозатор расхода топлива, подаваемого в КС двигателя, дополнительно при поступлении в процессе взлета самолета сигнала «Пожар в мотогондоле», формируемого противопожарной системой самолета, фиксируют текущее значение частоты вращения вентилятора и используют его в качестве заданного значения частоты вращения вентилятора в течение наперед заданного времени, по истечении которого прекращают подачу топлива в КС и выключают двигатель.

На чертеже представлена схема устройства, реализующая заявляемый способ.

Устройство содержит последовательно соединенные блок 1 датчиков (БД), электронный регулятор 2 двигателя (РЭД), электрогидропреобразователь 3 (ЭГП), дозатор 4 топлива, клапан 5 останова (КО), управляемый вход КО 5 подключен к выходу РЭД 2.

РЭД 2 представляет собой бортовую цифровую вычислительную машину (БЦВМ), содержащую постоянное запоминающее устройство (ПЗУ), на котором записано программное обеспечение (ПО), реализующее алгоритмы управления двигателем. Дополнительно БЦВМ оснащена устройствами ввода/вывода (УВВ) физических сигналов (из БД 1 и в ЭГП 3), оперативное запоминающее устройство (ОЗУ), необходимое для обработки процессором БЦВМ поступающей из УВВ информации, репрограммируемое запоминающее устройство (РПЗУ), необходимое для хранения информации, относящейся к индивидуальным характеристикам двигателя (эксплуатационные регулировки, наработки, остаток ресурса). БЦВМ, ПЗУ, ПО, УВВ, ОЗУ, процессор, РПЗУ на фигуре не показаны.

Устройство работает следующим образом.

В РЭД 2 с помощью БД 1 измеряют положение РУД, частоты вращения вентилятора и СТ, давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора.

По хранящимся в ПЗУ РЭД 2 наперед заданным зависимостям:

- формируют заданное значение частоты вращения вентилятора как функцию от положения РУД, давления и температуры воздуха на входе в двигатель (пример такой зависимости приведен, например, в книге «Системы автоматического управления авиационными газотурбинными двигателями. Труды ЦИАМ, №1346 (под редакцией д.т.н., проф. О.С. Гуревича)», 2010 г., с 78.

- задают предельные для данного двигателя значения температуры газов за турбиной газогенератора и частоты вращения СТ (для двигателя ПД-14 эти значения составляют 1370K по температуре газов и 8000 об./мин. по частоте вращения СТ).

Далее в РЭД 2:

- сравнивают заданное значение частоты вращения вентилятора и измеренное с помощью БД 1, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора и измеренное с помощью БД 1, сравнивают предельное для данного двигателя значение частоты вращения СТ и измеренное с помощью БД 1;

- полученные рассогласования селектируют по минимуму с сигналом АП (на фигуре не показан), работающего, например, по программе

G т = f ( α Р У Д , T В Х * , P В Х * , P к , n к ) ( 1 )

где Gт - предельно допустимый расход топлива для данного режима работы двигателя,

αРУД - положение РУД,

T В Х * - температура воздуха на входе в двигатель,

P В Х * , - давление воздуха на входе в двигатель,

Pк - давление воздуха за компрессором двигателя,

nк - частота вращения компрессора двигателя.

- отселектированную величину подают в ПИ-регулятор (на фигуре не показан), где формируют управляющее воздействие на дозатор расхода топлива.

Для агрегата РЭД-14 управляющее воздействие - электрический сигнал с силой тока от минус до плюс 30 миллиампер, формируемый УВВ РЭД 2 (на чертеже не показано).

Управляющий ток из УВВ РЭД 2 подается на ЭГП 3 (для САУ двигателя ПД-14 в качестве ЭГП используется преобразователь сигналов ПС-7-5). С выхода ЭГП 3 уже гидравлический управляющий сигнал подается на дозатор 4, с помощью которого и осуществляется управление расходом топлива в КС двигателя. Сигнал из РЭД 2 на КО 5 при этом отсутствует и КО 5 находится в открытом положении.

