Способ определения загрязнения окружающей среды при аварийных выбросах на аэс

Изобретение относится к ядерной физике и может быть использовано для дистанционного измерения и анализа уровня радиационного загрязнения вокруг АЭС. Согласно способу с помощью радиометра получают изображения подстилающей поверхности в виде функции яркости I(х,у), содержащей контрольные площадки с известным уровнем радиации. Методами пространственного дифференцирования функции яркости изображения I(х,у) выделяют градиентный контур тепловых аномалий относительно яркости фонового уровня. Выделенный контур отождествляют с зоной загрязнения и рассчитывают площадь зоны загрязнения на основании количества пикселей в контуре и пространственного разрешения одного пикселя радиометра. Для количественной оценки уровня радиационного заражения строят гистограмму яркости пикселей внутри выделенных контуров. Технический результат - объективность, достоверность, точность и документальность определения зон заражения вокруг АЭС. 7 ил., 1 табл.

 

Изобретение относится к ядерной физике и может быть использовано для дистанционного измерения и анализа уровня радиационного загрязнения вокруг АЭС при аварийных выбросах.

Аварии с повреждением атомного реактора в США (Три-Майл Айленд, 1979 г.), в СССР (Чернобыль, 1986 г.), Япония (Фукусима, 2011 г.) поставили вопрос о возможности и необходимости объективного и независимого контроля радиационного загрязнения вследствие выброса радиоактивных веществ в окружающее пространство. При неблагоприятном развитии событий последствия аварий могут носить глобальный характер.

До настоящего времени радиационный контроль осуществляется штатными средствами посредством радиометров либо дозиметров. Известно «Устройство для регистрации гамма-нейтронного излучения» [Патент RU №2264674, Н01J, G01Т 1/185, 2003 г.] - аналог.

Устройство для регистрации гамма-нейтронного излучения включает цилиндрическую ионизационную камеру с экранирующей сеткой, источник высоковольтного питания, зарядочувствительный усилитель, в качестве рабочего вещества использован сверхчистый ксенон при давлении 40…50 атм и соответственно с плотностью 0,3…0,6 г/см3 с добавлением водорода в количестве 0,2…0,3% от общего содержания ксенона, кроме того, металлическая сечка, находящаяся внутри ионизационной камеры, имеет степень неэффективности σ~(3…5)%.

Известна промышленная разработка сцинтилляционного счетчика ГНЦ ИФВЭ г.Протвино [см., например, Интернет: http://theorv.asu.ru/~raikin/Physics/PCR/RCRC/2008_StPetersberg/RCRC2008/proc/EAS/EAS_20.pdf] - аналог. Счетчик представляет собой двухслойную сборку сцинтилляционных пластин с общей площадью 1 м2. Каждый слой собран из пластин 20×20×0,5 см3. Светосбор осуществляется с помощью спектросмещающих волокон-файберов. В каждой пластине имеются 4 канавки с шагом 3,6 см глубиной 2,2 мм на расстоянии 4,6 см от краев. В эти канавки вклеены файберы диаметром 1 мм. Концы файберов собраны в жгут, проклеены и отполированы. Торец жгута закреплен вплотную к фотокатоду фазоэлектронного умножителя, с выхода которого сигнал посредством аналого-цифрового преобразователя квантуется в стандартной шкале отсчетов 0…255 уровней.

Недостатком перечисленных аналогов является локальность измерений наземными средствами в отдельных точках, не дающая объективной картины интегрального пространственного радиоактивного загрязнения территории или объема аварийного выброса. Кроме того, уровень радиации убывает обратно пропорционально квадрату расстояния от источника, что при высоте орбит космических аппаратов 250-400 км не позволяет измерить его непосредственно, ввиду недостаточной чувствительности известных измерителей.

