Устройство тестирования и аттестации спутниковых gps-приемников (утасп)



Устройство тестирования и аттестации спутниковых gps-приемников (утасп)
Устройство тестирования и аттестации спутниковых gps-приемников (утасп)
Устройство тестирования и аттестации спутниковых gps-приемников (утасп)
Устройство тестирования и аттестации спутниковых gps-приемников (утасп)
Устройство тестирования и аттестации спутниковых gps-приемников (утасп)
G01C1/00 - Измерение расстояний, горизонтов или азимутов; топография, навигация; гироскопические приборы; фотограмметрия (измерение размеров или углов предметов G01B; измерение уровня жидкости G01F; измерение напряженности или направления магнитных полей вообще, кроме магнитного поля Земли, G01R; радионавигация, определение расстояния или скорости, основанное на эффекте распространения радиоволн, например эффекта Доплера, на измерении времени распространения радиоволн; аналогичные системы с использованием другого излучения G01S; оптические системы для этих целей G02B; карты, глобусы G09B)

Владельцы патента RU 2497075:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет геодезии и картографии" (МИИГАиК) (RU)

Изобретение относится к областям измерительной техники и геодезического приборостроения и может быть использовано в геодезии при полевых геодезических работах, а также в метрологии для калибровки спутниковых GPS-приемников. Техническим результатом является повышение точности полевых измерений, расширение функциональных возможностей тест-объекта при калибровке спутниковых приемников и возможность выполнения одновременного тестирования нескольких спутниковых приемников с максимальной точностью в реальных условиях. Устройство тестирования и аттестации спутниковых GPS-приемников (УТАСП) содержит тест-объект, выполненный сборно-разборным в виде установленной на штативе базы-крестовины, содержащей платформу с ложементом для фиксированной установки дополнительных плеч-базисов при тестировании 2-х и более GPS-приемников и лимбом, размещенным под платформой. Плечи-базисы в виде телескопических трубок укреплены на платформе в посадочных гнездах и установлены под фиксированным углом по отношению друг к другу, образуя базу-крестовину. На концах каждого плеча-базиса выполнены площадки для установки GPS-приемников в положениях A, B, С, D. При этом равная фиксированная длина плеч-базисов задается и фиксируется с помощью блока линейных перемещений, включающего линейные шкалы с микрометренными винтами и направляющими со стопорными зажимами, укрепленными на телескопических трубках. 5 ил.

 

Изобретение относится к области геодезического приборостроения и в частности к устройствам для тестирования и аттестации спутниковых GPS-приемников и может быть использовано в геодезии, метрологии и других областях науки и техники, где возникает необходимость проводить точные полевые измерения в больших объемах с минимальными затратами времени и средств.

Известен способ калибровки и тестирования спутниковой аппаратуры, заключающийся в непосредственной работе на пункте государственной геодезической сети (ПГГС) на котором сравнивают эталонные координаты с координатами, полученными тестируемой аппаратурой [1,3].

Недостатком данного способа является труднодоступность к пунктам (ПГГС) и тестирование на пункте только одного приемника.

Наиболее близким по технической сущности и достигаемому результату является устройство «тест - объект», функциональная схема которого позволяет сравнивать результаты измерений тестируемых GPS-приемников с координатами опорной точки с применением устройств имеющих привязку к нескольким пунктам государственной геодезической сети (ПГГС), но в этих случаях используются специальные стенды стационарного значения [4].

Недостатком измерений с помощью таких тест - объектов, является то, что тестируется только один GPS-приемник, при этом используется громоздкая стационарная база.