Дополнительно при поступлении в РЭД 2 в процессе взлета самолета сигнала «Пожар в мотогондоле», формируемого противопожарной системой самолета (на фигуре не показана), фиксируют текущее значение частоты вращения вентилятора, измеренное с помощью БД 1, и используют его в качестве заданного значения частоты вращения вентилятора в течение наперед заданного времени, по истечении которого по командам РЭД 2 с помощью ЭГП 3, дозатора 4 и КО 5 прекращают подачу топлива в КС и выключают двигатель.

Для двигателя ПД-14 и самолета МС-21 режим взлета определяется наличием одновременного выполнения следующих условий:

- угол установки РУД больше 80° (положение РУД измеряется с помощью БД 1);

- стояночный тормоз выключен (входной для РЭД 2 сигнал из самолетной системы - на фигуре не показан);

- частота вращения ротора компрессора больше 99% (замеряется с помощью БД 1).

Наперед заданное время, в течение которого даже при наличии сигнала «Пожар в мотогондоле» САУ сохраняет взлетный режим двигателя - 5 минут (задано в ТЗ на САУ двигателя ПД-14).

Т.о. за счет повышения качества управления расходом топлива в КС двигателя обеспечивается нормальный взлет самолета даже при возникновении пожара в мотогондоле. После взлета самолета двигатель, в мотогондоле которого возник пожар, выключается, пожар локализуется и ликвидируется (с помощью противопожарной системы самолета). После этого самолет даже с выключенным двигателем может выполнить безопасную посадку на одном двигателе в аэропорту вылета (если это двухдвигательный самолет типа Ту-204 или МС-21) или продолжить полет (если это четырехдвигательный самолет типа Ил-96-400).

Это повышает надежность работы двигателя, как элемента СУ самолета, и безопасность самого самолета.

Способ управления расходом топлива в ГТД, заключающийся в том, что измеряют положение рычага (РУД) управления двигателем, частоту вращения вентилятора и его турбины (СТ), давление и температуру воздуха на входе в двигатель, температуру газов за турбиной газогенератора, формируют заданное значение частоты вращения вентилятора как функцию от положения РУД, давления и температуры воздуха на входе в двигатель, задают предельные для данного двигателя значения температуры газов за турбиной газогенератора и частоты вращения СТ, сравнивают заданное значение частоты вращения вентилятора и измеренное, сравнивают предельное для данного двигателя значение температуры газов за турбиной газогенератора и измеренное, сравнивают предельное для данного двигателя значение частоты вращения СТ и измеренное, полученные рассогласования селектируют по минимуму с сигналом автомата приемистости (АП), отселектированную величину подают в пропорционально-интегральный (ПИ) регулятор, где формируют управляющее воздействие на дозатор расхода топлива, подаваемого в камеру сгорания (КС) двигателя, отличающийся тем, что дополнительно при поступлении в процессе взлета самолета сигнала «Пожар в мотогондоле», формируемого противопожарной системой самолета, фиксируют текущее значение частоты вращения вентилятора и используют его в качестве заданного значения частоты вращения вентилятора в течение наперед заданного времени, по истечении которого прекращают подачу топлива в КС, и выключают двигатель.



 

Похожие патенты:

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления (САУ) турбовинтовыми силовыми установками (СУ) самолетов.

Изобретение относится к автоматическому регулированию подачи топлива в камеру сгорания газотурбинного двигателя. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронных системах автоматического управления (САУ) газотурбинными двигателями (ГТД) со свободной турбиной, применяемыми в составе газотурбинных установок (ГТУ) для привода электрогенераторов (ЭГ) газотурбинных электростанций (ГТЭС) малой и средней мощности.

Изобретение относится к авиационной технике и может быть использовано для управления работой газотурбинных двигателей летательных аппаратов на переходных режимах.

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронных системах (САУ) автоматического управления газотурбинными двигателями (ГТД).

Изобретение относится к области управления работой газотурбинных двигателей. .

Изобретение относится к газовой турбине, прежде всего к силовой установке газовой турбины с устройством подачи топлива и устройством управления. .