Ближайшим аналогом к заявляемому техническому решению является «Способ краткосрочного прогнозирования землетрясений», Патент RU №2423729, G01V 9/00, 2011 г. В способе ближайшего аналога размещают измеритель на космическом носителе, осуществляют измерения интенсивности свечения в спектральных полосах атмосферных газов по трассе полета носителя над зоной подготавливаемого землетрясения, прогнозируют параметры ожидаемого сейсмического удара по динамике функций получаемых регистрограмм, дополнительно свечение атмосферных газов измеряют в ультрафиолетовой полосе 100…300 нм, измерителем с регулируемым интервалом длительности и скважности дискретных отсчетов вдоль трассы полета носителя, численным интегрированием функций получаемых регистрограмм рассчитывают их длину L, координаты гипоцентра очага отождествляют с максимумом регистрограмм, рассчитывают постоянную времени сейсмического процесса (Т) из соотношения:

T=Δt/ln((L0-L1)/(L0-L2)),

прогнозируют время удара ty=4,7T и магнитуду (М) как

lgty[сут]=0,77M-4,4,

где L0 - предельная длина дуги функции регистрограммы, равная L0=L22-L1.L3/2L2-L1-L3;

L1, L2, L3 - длины дуг функций регистрограмм в моменты измерений t1, t2, t3;

Δt=(t2-t1)=(t3-t2) - межвитковый интервал времени космического носителя, на которых проводят измерения.

Недостатком ближайшего аналога являются:

- невозможность непосредственного использования в силу разнородности измеряемых величин;

- различные спектральные диапазоны средств измерений косвенных признаков прорекающих физических процессов.

Задача, решаемая заявленным способом, состоит в объективной достоверно-документальной дистанционной количественной оценке зоны радиационного заражения вокруг ЛЭС.

Поставленная задача решается тем, что способ определения загрязнения окружающей среды при аварийных выбросах на АЭС включает дистанционное получение изображения в виде функции яркости I(х,у), подстилающей поверхности, содержащей контрольные площадки с известным уровнем радиации на них, радиометром, установленным на космическом носителе в длинноволновой части инфракрасного диапазона (8-12 мкм), выделение методами пространственного дифференцирования функции яркости изображения I(х,у) градиентного контура тепловых аномалий относительно яркости фонового уровня и отождествление выделенного контура с зоной загрязнения, расчет площади зоны по количеству пикселей в контуре и пространственному разрешению одного пикселя радиометра, построение гистограммы яркости пикселей внутри выделенного контура, калибровку гистограммы в значениях радиационного уровня контрольных площадок в обратно пропорциональной по яркости зависимости из соотношения:

Р т о ч к и = Р п л о щ а д к и × I п л о щ а д к и I т о ч к и

где: Рплощадки[Зв] - уровень радиации контрольной площадки;

Рточки - определяемый уровень загрязнения в точке;

Iплощадки - яркость пикселей изображения над контрольной площадкой;

Iточки - яркость пикселей изображения над определяемой точкой.

Изобретение поясняется чертежами, где:

фиг.1 - изображение тепловых аномалий вокруг АЭС при аварийных выбросах: 1) Три-Майл Айленд, США, 2) Чернобыль, СССР, 3) Фукусима, Япония;

фиг.2 - градиентные контуры на изображении, выделенные программной обработкой;

фиг.3 - гистограммы яркости пикселей изображения внутри выделенных контуров;

фиг.4 - динамика изменения среднесуточного уровня радиации над ЛЭС Фукусима-1;

фиг.5 - функциональная схема устройства, реализующая способ.