Целью изобретения является повышение точности полевых измерений, расширение функциональных возможностей тест - объекта при калибровке спутниковых приемников и возможность выполнения одновременного тестирования нескольких спутниковых приемников с максимальной точностью в реальных условиях

Указанная цель достигается тем, что устройство тестирования и аттестации спутниковых GPS-приемников (УТАСП) как тест - объект выполнен сборно-разборным в виде установленной на штативе с возможностью вращения в горизонтальной плоскости относительно оси О базы-крестовины, содержащей платформу с ложементом для фиксированной установки дополнительных плеч-базисов при тестировании более 2-х GPS-приемников и лимбом, плечи-базисы в виде телескопических трубок укрепленных на платформе в посадочных гнездах и установленных под фиксированным углом по отношению друг к другу образующих базу-крестовину, на концах каждого плеча-базиса выполнены площадки для установки GPS-приемников в положениях А, В, С, D с щелями, на которых с помощью становых винтов закрепляют тестируемые GPS-приемники, при этом равная фиксированная длина плеч-базисов устанавливается и контролируется с помощью блока линейных перемещений включающего укрепленные на телескопических трубках линейные шкалы с микрометренными винтами и направляющие со стопорными зажимами.

На базе-крестовине УТАСП производится принудительное центрирование координатной системы тест - объекта с координатной системой исследуемого пункта с точностью 0,1 мм, что позволяет исключить дополнительные погрешности при центрировании GPS-приемников.

Сущность изобретения поясняется чертежами, где на Фиг.1 показано устройство базы-крестовины УТАСП (вид сверху); на Фиг.2 показано устройство базы-крестовины УТАСП (вид с боку); на Фиг.3 показано телескопическое плечо-базис УТАСП в разрезе; на Фиг.4 показана схема расположения УТАСП в полевых условиях, где О=Ор - центр репера с координатами X, Y, Z; A, B, C, D - точки первоначального положения тестируемых GPS- приемников ориентированных по главным азимутальным направлениям S→N и W→Os, а на Фиг.5 показаны координатные системы элементов устройства, где

Op - центр репера;

h0p=ha=hb=hc=hd - высота инструмента;

A, B, C, D - положения GPS-приемников в момент принудительного центрирования и нивелирования координатной системы базы-крестовины УТАСП по отношению к центру репера;

α - угол между плечами-базисами УТАСП; О - ось вращения УТАСП;

ω угол поворота базы-крестовины УТАСП в положения А, В, С, D;

Оа, Ob, Ос, Od - центры тестируемых приемников закрепленных на концах базы-крестовины УТАСП;

(Ха, Ya, Za), (Xb, Yb, Zb), (Xc, Yc, Zc), (Xd, Yd, Zd) - координатные системы тестируемых GPS- приемников закрепленных на концах базы-крестовины УТАСП.

Устройство базы-крестовины УТАСП (тест - объект) содержит платформу - 1 плечи-базисы - 2, платформа - 1 выполнена с возможностью вращения в горизонтальной плоскости относительно оси О, лимб - 3 установлен под платформой - 1, плечи-базисы - 2 выполнены в виде телескопических цилиндрических трубок, наружной - 4 и внутренней - 5, плечи-базисы - 2 установлены под фиксированным углом по отношению друг к другу образуя базу-крестовину, а в самой платформе - 1 выполнен ложемент - 6 для фиксированной установки дополнительных плеч-базисов УТАСП при тестировании более 2-х GPS-приемников. На концах каждого плеча-базиса - 2 выполнены площадки - 7 для установки GPS-приемников в положениях А, B, С, D с щелями - 8, на которых с помощью становых винтов - 9 крепят тестируемые GPS- приемники, при этом угол ω является углом поворота базы-крестовины УТАСП установленной на штативе 10 в положения А, В, C, D, при l1=l2=l3=l4, где l длина плеч-базисов - 2. Каждое плечо-базис - 2 укреплено на платформе - 1 в посадочных гнездах - 11, а их длина устанавливается и контролируется с помощью блока линейных перемещений - 12 включающего укрепленные на телескопических трубках - 4 и - 5 линейные шкалы с микрометренными винтами и направляющие со стопорными зажимами (на чертеже не показаны). Работает устройство следующим образом.

Измерения производят одним циклом в несколько приемов. На начальном этапе первого приема измерений выбирают направляющее (нулевое) плечо-базис - 2. Устанавливают и контролируют длину плеч-базисов - 2 l1=l2=l3=l4 с помощью блока линейных перемещений - 12 включающего укрепленные на телескопических трубках -4 и -5 линейные шкалы с микрометренными винтами и направляющие со стопорными зажимами (на чертеже не показаны).

