Способ измерения скорости разлета и элементного состава газоплазменного потока

Изобретение относится к области оптико-спектральных измерений быстропротекающих процессов и может найти применение для измерения скорости разлета и элементного состава газоплазменных потоков, скорости разлета светящихся частиц и осколков при детонации и взрыве. С помощью оптической системы строится изображение разлетающегося газоплазменного потока и все измерения проводятся в плоскости оптического изображения. С помощью системы диафрагм и фотоприемников выделяют фрагменты изображения вдоль направления газоплазменного потока и по временным изменениям яркости фрагментов определяют скорость распространения потока. Элементный состав сепарированного по массам частиц газоплазменного потока определяется в результате анализа временных изменений спектрального состава свечения фрагмента изображения газоплазменного потока, выделяемого с помощью оптоволоконного кабеля. Изобретение позволяет проводить измерения дистанционно и оперативно. 3 ил.

 

Изобретение относится к области оптико-спектральных измерений быстропротекающих процессов, в частности к измерительной технике, и может найти применение для измерения скорости разлета и элементного состава газоплазменных потоков.

При проведении фундаментальных исследований и в ряде прикладных задач возникает потребность в измерении параметров быстропротекающих процессов, например скорости разлета и элементного состава газоплазменного потока (ионов, атомов, молекул) при воздействии мощного лазерного излучения на материалы, скорости распространения ударных волн и продуктов детонации в реагирующих средах, скорости разлета светящихся микрочастиц и осколков при взрыве и т.д..

Традиционно для контроля и измерения скорости разлета и состава газоплазменного потока используются методы масс-спектрометрии, зондовые методы и различные оптические и эмиссионные методы.

В работе (см. Н.А.Понькин («Что в имени твоем, масс-спектрометрия?» сайт Всероссийского масс-спектрометрического общества), http://www.vmso.ru/datadocs/Ponkin.pdf) приведен подробный анализ различных методов масс-спектрометрии, на конкретных примерах показаны возможности их использования для диагностики сложных физико-химических процессов. Широкое использование нашли времяпролетные масс-спектрометры для измерения зарядового и массового состава ионов газоплазменных потоков (см., например, патент RU 2314594 C1, патент RU 2059982 C1)

Однако общим недостатком масс-спектрометрических методов, в том числе и времяпролетных, является то, что измерительный блок масспектрометра либо устройство ввода (забора) анализируемого вещества должны находиться непосредственно в разлетающемся газоплазменном потоке, что не всегда представляется возможным.

Аналогичные трудности возникают и при использовании зондовых методов, так как зонд также должен находиться непосредственно в разлетающемся газоплазменном потоке, что во-первых, вносит возмущения в исследуемый процесс, а во-вторых, это не всегда возможно.

В ряде конкретных случаев, более предпочтительными, а иногда и единственно возможными являются оптические и эмиссионные методы диагностики, так как они позволяют проводить дистанционные измерения, что особенно важно при исследовании высокотемпературных и реакционноспособных газоплазменных потоков.

Так, в работе (патент №2029307) был предложен способ измерения скорости и размеров частиц в потоке путем зондирования потока частиц лучом лазера с известной периодической пространственно-временной структурой. Приемной оптической системой выделялся свет, рассеянный частицами, и далее проводилась обработка рассеянного излучения. В результате соответствующей обработки рассеянного излучения определяли значения скорости разлета частиц в потоке и их размеры.

Во многих случаях для определения скорости разлета газоплазменного потока используются эмиссионные методы диагностики. Эти методы позволяют дистанционно по спектрам эмиссии и изменениям спектров эмиссии частиц при разлете определять состав и скорости разлета газоплазменного потока. Например, в работах (см. А.К. Шуаибов, М.П. Чучман, Л.Л. Шимон. Оптические характеристики и параметры лазерной плазмы сурьмы, ЖТФ, 2003, том 73, вып.4, стр.77-81; А.К. Шуаибов, М.П. Чучман. Пространственное изменение характеристик эрозионной плазмы свинца при распространении лазерного факела от мишени, ЖТФ, том 76, вып.11, стр.61-65) методом эмиссионной спектроскопии определялись скорость разлета и температура лазерной плазмы.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату (прототипом) является способ определения скоростей частиц в продуктах детонации и взрыва по тепловому излучению разлетающегося потока частиц предложенный в работе (см. патент №2193781). Способ заключается в выделении теплового излучения частиц, измерении интенсивности теплового излучения частиц в сечениях, задаваемых фотоприемниками расположенными вдоль потока частиц на известном расстоянии друг от друга. По результатам измерения интенсивности и отношения интенсивностей теплового свечения на фотоприемниках проводят соответствующую обработку результатов, из которых определяют интенсивность потока частиц, плотность потока частиц и скорость потока частиц. Недостатком данного способа является то, что измерения скорости проводятся по тепловому излучению потока частиц, представляющего собой широкополосное интегральное тепловое излучение всего газоплазменного потока. Этот способ не позволяет выделять спектральные компоненты отдельных атомов и молекул в разлетающемся потоке и таким образом не позволяет дифференциально определять скорости их разлета.