Техническая сущность способа основана на вновь установленном физическом явлении. При аварийных выбросах на АЭС взаимодействие радиоактивных изотопов цезия 137 и йода, а также продуктов их вторичного распада с пограничным слоем атмосферы в результате ударной ионизации приводит к образованию большого числа первичных ионов. Энергия электронов, испускаемых Cs, - 170,8 кэВ, энергия электронов, испускаемых I, - 970 кэВ. По определению, экспозиционная доза в один рентген соответствует образованию 2,083·109 пар ионов в 1 см3 воздуха или 1,61·1012 пар в одном грамме воздуха (1 р≈2,57976 кл/кг) [см., например, Советский энциклопедический словарь под редакцией Л.М.Прохорова, 1979 г., стр.1130, рентген]. Первичные ионы вступают в химические реакции и одновременно подвергаются гидратации (присоединению молекул водяного пара). Этот процесс называется процессом «старения» ионов. В случае резкого увеличения скорости ионизации, как это бывает при авариях реакторов на атомных электростанциях, гидратация ионов приобретает взрывной характер (в литературе этот процесс называют ион-стимулированной нуклеацией) и образуются крупные ионные кластеры размером в несколько микрон. Процесс гидратации ионов и последующей коагуляции наночастиц сопровождается выделением тепловой энергии (скрытой теплоты испарения), поскольку присоединение молекул воды к ионам по энергетической эффективности эквивалентно конденсации. Как показали теоретические оценки и данные экспериментальных измерений, уровень потока тепла, выделяемого в результате ионизации пограничного слоя атмосферы при существенном радиоактивном загрязнении, достаточен для регистрации аномальных потоков тепла средствами дистанционного зондирования (инфракрасными радиометрами), устанавливаемыми на искусственных спутниках Земли. Таким образом, обширные области тепловых аномалий могут служить устойчивым косвенным признаком радиационного заражения окружающей среды вокруг ЛЭС. Примеры регистрации тепловых аномалий после аварий на станциях Три-Майл Айленд (США), Чернобыльской станции, а также тепловой аномалии над атомной электростанцией Фукусима-1 (Япония) в результате аварий, ставших результатом катастрофического землетрясения вблизи города Сендай 11 марта 2011 г., иллюстрируются фиг.1. Максимум мощности теплового излучения нагретых тел приходится на длину волны, определяемую по закону Вина:

λ max = 2897,8 T

В соответствии с законом Стефана-Больцмана, интегральная светимость (Q) тел пропорциональна четвертой степени температуры Т (К) и зависит от их излучательной способности ξ(Т) [см., например, Левитин И.Б. Инфракрасная техника. Энергия, Ленинградское отделение, 1973 г., стр.15]

Q(T)=ξ(T)·σ0·T4 [Вт/м2]

где σ0 - постоянная, равная 5,67·10-8 Вт/м2·К4.

Излучательная способность воды (увлажненных участков) существенно ниже других объектов [см., например, учебник «Теоретические основы радиолокации» под редакцией В.Е.Дулевича, Сов. Радио, М., 1964 г., гл.13: Пассивная радиолокация, стр.680, Температурный контраст объектов] Поскольку кажущаяся температура воды ниже других объектов при одной и той же температуре окружающей среды, то на снимках из космоса области радиационного заражения (из-за насыщения атмосферы кластерами конденсации влаги) отображаются более темным тоном. Следовательно, между яркостью пикселей изображения и уровнем радиоактивного заражения существует обратно пропорциональная зависимость. Зону радиоактивного заражения на тепловых снимках выделяют программной обработкой изображения. Контурный рисунок получают путем вычисления градиента скалярной функции яркости I(х,у) в каждой точке изображения как:

g r a d I ( x , y ) = d I d x i + d I d y j

[см., например, «Производная по направлению» в учебнике: Н.С.Пискунов. Дифференциальное и интегральное исчисления для ВТУЗов, 5-е изд., т.1. М.: Наука, 1964 г., стр.264-268]. Производные по направлению функции яркости задают векторное поле градиентов. Для получения контурного рисунка выбирают регулярный оператор с апертурой окна |2×2| элемента; см. табл.1.