Устанавливают базу-крестовину УТАСП на штатив - 10, центрируют над центром репера О и нивелируют с помощью геодезического трегера и накладного уровня. Для удобства обработки результатов измерений, с помощью компаса или буссоли ориентируют нулевое плечо-базис - 2 в положение А соответствующее одному из главных азимутальных направлений сторон света N, OS, S или W. Включают одновременно все GPS-приемники установленные на площадках - 7 и регистрируют координаты XYZ каждого GPS-приемника в положении А.

Выполняют второй прием измерений поворачивая базу-крестовину УТАСП например на угол ω1=90° ориентируя с помощью компаса или буссоли нулевое плечо-базис - 2 в положение В, и вновь регистрируют координаты XYZ каждого GPS-приемника. Затем выполняют третий прием измерений поворачивая базу-крестовину УТАСП на угол ω2=180° от первоначального измерения в положение С, и снова регистрируют координаты XYZ GPS-приемников. Проводят четвертый прием измерений поворачивая базу-крестовину УТАСП на угол ω3=270° в положение D, где также регистрируют координаты GPS- приемников. Далее базу-крестовину УТАСП поворачивают на угол ω4=360° в положение А, замыкая цикл измерений и производят регистрацию координат XYZ GPS-приемников (Фиг.4,5). Сравнивают полученные измерения. При этом непременным условием в момент измерения полного цикла является соблюдение равенства плеч-базисов - 2 заданное в начале измерений и высоты инструмента, а именно:

l1=l2=l3=l4 при l - const, h - const;

Op - центр реперной (опорной) точки с координатами (Хр, Yp, Zp);

hор=ha=hb=hc=hd - высота инструмента;

Oa(Xa, Ya, Za),Ob (Xb, Yb, Zb),Oc (Xc, Yc, Zc),Od (Xd, Yd, Zd) - координаты центров тестируемых приемников закрепленных на концах плечей-базисов - 2 УТАСП в момент установки при l - const и h - const;

O'a(Х'а, Y'a, Z'a), Ob (X'b, Y'b, Z'b), Oc(X'c, Y'c, Z'c), Od(X'd, Y'd, Z'd) - координаты центров тестируемых GPS-приемников измеренных в положениях А, В, С, D;

Оа (Ха, Ya, Za)-O'a (Х'а, Y'a, Z'a)=Δа;

Ob (Xb, Yb, Zb)-Ob(X'b, Y'b, Z'b)=Δb;

Ос (Xc, Yc, Zc)-Oc (X'c, Y'c, Z'c)=Δc;

Od (Xd, Yd, Zd)-Od (X'd, Y'd, Z'd)=Δd.

Полученные отклонения результатов измерений у тестируемых GPS-приемников от истинных координат реперной (опорной) точки Ор (Фиг.5) вносят в ряд систематических погрешностей. Разница между полученными результатами измерений и истинными координатами Op (Δа, Δb, Δс, Δd) вносится как поправка к измерениям.

Сравнение результатов измерений в полевых условиях в положениях А, В, С, D производится визуально с экрана монитора, встроенного в управляющий компьютер, являющегося составной частью эталонного прибора GPS-приемника

Более детальное сравнение результатов измерений в положениях А, В, С, D, полученных при тестировании GPS-приемников, производят в камеральных условиях, используя при этом базу накопленной информации, хранящейся в буфере памяти управляющего компьютера. Используя избыточную базу накопленной информации по координатам GPS-приемников в положениях А, В, С, D в различные промежутки времени, возможно обеспечить графическую интерпритацию процесса измерений в виде полученных окружностей с радиусом Rl, образуемых при поворотах базы-крестовины УТАСП во времени и пространстве.