Целью предлагаемого изобретения является разработка простого и информативного способа, позволяющего дистанционно и оперативно проводить измерения скорости разлета и элементного состава светящегося в видимой области спектра газопламенного потока.

Цель достигается тем, что измерения проводятся не в самом газоплазменном потоке, а используется динамическое изображение разлетающегося газоплазменного потока. Для этого с помощью оптической системы установленной на определенном расстоянии от разлетающегося газоплазменного потока формируют динамическое изображение. Все дальнейшие измерения проводятся с использованием динамического изображения газоплазменного потока.

Для измерения скорости разлета газоплазменного потока в плоскости изображения устанавливается фотодиодная линейка, ориентированная вдоль направления разлета. Число фотодиодов и расстояние между ними может меняться в зависимости от конкретной задачи. По мере разлета газоплазменного потока свечение переднего фронта последовательно попадает на фотодиоды, расположенные на определенном расстоянии Δx друг от друга. На фотодиодах с определенной временной задержкой Δt формируются сигналы, характеризующие временные изменения интенсивности (яркости) газоплазменного потока. Зная расстояние между фотодиодами Δx и время задержки Δt между сигналами, можно определить скорость разлета и изменение скорости разлета газоплазменного потока.

На рис.1 приведена конкретная схема для реализации предлагаемого способа измерения скорости разлета газоплазменного потока. Измеряется скорость разлета газоплазменного потока (эрозионного факела), возникающего при воздействии мощного лазерного импульса на мишень. Излучение лазера 1 с помощи линзы 2 фокусируется на мишень 4 (в данном случае керамика Y-Ba-Cu-O). Мишень находится в вакуумной камере 3. При воздействии мощного лазерного импульса возникает разлетающийся от поверхности мишени светящийся эрозионный факел 5. С помощью оптической системы (в данном случае с помощью линзы 6) формируется оптическое изображение эрозионного факела 7 за пределами вакуумной камеры. Для удобства измерений и проведения последующих расчетов оптическая линза устанавливается на двойном фокусном расстоянии от эрозионного факела, так чтобы размеры его изображения были такими же, как и у самого эрозионного факела. В плоскости изображения эрозионного факела устанавливается фотодиодная линейка, ориентированная вдоль направления разлета. Фотодиодная линейка содержит пять фотодиодов (1*-5*), расстояние между которыми Δx=5 мм. Перед фотодиодной линейкой установлен непрозрачный экран с отверстиями (диафрагмами) перед фотодиодами. Размеры отверстий (диафрагм) составляли Δr≈0.5 мм, таким образом фотодиоды регистрируют излучение небольшого участка изображения (фрагмента изображения размером Δr=0.5 мм) газоплазменного потока. Первый фотодиод расположен непосредственно у основания эрозионного факела (Δx=0). Сигналы от фотодиодов через многоканальную интерфейсную плату подаются на компьютер.

На рис.2 в качестве примера показаны сигналы от фотодиодов с номерами 3 и 5, расположенных на расстоянии Δx3-1=10 мм, Δx5-1=20 мм от основания эрозионного факела (от поверхности мишени) и соответственно на расстоянии Δx5-3=10 мм друг от друга. Время задержки между сигналами составляет Δt5-3≈3.5 мкс. Тогда для средней скорости разлета фронта эрозионного факела можно написать:

V с р = Δ x 5 3 Δ t 5 3

Подставляя численные значения. получим: Vcp≈2.8×103 м/с

Для анализа элементного состава эрозионного факела используются спектральные методы анализа (по спектрам эмиссии элементов). По мере разлета эрозионного факела будет происходить пространственная сепарация частиц по массе. Более легкие частицы (ионы и атомы легких элементов), имеющие большую скорость разлета, будут группироваться на переднем фронте. Атомы и ионы более тяжелых элементов имеют меньшую скорость разлета, поэтому они будут отставать от лидирующей группы легких частиц. Кластеры и микрокапли имеют еще большую массу, чем атомы и ионы, в результате для них будет наблюдаться еще больше отставание от лидирующей группы атомов и ионов. Таким образом по мере разлета газоплазменного потока будет происходить пространственное разделение частиц по массе.