Таблица 1
i,j i,j+l
i+lj i+l,j+l

Элементы окна связаны по диагоналям (двум взаимно ортогональным направлениям) операцией вычитания. Вычисляют оператор Робертса в каждой точке:

R(i,j)=|I(i,j)-I(i+1,j+1)|-|I(i+1,j)-I(i,j+1)|,

выводят на экран точки, для которых R(i,j)≥ порог [см., например, Дуда P.O., Харт П.E. Распознавание образов и анализ сцен. Перев. с англ., М.: Мир, 1976 г., § 7-3 «Пространственное дифференцирование», стр.287-288, рис.7.3].

Программа выделения контуров на изображении приведена в примере реализации. Величину порога в каждом конкретном случае выбирают исходя из интервала значений функции яркости изображения. Выделенные контуры на изображении иллюстрируются фиг.2. Исходя из масштаба изображения определяют разрешение одного пикселя. Количество пикселей внутри выделенного контура на фоне подстилающей поверхности определяет площадь (S) зоны радиоактивного заражения и мощность источника выбросов.

Для количественной оценки уровня радиационного заражения строят гистограмму яркости пикселей внутри выделенных контуров.

Построенная гистограмма яркости пикселей иллюстрируется фиг.3. Абсолютную величину радиационного заражения в каждой точке зоны исчисляют из соотношения:

P [ З в ] = Р ( п л о щ а д к и ) I п л о щ а д к и I т о ч к и

где: Рплощадки, Iплошадки - уровень радиационного заражения контрольной площадки и яркость пикселя ее изображения;

Iточки - яркость пикселя изображения в данной точке зоны.

Осуществляя съемку на последовательных витках пролета космического аппарата над зоной аварийного выброса и обработку снимков, по совокупности операций заявленного способа отслеживают динамику процесса. Динамика изменения среднесуточного уровня радиационного загрязнения над станцией Фукусима-1 по данным спутника NOAA-15/AVHRR иллюстрируется графиком на фиг.4.

Программа реализации способа.

Заявляемый способ может быть реализован на базе устройства по схеме на фиг.5. Функциональная схема устройства, фиг.5, содержит систему орбитальных спутников наблюдения 1 типа МОЛА (США) с установленными на них сканирующими радиометрами 2 типа AVHRR. Радиометры осуществляют прием восходящего ИК-излучения подстилающей поверхности в полосе сканирования 3. Зарегистрированный радиометром сигнал с сопутствующей информацией (время приема, номер витка) в режиме открытого доступа принимается наземными пунктами приема 4, расположенными в г. Красноярске, г. Москве (ИКИ), где записывается на средства оперативного ЗУ 5. Из принятых изображений подстилающей поверхности в пункте приема 4 на основе сопутствующей информации формируется база данных изображений объектов подстилающей поверхности, которые в виде файлов помещаются на сервер 6 сети Интернет (см., например, сервер www:http\\,smis.IkI.RSSI.RV.). По запросу потребителей информация в виде кадров изображений перекачивается из Интернета в индивидуальную систему накопления, хранения и ввода информации 7. Обработка массивов данных ИК-изображений осуществляется на ПЭВМ 8 (типа mSi, модель Л 6205) в комплекте: процессора-вычислителя 9, винчестера 10, оперативного ЗУ 11, клавиатуры 12, дисплея 13, принтера 14, графопостроителя 15. Результаты обработки помещают на сайт сети Интернет 16. Радиометр AVHRR имеет два канала приема в длинноволновой части ИК-диапазона 10,3…11,3 мкм и 11,4…12,4 мкм с пространственным разрешением 1,1×1,1 км и радиометрическим разрешением ~0,1°С.

На изображениях объектов, полученных из Интернета, с известным временем и координатами съемки определяют координаты контрольных площадок датчиковой сети наземных измерений уровня радиации и значения яркости пикселей радиометрического сигнала. Предварительно специализированный комплекс программ записывают на винчестер 10 для программного выделения контуров на изображениях и расчета числовых характеристик.