Изобретение относится к области авиационного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТД. Сущность изобретения заключается в том, что дополнительно к первому ЭМК введены второй и третий ЭМК, причем второй гидравлический вход первого ЭМК соединен с выходом второго ЭМК, у которого первый гидравлический вход соединен с магистралью низкого давления, а второй гидравлический вход - с выходом третьего ЭМК, первый гидравлический вход которого соединен с магистралью низкого давления, а второй - с магистралью высокого давления, управляемый вход второго ЭМК соединен через диодную развязку с третьим выходом электронного регулятора и тумблером «Останов» в кабине самолета, управляемый вход третьего ЭМК - с тумблером «Останов» в кабине самолета. Технический результат изобретения - повышение качества работы САУ и, как следствие, повышение надежности ГТД и безопасности ЛА за счет введения резервирования ненадежных элементов в тракте подачи топлива к КС. 1 ил.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в локальных системах управления (ЛСУ) газотурбинными силовыми установками (ГТУ) судов различного назначения. Дополнительно при подаче оператором команды на переход с одного топлива на другое фиксируют значение частоты вращения турбокомпрессора в момент получения команды, с помощью первого дозатора начинают уменьшать расход первого топлива в первый коллектор КС по линейному закону с наперед заданным темпом, одновременно с этим начинают с помощью второго дозатора увеличивать расход второго топлива во второй коллектор КС таким образом, чтобы частота вращения турбокомпрессора оставалась неизменной. Технический результат изобретения - повышение эксплуатационной надежности работы ГТУ. 1 ил.

Система предназначена для регулирования подачи топлива в ГТД со свободной турбиной. Система имеет основной и резервный каналы управления. В канале резервного управления установлены задатчик режимов с пазом и междроссельная камера. Входной дроссель камеры образован проходным сечением паза, регулируемого жиклера и клапана с задатчиком частоты вращения. Жиклер и клапан установлены параллельно в магистрали, соединяющей пневмогидропреобразователь с задатчиком и камерой. Датчик соединен со свободной турбиной двигателя. При увеличении частоты вращения свободной турбины выше заданной усилие от датчика перемещает клапан на перекрытие магистрали. Проходное сечение входного дросселя камеры уменьшается, давление в камере уменьшается, уменьшая проходное сечение дозирующей иглы. Расход топлива в двигатель уменьшается, и частота вращения свободной турбины ограничивается. Технический результат изобретения - повышение надежности работы системы на резервном режиме управления. 1 ил.

Изобретение относится к трубопроводной арматуре и предназначено для управления потоками рабочих сред путем изменения площади проходного сечения и может быть использовано для транспортировки газа в системах газораспределительных станций. Устройство содержит корпус с фланцами, в которых выполнены входной и выходной каналы, которые связаны между собой через основной дозирующий элемент дозирующего узла. В основном опорном узле установлен шток, связанный через резьбовое соединение с электродвигателем. Электродвигатель подключен к электронному регулятору. Узел фиксации от поворота дозирующего узла выполнен в виде опоры, на которую опирается планка, скрепленная со штоком дозирующего элемента. Неподвижная втулка дозирующего узла имеет два осевых окна для размещения в них дозирующих элементов дозирующего узла. Дополнительный опорный узел выполнен аналогично основному опорному узлу и представляет собой двухступенчатую втулку, одна из ступеней которой устанавливается в крышку корпуса с натягом. Описаны варианты исполнения устройства для управления положением дозирующего узла. Технический результат - упрощение конструкции, снижение времени при производстве и сборке. 6 н. и 105 з.п. ф-лы, 7 ил.