Сравнение результатов измерений в этом случае производят путем наложения графических отображений этих окружностей. Таким образом, при использовании УТАСП можно тестировать несколько (от 2х и более) GPS-приемников одновременно, причем конструкция устройства базы-крестовины УТАСП позволяет изменять длину плеч-базисов l при обязательном сохранении во время проведения измерения в одном полном цикле условия: l1=l2=l3=l4, где l - const и h - const.

Конструкция базы-крестовины УТАСП (тест - объект) выполнена сборно-разборной, что облегчает транспортировку устройства и может быть использована в реальных полевых условиях при измерениях координат объекта с одновременным тестированием нескольких GPS- приемников, получая при этом сравнительные характеристики GPS- приемников разных фирм.

Сборка УТАСП (тест-объекта,) производится в следующем порядке. Перед сборкой платформу - 1 с лимбом - 2 устанавливают на штатив - 10 и центрируют относительно реперной точки Ор. В посадочные гнезда - 11 платформы - 1 вставляют в собранном виде плечо-базис - 2 с одновременным выравниванием и фиксированием рабочей длины плеч относительно точки 0 образуя базу-крестовину УТАСП. Установленную базу-крестовину УТАСП на штативе - 10, повторно центрируют над центром репера О и нивелируют с помощью геодезического трегера и накладного уровня.. На платформы - 7 устанавливают тестируемые GPS-приемники и производят контрольное уточнение выполнения условия l1=l2=l3=l4, при l - const и h - const.

Производят установку УТАСП по азимутальным направлениям с помощью лимба - 3 и включают GPS-приемники. Устройство УТАСП позволяет установку для тестирования нескольких пар GPS-приемников. Включив GPS-приемники в работу, накапливют необходимую информацию от спутников. Через заданный промежуток времени(например через 1 мчас), предварительно выключив GPS-приемники поворачивают базу-крестовину УТАСП на фиксированный угол со и включают аппаратуру для набора информации. Набор информации от спутников осуществляют путем поворота базы-крестовины УТАСП по фиксированным углам до завершения полного цикла. Обрабатывают спутниковые определения координат и получают реальные координаты тест-объекта, которые представляют собой круг для каждого GPS-приемники. При высокой точности определения координат, например для 2 или 4 GPS-приемников, получают 2 или 4 круга, которые должны совпадать. Если для 4 приемников 3 круга показания близки, а для одного есть заметные отклонения, то получают реальную аттестационную характеристику, которая характеризует качество работы GPS-приемника. Разборку устройства производят в обратном порядке.

Таким образом устройство тестирования и аттестации спутниковых приемников GPS (УТАСП) позволяет тестировать несколько спутниковых приемников одновременно в полевых условиях совместно с выполнением реальных геодезических измерений.

Источники информации

1. Генике А.А., Побединский Г.Г. «Глобальные спутниковые системы определения местоположения и их применение в геодезии». М: - Картогеоцентр 2004, 351 с.ил.

2. Зимин В.М., Иванов Ю.С., Николаева В.А. «Основы метрологического обеспечения Военно-топографической службы».

Часть 1. Москва. - Редакционно-издательский отдел ВТС. - 1983. 104 с.

3. Инструкция по использованию приемников GPS фирмы Javad 2007.

4. Интернет, . GPS-станция. GeoKart - лаборатория «Геодезии и картографии» (прототип).

Устройство тестирования и аттестации спутниковых GPS-приемников, содержащее тест-объект, включающий специальные стационарные стенды, выполненные в виде геодезических пунктов, на которых установлены спутниковые приемники GPS, отличающееся тем, что тест-объект выполнен сборно-разборным в виде установленной на штативе с возможностью вращения в горизонтальной плоскости относительно оси базы-крестовины, содержащей платформу с ложементом для фиксированной установки дополнительных плеч-базисов при тестировании 2-х и более GPS-приемников и лимбом, размещенным под платформой, плечи-базисы в виде телескопических трубок укреплены на платформе в посадочных гнездах и установлены под фиксированным углом по отношению друг к другу образуя базу-крестовину, на концах каждого плеча-базиса выполнены площадки для установки GPS-приемников в положениях А, В, С, D с щелями, на которых с помощью становых винтов крепят тестируемые GPS-приемники, при этом равная фиксированная длина плеч-базисов задается и фиксируется с помощью блока линейных перемещений, включающего линейные шкалы с микрометренными винтами и направляющими со стопорными зажимами, укрепленными на телескопических трубках.