Для регистрации спектров на место фотодиодной линейки в плоскости изображения устанавливается оптоволоконный кабель (многомодовое оптоволокно). Оптоволоконный кабель закрепляется на подвижном столике и может перемещаться в плоскости изображения. На рис.3 показана схема регистрации свечения локальных участков эрозионного факела. Излучение локального участка эрозионного факела попадает на вход 8 оптоволоконного кабеля и передается на полихроматор 11. Регистрация спектра осуществляется с помощью ПЗС линейки 12 с управляемым запуском. Сигналы с ПЗС линейки подаются на рабочий компьютер для анализа. Перемещая входную головку оптоволоконного кабеля вдоль изображения эрозионного факела на определенное расстояние (на расстояние достаточное для сепарации частиц по массам), можно измерять скорости частиц (по пройденному расстоянию и времени задержки), анализировать элементный состав и изменение элементного состава в зависимости от расстояния от основания эрозионного факела (от поверхности мишени).

Способ иллюстрируется Рис.1, Рис.2, Рис.3.

Рис.1 - 1 - лазер, 2 - фокусирующая линза, 3 - камера, 4 - мишень, 5 - разлетающийся газоплазменный поток (лазерный эрозионный факел), 6 - оптическая система, 7 -изображение эрозионного факела в плоскости изображений, 8 - линейка фотодиодов, расположенных на расстоянии Δx=5 мм, 9 - компьютер.

Рис.2 - Сигналы с фотодиодной линейки. Временная задержка сигналов от фотодиодов, отстоящих на расстоянии Δx3-1=10 мм, Δx5-1=20 мм от основания эрозийного факела (от поверхности мишени).

Рис.3 - 1 - лазер, 2 - фокусирующая линза, 3 - камера, 4 - мишень, 5 - разлетающийся газоплазменный поток (лазерный эрозионный факел), 6 - оптическая система, 7 -изображение эрозионного факела в плоскости изображений, 8 - входная головка оптоволоконного кабеля, 9 - оптоволоконный кабель, 10 - фокусирующий объектив, 11 -полихроматор, 12 - ПЗС матрица.

Способ измерения параметров разлетающегося газоплазменного потока, отличающийся тем, что с помощью оптической системы формируют динамическое изображение потока, выделяют фрагменты изображения, расположенные на определенном расстоянии вдоль направления распространения потока, формируют временные зависимости интенсивности свечения выделенных фрагментов и по этим зависимостям судят о скорости потока, выделяют фрагмент изображения, находящийся на определенном расстоянии от начала потока, формируют временную зависимость спектрального состава излучения фрагмента и по отдельным участкам этой зависимости судят о составе потока.



 

Похожие патенты:

Изобретение относится к фотограмметрическим методам определения скорости движения объектов при проведении аэробаллистических, террадинамических, ударных, осколочных и других видов испытаний.

Изобретение относится к полигонным испытаниям боеприпасов и может быть использовано, в частности, для измерения характеристик осколочного поля снаряда. .

Изобретение относится к области исследования быстропротекающих процессов, а конкретно к испытаниям боеприпасов. .

Изобретение относится к контрольной измерительной технике и может быть использовано для определения скорости и ускорения метаемого элемента. .

Изобретение относится к области определения внешнебаллистических параметров (координат, скорости и углового положения метательных элементов - пуль и снарядов) при стрельбе прямой наводкой по вертикальным преградам (мишеням).

Изобретение относится к области определения внешнебаллистических параметров (координат, скорости и углового положения метательных элементов - пуль и снарядов) при стрельбе прямой наводкой по вертикальным преградам (мишеням) и может использоваться при экспериментальном определении пробивной способности пуль и снарядов и качества брони в процессе их отработки или контроля при изготовлении.

Изобретение относится к области измерения динамических параметров объекта и может быть использовано в различных областях, в том числе и в задачах строительства для исследования вибраций, деформационных характеристик грунтов, осадки строительных конструкций.

Изобретение относится к измерительной технике и может быть использовано в измерительных системах, при регистрации оптических объектов в заданной точке, при исследовании их формы и характера оптического излучения в инфракрасном диапазоне длин волн.

Изобретение относится к области измерения динамических параметров объекта и может быть использовано в различных областях, в том числе и в задачах строительства для исследования вибраций, деформационных характеристик грунтов, осадки строительных конструкций.