Программа выделения контуров на изображении

program pr01;

var f1, f2:text;

xmax, xmin, x:integer;

begin

xmin:=130 {Световой порог};

xmax.=255;

assign(f1,'A1.txt'),

reset(f1);

assign(f2;'B1.txt');

rewrite(f2);

while not eof(f1) do

begin

while not eoln(fl) do

begin read(f1,x);

if(x>=xmin) and (x<=xmax) then x:=255;

write(f2,x,");

end;

readln(f1);

writeln(f2)

end;

close(f1);

close(f2)

end.

Результат работы программы иллюстрируется фиг.2. Яркость пикселей сигнала изображения составила: Imin~19, Imax~224, Icp~74 в шкале квантования 0…255 уровней. Количество пикселей в контуре 4620. С учетом разрешения одного пикселя 1,1×1,1 км площадь радиационного заражения составила S=5400 км2. Гистограмма яркости пикселей внутри выделенного контура зоны радиационного заражения иллюстрируется фиг.3. Калибровку гистограммы в значениях уровня радиации осуществляют по яркости пикселей контрольных площадок. В частности, на графике фиг.3 значению яркости I≈200 соответствует уровень радиации 0,08 Зв. Пересчет по обратно пропорциональной зависимости уровня радиации от яркости пикселей дает результат максимального значения радиационного уровня в зоне 200 19 × 0,08 0,84  Зв . Осуществляя ежедневное обновление информации со спутников и ее автоматизированную обработку с распечаткой на графопостроителе 15, представляется возможность оперативно, достоверно, с точной координатной привязкой отслеживать состояние радиационного заражения в обширной зоне, прилегающей к АЭС. Динамика изменения среднего уровня радиационного заражения непосредственно над АЭС Фукусима-1, по данным обработки изображений спутника NOAA-15/AVHRR, иллюстрируется графиком на фиг.4.

Эффективность способа характеризуется такими параметрами, как оперативность, объективность, достоверность и документальность результатов проведенных измерений.

Способ определения загрязнения окружающей среды при аварийных выбросах на АЭС включает дистанционное получение изображения в виде функции яркости I(х,y) подстилающей поверхности, содержащей контрольные площадки с известным уровнем радиации на них, радиометром, установленным на космическом носителе в длинноволновой части инфракрасного диапазона (8-12 мкм), выделение методами пространственного дифференцирования функции яркости изображения I(х,y) градиентного контура тепловых аномалий относительно яркости фонового уровня и отождествление выделенного контура с зоной загрязнения, расчет площади зоны по количеству пикселей в контуре и пространственному разрешению одного пикселя радиометра, построение гистограммы яркости пикселей внутри выделенного контура, калибровку гистограммы в значениях радиационного уровня контрольных площадок в обратно пропорциональной по яркости зависимости из соотношения:
Р т о ч к и = Р п л о щ а д к и × I п л о щ а д к и I т о ч к и
где: Рплощадки[Зв] - уровень радиации контрольной площадки;
Pточки - определяемый уровень загрязнения в точке;
Iплощадки - яркость пикселей изображения над контрольной площадкой;
Iточки - яркость пикселей изображения над определяемой точкой.



 

Похожие патенты:

Изобретение относится к области выявления радиационной обстановки, а именно к способам поиска и обнаружения точечных источников гамма-излучения. .

Изобретение относится к области организации и проведения выявления радиационной обстановки после аварийного выброса в атмосферу радиоактивных веществ. .

Изобретение относится к средствам поиска и обнаружения источников гамма-излучения и предназначается для оснащения дистанционно управляемых мобильных роботов. .

Изобретение относится к области ведения радиационной разведки местности, загрязненной продуктами деления ядерных материалов, а именно к оперативному определению возраста радиоактивных продуктов при выявлении радиационной обстановки.

Изобретение относится к области радиационного контроля с использованием ионизационных счетчиков (пропорциональных или счетчиков Гейгера) или сцинтилляционных детекторов.