 

Похожие патенты:

Изобретение относится к области угловых измерений, в частности к системам обнаружения и измерения азимутальных координат импульсных источников излучения, таких как вспышки при запуске ракет, ПТУРС.

Изобретение относится к оптическому приборостроению и может быть использовано для контроля и юстировки различных оптических деталей, сборок и приборов. .

Изобретение относится к оптико-электронным системам и может быть использовано в углоизмерительных приборах ориентации космических аппаратов. .

Изобретение относится к оптико-электронным системам и может быть использовано в углоизмерительных приборах, предпочтительно в звездных приборах ориентации космических аппаратов.

Изобретение относится к технике измерений, может использоваться в геодезическом приборостроении и предназначено для использования при измерении угловых координат летательных аппаратов.

Изобретение относится к области метрологии в геодезической отрасли. .

Изобретение относится к области измерений азимутальных координат, в частности к автоматическим угломерным оптико-электронным устройствам, предназначенным для обнаружения импульсных светоизлучающих объектов (целей) и измерения их азимутальных координат.

Изобретение относится к области астрономо-геодезических измерений и может быть использовано для определения по звездам астрономических азимутов направлений на земные ориентиры для решения разнообразных задач инженерной геодезии. Способ определения астрономического азимута и широты по неизвестным звездам включает измерение теодолитом зенитных расстояний наблюдаемой неизвестной звезды и горизонтальных направлений на нее и на земной предмет, вычисление места севера и азимута как разности горизонтального направления на земной предмет и места севера. Измерения теодолитом проводят четырехкратно через промежутки времени не более 60 мин и место севера вычисляют по формуле: tg MN=A/B, а широту определяют дважды по формулам: tg φ=[sin z2 cos(N2-MN)-sin z1(N1-MN]:(cos z1-z2); tg φ=[sin z4 cos (N4-MN)-sin z3(N3-MN)]:(cos z3-z4). Техническим результатом является расширение функциональных возможностей и повышение точности совместного определения азимута и широты. 4 ил.
Изобретение относится к области измерительной техники и может быть использовано для определения азимута направления из заданной точки, называемой исходной точкой, на Мекку, называемую точкой цели, географические координаты которой известны. Для определения требуемого азимута необходимо определить географические координаты исходной точки, точки цели и некоторой базовой точки, в качестве которой проще всего взять Северный магнитный полюс. Угол между базовым направлением, т.е. направлением на базовую точку, и направлением на точку цели, который и является искомым азимутом, является разностью угла между направлением из исходной точки на географический Северный полюс и направлением на точку цели и угла между направлением из исходной точки на Северный магнитный полюс и на географический Северный полюс. Устройство сможет определять направление на Мекку, что необходимо для совершения молитвы человеку, исповедующему ислам, и может быть выполнено в виде молитвенного коврика. При этом при ориентации развернутого молитвенного коврика относительно сторон горизонта, соответствующей направлению некоторой метки на коврике на Мекку, индикация этого направления может быть осуществлена за счет изменения цвета или интенсивности цвета встроенного в молитвенный коврик дисплея на жидких кристаллах.

Изобретение относится к области технической физики и может применяться для стабилизации положения на земной поверхности крупногабаритных установок для научных исследований или промышленного оборудования. Устройство для измерения угла наклона относительно земной поверхности включает в себя источник света, кювету с жидкостью, поверхность которой установлена на пути движения света, регистрирующее устройство отраженного от поверхности жидкости луча света. При этом имеется общее для всех элементов основание, источник света выполнен в виде одномодового стабилизированного лазерного источника, кювета содержит вязкую диэлектрическую жидкость, например масло, с отношением толщины слоя жидкости в кювете к диаметру кюветы в пределах от 0.04 до 0.06, регистрирующее устройство выполнено в виде позиционно чувствительного фотоприемного устройства с блоком регистрации, а угол наклона основания определятся как изменение положения пятна отраженного от поверхности жидкости лазерного луча на позиционно-чувствительном фотоприемнике. Результатом применения предлагаемого изобретения является улучшение стабилизации положения крупномасштабных промышленных или научно-исследовательских комплексов, таких как Международный линейный коллайдер (ILC), современные телескопические системы и др. в условиях сейсмических шумов земного и индустриального происхождения, а также регистрация поверхностных сейсмических волн. 1 ил.