Способ поэтапного изменения подачи топлива при эксплуатации реактора с камерой сгорания с захваченным вихрем, имеющего, по меньшей мере, одну полость с захваченным вихрем, при этом реактор с камерой сгорания с захваченным вихрем дополнительно имеет как входное устройство для предварительного смешивания, которое обеспечивает смешивание топлива и воздуха и ввод воздушно-топливной смеси в основное впускное отверстие реактора с камерой сгорания с захваченным вихрем, так и, по меньшей мере, одно вихревое устройство для предварительного смешивания, которое обеспечивает смешивание топлива и воздуха и ввод воздушно-топливной смеси непосредственно в, по меньшей мере, одну подобную полость с захваченным вихрем в реакторе с камерой сгорания с захваченным вихрем. Входное устройство для предварительного смешивания содержит множество концентрических копланарных кольцевых элементов с аэродинамической формой, расположенных выше по потоку основного впускного отверстия, выровненных в аксиальном направлении в пределах проточного канала. Каждый кольцевой элемент имеет внутренний канал для топлива и дополнительно имеет множество отверстий для впрыска топлива, в результате чего топливо проходит из внутреннего канала во входной поток текучей среды вблизи кольца. Между каждыми двумя кольцевыми элементами образован кольцевой канал. Кольца дополнительно адаптированы, в результате чего отверстия для впрыска топлива ориентированы для впрыска топлива под углом, имеющим абсолютную величину от приблизительно 0о до приблизительно 90о относительно аксиального направления. Множество отверстий для впрыска топлива имеют неодинаковые диаметры, которые имеют разные величины. Каждая из величин выбрана для обеспечения заданного диапазона отношений мгновенных потоков топлива и воздуха. Вихревое устройство для предварительного смешивания содержит отверстия для впуска топлива и для впуска воздуха, камеру, в которой топливо и воздух смешиваются, и отверстие для выпуска воздушно-топливной смеси. Устройство для предварительного смешивания присоединено к реактору с камерой сгорания с захваченным вихрем так, что выпускное отверстие обеспечивает ввод воздушно-топливной смеси непосредственно в реакционную полость с захваченным вихрем, и так, что воздушно-топливная смесь вводится в полость с захваченным вихрем под таким углом, что воздушно-топливная смесь соединяется с потоком вихря приблизительно сонаправленно с вихревым потоком. Способ также включает регулирование частей воздушно-топливной смеси, вводимых через входное устройство для предварительного смешивания, и вихревое устройство для предварительного смешивания, для приспосабливания к отличающимся нагрузкам во время работы реактора с камерой сгорания с захваченным вихрем. Изобретение направлено на обеспечение устройством предварительного смешивания равномерного распределения топлива по площади поперечного сечения впускного отверстия камеры сгорания, получение однородной воздушно-топливной смеси, уменьшение габаритов зоны предварительного смешивания и снизить уровень выбросов вредных веществ. 23 з.п. ф-лы, 15 ил.

Изобретение относится к топливному расходомеру, в который подают топливо с помощью насоса, имеющего входное отверстие и выходное отверстие. Регулирующее устройство содержит поршень, отделяющий вдоль оси вторую камеру от третьей камеры, соединенный с выходным отверстием измерительного клапана, включает в себя соединительный элемент, выполненный с возможностью взаимодействия с элементом клапана, вторую пружину, размещенную в третьей камере, которая прикладывает осевое усилие к поршню, в результате чего проявляется тенденция удержания поршня отсоединенным от элемента клапана, регулирующее устройство также включает в себя канал для соединения второй камеры с третьей камерой. Технический результат изобретения - повышение надежности топливного расходомера. Описаны также топливный контур для турбинного двигателя и турбинный двигатель. 3 н. и 12 з.п. ф-лы, 8 ил.

Устройство для предварительного смешивания топлива и воздуха, предназначенное для использования перед впускным отверстием основного канала потока текучей среды системы выделения/преобразования энергии и отделенное от зоны тепловыделения в системе выделения/преобразования энергии, содержит множество концентрических, копланарных, некруглых, кольцевых элементов с аэродинамической формой, множество расположенных в радиальном направлении спицеобразных элементов. Элементы с аэродинамической формой выполнены концентрическими, копланарными, некруглыми, кольцевыми, расположены выше по потоку впускного отверстия, выровнены в аксиальном направлении относительно проточного канала. Каждый кольцевой элемент имеет внутренний канал для топлива и множество отверстий для впрыска топлива. Между каждыми двумя кольцевыми элементами образован кольцевой канал. Отверстия для впрыска топлива ориентированы для впрыска топлива под углом, имеющим абсолютную величину от приблизительно 0 до приблизительно 90 градусов относительно аксиального направления; и имеют неодинаковые диаметры. Каждое отверстие спарено с отверстием другого диаметра на соседнем кольце. Спицеобразные элементы с аэродинамической формой расположены в радиальном направлении, копланарны относительно кольцевых элементов и соединены с этими кольцевыми элементами. По меньшей мере, один из спицеобразных элементов имеет внутренний канал для топлива, который сообщается по текучей среде с внутренними каналами в кольцевых элементах, к которым присоединен спицеобразный элемент. Устройство для предварительного смешивания расположено на полости с захваченным вихрем так, что воздушно-топливная смесь вводится в полость с захваченным вихрем под углом, тангенциальным рециркулирующему потоку в полости, так что воздушно-топливная смесь соединяется с потоком вихря приблизительно сонаправленно с указанным вихревым потоком. Изобретение направлено на обеспечение равномерного распределения топлива по площади поперечного сечения впускного отверстия камеры сгорания, получения однородной воздушно-топливной смеси, стабилизации горения в полости с захваченным вихрем и уменьшения длины зоны предварительного смешивания. 6 н. и 15 з.п. ф-лы, 15 ил.