Изобретение относится к мониторингу окружающей среды для выделения участков загрязнения снегового покрова радиоактивными компонентами. .
Изобретение относится к исследованиям в области прикладной экологии и охраны окружающей среды, а именно к способам оценки загрязнения наземных экосистем биоиндикационными методами.

Изобретение относится к области применения методов выявления и оценки масштабов и последствий применения противником ядерного оружия. .

Изобретение относится к охране окружающей среды, в частности к радиоэкологическому мониторингу морских акваторий в зонах катастроф, ядерных аварий и дампинга объектов с отработавшим ядерным топливом (ОЯТ), и может быть использовано для прогнозной оценки радиационной обстановки в изучаемом регионе.

Изобретение относится к устройству радиологической характеризации, содержащему, по меньшей мере, один коллимированный радиологический измерительный зонд (6), чувствительный конец которого помещен во взаимозаменяемый коллиматор (2) с полем обзора. Коллиматор (2) установлен в держателе (1) коллиматора, и узел (3), образованный коллиматором и держателем коллиматора, вставлен в штабель между двумя защитными экранами (5), при этом защитные экраны (5) являются взаимозаменяемыми с возможностью подбора их по толщине, при этом узел (3) коллиматора и держателя коллиматора и защитные экраны (5) обеспечивают защиту зонда (6) от паразитных ионизирующих излучений, исходящих от источников ионизирующего излучения, находящихся за пределами поля обзора коллиматора (2). Технический результат - повышение точности определения радиоактивных элементов. 12 з.п. ф-лы, 7 ил.

Изобретение относится к медицинским системам визуализации. Система, генерирующая шаблон (70) карты коррекции ослабления (КО) для коррекции ослабления в радионуклидном изображении (34), вызванного деталями (72) оборудования в поле наблюдения радионуклидного сканера (14) во время радионуклидного сканирования, содержит процессор (20), который генерирует шаблон (70) карты КО детали (72) оборудования из данных (42) передачи, сгенерированных радиоактивным источником (16), расположенным на поворотной подставке, которая вращается вокруг детали оборудования, и полученных во время радионуклидного сканирования детали (72) оборудования; сохраняет шаблон (70) карты КО в память (22); и итерационно генерирует уникальный шаблон (70) карты КО для каждой из множества различных деталей (72) оборудования, причем шаблоны (70) хранятся в библиотеке (46) шаблонов в памяти (22) для повторного вызова и использования оператором. Технический результат - повышение качества ПЭТ изображения. 5 н. и 10 з.п. ф-лы, 8 ил.

Изобретение относится к области мониторинга радиационной обстановки и установления факта появления в атмосфере облака радиоактивных веществ. С помощью спектрорадиометра инфракрасного излучения определение присутствия в воздухе радиоактивных газов и аэрозолей осуществляется путем установления повышения в воздухе содержания озона, образующегося из кислорода под действием ионизирующих излучений радионуклидов. Изобретение позволяет снизить дозовые нагрузки за счет принятия защитных мер, обеспечивающих исключение ингаляционного поступления радионуклидов внутрь организмов, до подхода радиоактивного облака в район расположения людей. 5 ил.

Изобретение относится к области экспериментальных методов ядерной физики, разработки методов и средств измерения радиоактивности в природных средах, обнаружения и идентификации аномальных гамма-зон. Технический результат - достижение требуемой полноты статистической информации о флуктуационных процессах в среде. Сущность: используют один или несколько идентичных независимых спектрометрических каналов гамма-излучения и регистрируют временной ряд интенсивности спектрального состава гамма-излучения среды за выбранный интервал времени. Осуществляют градуировку гамма-спектрометрических каналов путем определения градуировочной кривой по положению центров пиков полного поглощения гамма-излучения. При этом в процессе градуировки гамма-спектрометрических трактов в качестве излучателей гамма-излучения используют заданные естественные излучатели, содержащиеся в среде, регистрируют за выбранный интервал времени энергетический спектр гамма-излучения этих излучателей и выделяют из полученного спектра пики полного поглощения гамма-излучения этих излучателей. По полученным данным обнаруживают и идентифицируют радиоактивные аномалии.