Секстан // 2523100
Изобретение относится к области морского судовождения и может быть использовано в навигационных секстанах. Технический результат изобретения заключается в возможности одновременного и непосредственного измерения разности высот и разности азимутов двух светил без измерения их высот и азимутов. Секстан содержит секторную раму с лимбом, малое наполовину прозрачное зеркало, расположенное на раме, алидаду с осью вращения, перпендикулярной плоскости лимба, большое зеркало, расположенное на алидаде, угломерное отсчетно-стопорное устройство алидады, оптическую трубу и вспомогательные детали. Большое зеркало снабжено осью вращения, лежащей в плоскости этого зеркала параллельно плоскости лимба, и снабжено угломерным отсчетно-стопорным устройством. Оптическая труба снабжена жидкостным уровнем. 3 ил.

Изобретение относится к области геодезии, в частности к высокоточным измерениям для определения критических деформаций. Предложен способ высокоточных измерений инженерных объектов сканирующими лазерными системами (ЛИС) с применением программного обеспечения управления и обработки результатов по двум координатам в реальном масштабе времени и устройство для его осуществления. Сканирующий лазерный пучок задает опорное направление в реальном масштабе времени, используя математический аппарат, наиболее адаптированный к геодезическим измерениям и позволяющий производить одновременные равноточные измерения в нескольких точках исследуемого объекта, расположенных в створе. Технический результат - сокращение временных интервалов измерений, производимых в процессе длительного и непрерывного геодезического мониторинга, обеспечивая точность измерений на протяженных трассах и их отрезках. 2 н.п. ф-лы, 4 ил.

Изобретение относится к технике измерений, может использоваться в геодезическом приборостроении и предназначено для использования в составе устройств измерения угловых координат летательных аппаратов. Известный прототип изобретения не позволяет в ходе селекции идентифицировать подвижные цели при наличии нескольких объектов, поскольку на кадре результирующего изображения присутствуют два изображения каждой движущейся цели - прямое и инверсное, которое запаздывает относительно первого (основного) изображения на время, равное периоду следования кадров. Для устранения инверсных изображений, создающих эффект "ложных целей", в устройство селекции вводится блок вычисления компиляционного кадра. Технический результат предлагаемого устройства селекции подвижных целей - повышение точности селекции подвижных целей за счет подавления их инверсных (ложных) изображений. 1 илл.

Изобретение относится к навигационному приборостроению и может быть использовано в магнитных курсоуказателях для скоростных судов как для визуального съема показаний, так и для дистанционной передачи курса в судовые системы автоматики. Магнитный курсоуказатель для скоростных судов содержит прозрачный корпус котелка, выполненный в виде сферы, заполненной компасной жидкостью, магниточувствительный элемент, расположенный внутри корпуса и состоящий из поплавка, шкалы, магнитов и опорного узла, в который вставляется игла компаса. Магнитный курсоуказатель дополнительно содержит датчик электронной передачи сигнала курса, расположенный на дне корпуса компаса таким образом, что одна его принимающая горизонтальной составляющей магнитного поля земли Нх лежит по диаметральной линии корпуса котелка, а вторая принимающая Ну перпендикулярна ей. Магниточувствительный элемент имеет положительную плавучесть в компасной жидкости, опорный узел магниточувствительного элемента выполнен в виде конуса, магниты магниточувствительного элемента расположены ниже центра точки опоры, на боковой поверхности поплавка по периметру расположена шкала для визуального отсчета курса. Техническим результатом изобретения является упрощение конструкции, повышение точности съема отсчетов. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано в точном приборостроении и метрологии. Способ заключается в кодировании измерительного диапазона прибора с помощью светоконтрастных щелей сигнальной маски, устанавливаемой на объекте, формировании изображения этой щели в плоскости приемной ПЗС(КМОП)-матрицы, передаче этого изображения в вычислительный блок. При этом в схему прибора вводится внутренний эталон угла, реализованный изменением топологии сигнальной маски за счет одной дополнительной светоконтрастной щели с центральным углом между ней и штатной щелью, измеряются вариации Δε(φ) угла ε на различных углах φ разворота ротора в диапазоне 0<φ<360° и по этим вариациям вычисляются систематические погрешности Δφс(φ) измерительной шкалы энкодера. Технический результат - упрощение измерения погрешностей. 1 ил.