Изобретение используется в системах автоматического регулирования дозирования топлива в камеру сгорания газотурбинного двигателя. Технический результат: экономия топлива за счет повышения стабильности статических и динамических характеристик устройства дозирования топлива, повышения точности дозирования топлива в газотурбинный двигатель с одновременным повышением точности всей системы управления газотурбинным двигателем. Устройство дозирования топлива в газотурбинный двигатель содержит первый и второй широтно-импульсные модуляторы и блок управления, подключенный к входам первого и второго широтно-импульсных модуляторов, выходы которых через соответствующие электромагнитные клапаны соединены с полостью сервопоршня дроссельной иглы и с полостью клапана постоянного перепада давления, причем шток сервопоршня соединен с дроссельной иглой переменного сечения, за счет чего камера топливопитания делится на две полости, одна из которых соединена с камерой сгорания двигателя, а другая - с топливным насосом и клапаном постоянного перепада давления, причем блок управления содержит последовательно соединенные электронный регулятор и логическое устройство, которое соединено с входами первого и второго широтно-импульсных модуляторов, и обеспечивает переключение управления в зависимости от величины ошибки рассогласования. 3ил.

Электроприводной насос для газотурбинного двигателя (ГТД) содержит насос подачи рабочей среды и электропривод, включающий в себя электродвигатель и блок управления частотой его вращения, связанный с электродвигателем, датчиками и системой управления высшего уровня. Электроприводной насос также содержит модуль, служащий для неизмеряемого расчетного определения расхода рабочей среды. Модуль выполнен в виде цифрового устройства, имеющего входы для поступления сигналов из блока управления о частоте вращения электродвигателя nэд и тока в его силовых обмотках Iэд, содержащего память со значениями предварительно полученной экспериментальной зависимости расхода рабочей среды от косвенных параметров в виде частоты вращения электродвигателя и тока в его силовых обмотках и алгоритм вычисления расчетного значения объемного расхода Qн по экспериментальным значениям и измеряемым значениям сигналов с датчиков частоты вращения электродвигателя и тока в его силовых обмотках, основанный на зависимости Qн=f(nэд,Iэд). Технический результат заключается в повышении надежности и качества контроля или управления газотурбинным двигателем за счет безинерционного определения величины расхода рабочей среды на выходе насоса, в том числе в алгоритмах управления ГТД на переходных режимах его работы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области управления работой газотурбинных авиационных двигателей. Согласно способу измеряют температуру воздуха на входе в двигатель, по значению сигнала температуры воздуха на входе в двигатель и первому заданному программному значению регулируемого параметра вырабатывают первый программный управляющий сигнал, который сравнивают с фактическим значением сигнала регулируемого параметра и по сигналу разности их значений осуществляют регулирование подачи топлива в двигатель. Дополнительно задают второе программное значение регулируемого параметра и предельные значения высоты и скорости полета, в процессе полета по значению сигнала температуры воздуха на входе в двигатель и второму программному значению регулируемого параметра вырабатывают второй программный управляющий сигнал, причем в процессе полета измеряют высоту и скорость полета, сравнивают их с предельными наперед заданными значениями и, до тех пор, пока значения высоты и скорости полета не превышают заданных предельных, с фактическим значением сигнала регулируемого параметра сравнивают первый программный управляющий сигнал, а при превышении предельных значений высоты и скорости полета, с фактическим значением сигнала регулируемого параметра сравнивают второй программный управляющий сигнал. Технический результат изобретения - повышение эффективности регулирования двигателей в зависимости от условий полета. 1 з.п. ф-лы, 1 ил.
Наверх