Изобретение относится к области радиоактивных измерений. Технический результат - повышение оперативности статистически обеспеченного детектирования вариаций радиоактивности природной среды с десятков тысяч секунд до единиц секунд, что повышает точность обнаружения и идентификации радиоактивных аномалий. Сущность: используют один или несколько идентичных независимых друг от друга спектрометрических детекторов гамма-излучения. Получают спектры общего и каскадного гамма-излучения регистрацией временного ряда интенсивности, в том числе первичного гамма-излучения радионуклидов, за выбранное время экспозиции. Осуществляют расчет коэффициентов корреляций всех элементов спектрального состава между собой на выбранном интервале времени. Производят нормировку коэффициентов корреляций. Составляют матрицу коэффициентов парных корреляций, по которой обнаруживают и идентифицируют радиоактивные аномалии - по виду матрицы идентифицируют флуктуирующий радионуклид, а по изменению матрицы во времени определяют начало активности флуктуации и ее развитие в пространстве или во времени.

Изобретение относится к измерительной технике и преимущественно предназначено для исследования процессов, происходящих в среде океанов и других водоемов. Технический результат изобретения - повышение стабильности потенциала электрода и повышение надежности работы за счет устранения факторов, создающих шунтирование сопротивления изоляции между электролитическим контактом и электролитическим ключом электрода. Сущность: проточный вспомогательный электрод содержит заполненную электролитом камеру 7, в которой создается избыточное давление подпружиненной втулкой 9. Электролитическим ключом электрода является выполненный во втулке 9 капилляр 10, через который электролит вытекает из камеры 7 в исследуемую среду. Корпус 1 электрода содержит ячейку 5 электролитического контакта, которая посредством канала 8 сообщается с электролитом камеры. Камера 7 образована соединением цилиндр-поршень, при этом обеспечены герметизация и электроизоляция электролита, заполняющего камеру. Согласно первому варианту изобретения (фиг. 1) цилиндр выполнен в корпусе 1, а втулка 9 в виде поршня установлена в этот цилиндр посредством, например, масляного затвора 16. Отличие второго варианта (фиг. 2) от первого заключается в том, что цилиндр выполнен во втулке 9, а корпус 1 в виде поршня установлен в этот цилиндр. 2 н. п. ф-лы, 2 ил.

Изобретение относится к области воздушного радиационного мониторинга. Сущность: получают изображения участков в диапазоне видимых длин волн, а также в диапазоне длин волн флуоресценции атмосферного азота под воздействием ионизирующих излучений с помощью матричных фоточувствительных детекторов. По изображениям участков незагрязненной местности определяют отношение контраста соседних элементов изображения видимого диапазона спектра и аналогичного контраста изображения в диапазоне флуоресценции азота. В процессе мониторинга постоянно определяют значение данного отношения контрастов для всех элементов получаемых изображений. Если получаемая величина отличается от значения, определенного для участка незагрязненной местности, то участки местности, изображение с которых регистрировалось рассматриваемыми элементами матричных фоточувствительных детекторов, считают радиоактивно загрязненными. Технический результат: повышение достоверности результатов мониторинга. 2 ил.