Электронно-цифровое устройство относится к технике измерений, может использоваться в геодезическом приборостроении для измерения угловых координат летательных аппаратов. Данное устройство содержит: объектив канала наблюдения, опорно-поворотное устройство, фотоприемное устройство канала наблюдения, матрицу фотодетекторов, устройство считывания информации и аналого-цифровой преобразователь, механизмы вертикального и горизонтального наведения, вертикальный и горизонтальный диски с кодовыми дорожками, блок считывания с вертикального диска и блок считывания с горизонтального диска, первый преобразователь угол-код и второй преобразователь угол-код, видеоконтрольный адаптер, видеоконтрольное устройство, блок формирования отсчетов, блок управления и преобразования информации, блок синхронизации, преобразователь кодов и преобразователь время-код, устройство регистрации, пульт дистанционного управления, а также устройство селекции подвижных целей, содержащее блок оперативной памяти текущего кадра видеоизображения, блок оперативной памяти предыдущего кадра видеоизображения, блок вычисления разностей кадров видеоизображений, блок оперативной памяти текущего кадра видеоизображения, блок суммирования разностей кадров видеоизображений, устройство регистрации, блок оперативной памяти текущих значений кодов, блок оперативной памяти предыдущих значений кодов, блок вычисления относительного сдвига кадров видеоизображений, устройство управления памятью, связанные соответствующим образом. Технический результат - возможность селектировать подвижные объекты на общем наблюдаемом фоне. 1 ил.

Изобретение относится, в частности, к области транспортного строительства и может быть использовано при автоматизации, например, землеройно-транспортных машин, предназначенных для сооружения земляного полотна, а также устройства оснований и покрытий автомобильных дорог. Горизонтальный помехозащищенный маятниковый измеритель угла с высокой чувствительностью по отношению к полезному сигналу и демпфируемый силами, пропорциональными его «абсолютной скорости», отличающийся тем, что горизонтальный маятник состоит из выполненного в виде ламинированного набора круговых тонких пластин, одним концом закрепленных на оси, а другим на дебалансной планке, помещенный в закрытый цилиндрический герметичный корпус, выполненный в виде цилиндра, ось которого совпадает с осью маятника, полностью заполненный демпфирующей жидкостью, смонтирован на плите так, чтобы одна сторона корпуса была установлена на плите шарнирно, а другая сторона закреплена к плите регулировочным болтом, с помощью которого задается величина постоянного угла α, закрытый герметичной крышкой, в которой предусмотрены отверстия с защитными пробками, и преобразователь полезного угла β в электрический сигнал. Целью изобретения является объединение положительных качеств горизонтального маятника с вертикальным, обеспечив демпфирование маятника силами, пропорциональными «абсолютной» скорости. В результате предлагаемое устройство обладает высокой чувствительностью по отношению к полезному сигналу и увеличенный период колебаний, а также при действии помехи в виде импульсного горизонтального ускорения, действующего в плоскости качания маятника, последний получает незначительное ложное отклонение β, которое вследствие демпфирования маятника относительно «жидкого тяжелого сбалансированного тела» быстро затухает. 2 з.п. ф-лы, 3 ил.
Наверх