Изобретение относится к области измерения таких динамических параметров объекта, как скорость и перемещение. Исследуемый объект, освещенный осветителем, закрепляют на штоке, перемещающемся по направляющим с горизонтальной меткой. Видеокамеру устанавливают по отношению к исследуемому объекту таким образом, чтобы ее оптическая ось была перпендикулярна плоскости движения исследуемого объекта и направлена на горизонтальную метку. Одновременно с началом движения исследуемого объекта включают видеокамеру, которая покадрово фиксирует перемещение делений мерной линейки относительно горизонтальной метки, сравнивают значения делений мерной линейки, совпадающих с горизонтальной меткой, на следующих друг за другом кадрах и, учитывая перемещение исследуемого объекта и скорость видеосъемки, рассчитывают скорость исследуемого объекта. Изобретение позволяет усовершенствовать процесс регистрации динамики процесса и позволяет производить одновременный анализ динамики различных частей исследуемого объекта и сохранить результаты измерений в наглядной форме в виде отдельных кадров. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области железнодорожного транспорта, а именно к способам определения скорости железнодорожного состава. Способ заключается в том, что регистраторы, представляющие собой два расположенные на заданной высоте от железнодорожного полотна видеорегистратора, производят съемку железнодорожного полотна синхронно, в каждый момент времени запоминается текущий кадр с первого видеорегистратора, определяется кадр с тем же фрагментом железнодорожного полотна в видеопоследовательности со второго видеорегистратора, вычисляется сдвиг между этими кадрами, и по разнице порядковых номеров кадров и сдвигу между ними определяется скорость по формуле V = F ⋅ S + Δ L Δ N , где F - темп съемки видеорегистраторов (количество кадров в секунду), S - смещение между видеорегистраторами, ΔL - сдвиг между кадрами с одинаковым фрагментом железнодорожного полотна с двух видеорегистраторов, ΔN - разность номеров кадров с одинаковым фрагментом железнодорожного полотна со второго и первого видеорегистраторов. 5 ил.

Изобретение относится к измерительным приборам космического аппарата (КА) и может использоваться для высокоточного определения малого приращения скорости поступательного движения КА. Измеритель имеет полый шарообразный корпус (1), на внешней поверхности которого находятся электромагниты (2). На внутренней поверхности корпуса (1) расположена сеть адресных фотоприемников, а внутри корпуса - инерционная масса (5). Электромагнитный подвес массы (5) выполнен в виде встроенных электромагнитов (6), взаимодействующих с электромагнитами (2). Датчик положения массы (5) представляет собой оптрон из трех оптопар. В оптопарах излучателями служат светодиоды внутри массы (5) с оптическими осями (27). Излучение вдоль этих осей попадает на указанные фотоприемники корпуса. Светодиоды питаются от аккумулятора гелиевого типа, встроенного в массу (5). Он заряжается от токов в обмотках электромагнитов (6). Режимы работы устройства задаются оператором (10) через блок контроля и управления (7) с программным обеспечением (9). Питание осуществляется от источника (8). Технический результат изобретения состоит в создании высокоточного (погрешность менее 6 %) прибора для измерения приращений скорости при действии ускорений негравитационной природы порядка (10-6-10-10) м/с2. 1 з.п. ф-лы, 6 ил.

Изобретение относится к области технической физики и касается способа и устройства для исследования воздушной взрывной волны. В исследуемой среде создают насыщенный пар, близкий к критической точке фазового перехода. Пропускают через среду плоские лазерные лучи, проходящие через источник взрывной волны, и регистрируют оптическое поле перпендикулярно плоскости прохождения луча. Дополнительно, в среду распространения добавляют пыль для образования центров конденсации или образуют их с помощью ионизирующего излучения. Устройство для реализации способа содержит источник взрывной волны, находящийся в замкнутом сферическом объеме. Сферический объем через трубки связан с источниками пара и пыли. В нижней части сферы установлены: ионизирующий источник, нагреватель, датчики давления и температуры. В верхней части сферы расположен оптический регистратор (телекамера). В горизонтальной плоскости под углом 90 градусов установлены 4 лазера с плоскими расширительными линзами. Технический результат заключается в повышении разрешающей способности и точности измерений. 2 н. и 2 з.п. ф-лы, 2 ил.

Способ определения скорости ветра над водной поверхностью, в котором получают при помощи двух оптических систем на основе линеек ПЗС-фотодиодов с разными направлениями визирования два пространственно-временных изображения водной поверхности. Стыкуют полученные изображения. Определяют направления распространения ветровых порывов по углам наклона полос ветровых порывов на пространственно-временных изображениях и известному углу между направлениями визирования. Скорость ветра определяют над каждой точкой водной поверхности в направлении визирования на основании модельной зависимости дисперсии уклонов волн. Технический результат заключается в разработке способа определения пространственного распределения по дальности скорости ветра над водной поверхностью по пространственно-временным изображениям водной поверхности при рассеянном небесном освещении (вне зоны солнечных бликов), полученным как с неподвижного основания, так и с движущегося носителя, и обладающего высокой помехоустойчивостью. 4 ил.
Наверх