Изобретение относится к области выявления радиационной обстановки на объектах атомной энергетики после аварийного выброса в атмосферу радиоактивных веществ. Способ ведения воздушной радиационной разведки местности в районе аварии на ядерном реакторе с разгерметизацией активной зоны заключается в измерении на высоте полета значений мощности дозы гамма-излучения и приведении полученных значений к высоте 1 м над поверхностью земли, при этом радиационная разведка осуществляется с борта летательного аппарата носимым измерителем мощности дозы со временем измерения не более 2 с, высота полета выдерживается до 150 м, скорость полета устанавливается не более 200 км/ч, при выполнении измерений мощности дозы снимаются показания высотомера, проводится расчет кратности ослабления гамма-излучения слоем воздуха по формуле K=2,019+0,027h-1+1,128×10-6h-3, показания измеренной мощности дозы умножаются на коэффициент K. Технический результат - повышение оперативности выявления радиационной обстановки на начальном этапе развития аварии.
Изобретение относится к дистанционным способам радиационных исследований и может быть использовано для выявления радиационных загрязнений поверхности Земли. Сущность: на основе анализа излучений в инфракрасном диапазоне частот 8-14 мкм создают карты распределения латентного тепла в атмосфере. Создают карты распределения оценочных поправок к химическому потенциалу паров воды в атмосфере на основе излучений, полученных в сантиметровом и миллиметровом диапазонах спектра. Сравнивают данные по аномалиям к фону латентного тепла и аномалиям к фону оценочных поправок к химическому потенциалу паров воды. Места совпадения аномальных зон по обеим картам выделяют как места радиационных загрязнений. Технический результат: повышение точности обнаружения мест локальных радиоактивных загрязнений. 3 з.п. ф-лы.

Изобретение относится к средствам для оценки радиационной обстановки окружающей среды. Сущность: настоящая система размещена на наземном комплексе (7) обработки и управления измерительной информацией и беспилотном летательном аппарате (2). Система включает гамма-спектрометрическую установку (1), устройство (10) автоматического пробоотбора, а также приемно-передающий блок (17) бесконтактного управления устройством (10) автоматического пробоотбора, первый и второй таймеры (14, 15), одновибратор (16), приемно-передающие блоки (21, 22) управления полетом беспилотного летательного аппарата (2), блоки (23, 24) определения координат летательного аппарата, лазерный высотомер (25). Гамма-спектрометрическая установка (1) включает спектрометрический блок (3) детектирования, блок (4) усиления, блок (5) амплитудно-цифрового преобразования, блок (6) бесконтактной передачи измерительной информации, блок (8) приема измерительной информации, анализатор (9) спектра, высоковольтный блок (19) питания, низковольтный источник (20) питания. Устройство (10) автоматического пробоотбора включает воздуходувку (11) с расходомером газо-аэрозольной смеси, лентопротяжный механизм (12) фильтрующей ленты, расположенной над воздуходувкой (11) и над спектрометрическим блоком (3) детектирования гамма-спектрометрической установки (1), электродвигатель (13), вал которого конструктивно связан с подающей бобиной лентопротяжного механизма (12), приемно-передающий блок (18) бесконтактного управления устройством (10) автоматического пробоотбора. На беспилотном летательном аппарате (2) размещены устройство (10) автоматического пробоотбора, приемно-передающий блок (21) управления полетом беспилотного летательного аппарата (2), блок (23) определения координат летательного аппарата, лазерный высотомер (25), а также следующие блоки гамма-спектрометрической установки (1): спектрометрический блок (3) детектирования, блок (4) усиления, блок (5) амплитудно-цифрового преобразования, блок (6) бесконтактной передачи измерительной информации, высоковольтный блок (19) питания, низковольтный источник (20) питания. На наземном комплексе (7) обработки и управления измерительной информацией размещены блок (24) определения координат летательного аппарата, приемно-передающий блок (22) управления полетом беспилотного летательного аппарата (2), первый и второй таймеры (14, 15), одновибратор (16), приемно-передающий блок (17) бесконтактного управления устройством (10) автоматического пробоотбора, а также блок (8) приема измерительной информации и анализатор (9) спектра гамма-спектрометрической установки (1). Технический результат: повышение точности результатов измерений, расширение функциональных возможностей, упрощение структурной схемы системы, обеспечение безопасности обслуживающего персонала. 1 з.п. ф-лы, 2 ил.
Наверх