Способ создания многослойной наноструктуры



Способ создания многослойной наноструктуры
Способ создания многослойной наноструктуры

 


Владельцы патента RU 2497230:

Фирсов Евгений Валентинович (RU)
Максимовский Сергей Николаевич (RU)
Радуцкий Григорий Аврамович (RU)

Изобретение относится к различным областям техники, использующим материалы с развитыми поверхностями в виде многослойных наноструктур для производства солнечных батарей, фотоприемных устройств, катализаторов, высокоэффективных люминесцентных источников света. В способе создания многослойной наноструктуры на одну из поверхностей прозрачного для лазерного излучения материала наносят дифракционную решетку и воздействуют на этот материал импульсом лазерного излучения, вызывают дифракцию и многолучевую интерференцию лазерного луча у поверхности дифракционной решетки в области лазерного пятна, образуют в этой области множество отраженных от дифракционной решетки лазерных лучей, вызывают последовательно в точках их отражения от дифракционной решетки локальное выделение энергии лазерного луча, плавление прозрачного для лазерного излучения материала, образование центров кристаллизации, взрывную кристаллизацию прозрачного для лазерного излучения материала по отраженным от дифракционной решетки лучам после завершения действия импульса лазерного излучения и одновременно создают множество срощенных между собой слоев из прозрачного для лазерного излучения материала. Изобретение позволяет создавать многослойные наноструктуры из многих сотен слоев за время длительности одного импульса лазерного излучения. 4 з.п. ф-лы, 2 ил.

 

Настоящее изобретение относится к различным областям техники, использующим материалы с развитыми поверхностями в виде многослойных наноструктур, в том числе к энергетике для создания солнечных батарей, к приборостроению для создания фотоприемных устройств, к машиностроению для создания катализаторов, к светотехнике для создания высокоэффективных люминесцентных источников света.

Предшествующий уровень техники

Известен способ создания многослойной наноструктуры, заключающийся в образовании отдельных ее слоев под действием импульсов лазерного излучения и их соединения между собой (см., например, патент РФ №2382440, кл. H01L 39/24, B82B 3/00).

Известный способ позволяет создавать многослойную наноструктуру путем нанесения каждого последующего слоя на предыдущий.

Однако этот способ технически сложен, т.к. процесс образования многослойной наноструктуры производится в кварцевой печи, помещенной в вакуумную камеру. Этот процесс также длителен, т.к. каждый слой толщиной примерно 40 нм образуют путём лазерного распыления мишени примерно за 20 сек, а затем его охлаждают примерно 20 мин перед нанесением последующего слоя.

Известньм способом также затруднительно создать наноструктуру, состоящую из нескольких сотен и тысяч слоев. А именно такая наноструктура имеет максимально развитую поверхность, образуемую заостренными торцами срощенных между собой слоев.

Раскрытие изобретения

В основу изобретения положена задача получения такого способа создания многослойной наноструктуры, который позволил бы создавать наноструктуру из многих сотен слоев за время длительности одного импульса лазерного излучения.

Поставленная задача решается тем, что в способе создания многослойной наноструктуры, заключающемся в образовании отдельных её слоев под действием импульсов лазерного излучения и их соединения вплотную между собой, в соответствии с изобретением, на одну из поверхностей материала, прозрачного для лазерного излучения, наносят металлизированную дифракционную решетку, воздействуют на этот материал импульсом лазерного излучения, вызывают дифракцию и многолучевую интерференцию лазерного луча у поверхности дифракционной решетки в области лазерного пятна, образуют в этой области множество отраженных от дифракционной решетки лазерных лучей, вызывают последовательно в точках их отражения от дифракционной решетки локальное выделение энергии лазерного луча, плавление прозрачного для лазерного излучения материала, образование центров кристаллизации, взрывную кристаллизацию прозрачного для лазерного излучения материала по отраженным от дифракционной решетки лучам после завершения действия импульса лазерного излучения и создают одновременно множество ерошенных между собой слоев из прозрачного для лазерного излучения материала.

При таком способе создания многослойной наноструктуры за время действия одного импульса лазерного излучения в пределах лазерного пятна одновременно образуют множество ерошенных между собой слоев из прозрачного для лазерного излучения материала.

Целесообразно, что устанавливают шаг дифракционной решетки её профиль, длину волны, фокусировку, мощность и длительность импульсов лазерного излучения и изменяют размер, толщину и число слоев многослойной наноструктуры.

При таком способе создания многослойной наноструктуры можно в широком диапазоне варьировать её параметрами от минимального числа составляющих её толстых слоев до максимального числа составляющих эту структуру тонких слоев.

Целесообразно, что создают многослойную наноструктуру со слоями внутри прозрачного для лазерного излучения материала или с выступающими за его пределы.

При таком способе создания многослойной наноструктуры можно создавать наноструктуру в изолированном от внешней среды объеме внутри прозрачного для лазерного излучения материала.

Целесообразно, что легируют металлом или окислом металла прозрачный для лазерного излучения материал, а при образовании слоев из этого материала оттесняют металл или окисел металла на границу между слоями и создают многослойную наноструктуру из чередующихся слоев двух различных материалов.

При таком способе создания многослойной наноструктуры за время действия импульса лазерного излучения в пределах лазерного пятна может быть создана многослойная наноструктура металл-диэлектрик, если в качестве прозрачного для лазерного излучения материала будет использована, например, пластмасса.

Целесообразно, что при использовании в качестве материала, прозрачного для лазерного излучения, чистого или легированного примесями полупроводникового материала, перед воздействием на него импульсом лазерного излучения нагревают этот материал в контролируемой защитной атмосфере до температуры, близкой к температуре его плавления.

При таком способе создания многослойной наноструктуры за время действия импульса лазерного излучения в пределах лазерного пятна может быть создана многослойная наноструктура из чередующихся слоев металл-полупроводник.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием конкретного, но не ограничивающего настоящего изобретения варианта осуществления и прилагаемыми чертежами, на которых:

Фиг.1 иллюстрирует фотографию двух многослойных наноструктур, полученных в результате воздействия на прозрачный для лазерного излучения материал двумя последовательными импульсами лазерного излучения.

Фиг.2 иллюстрирует предлагаемый способ создания многослойной наноструктуры.

Лучшие варианты осуществления изобретения

Предлагаемый способ создания многослойной наноструктуры осуществляют следующим образом.

На одну из поверхностей 1 материала 2 прозрачного для лазерного излучения наносят металлизированную дифракционную решетку 3. Воздействуют на материал 2 импульсом лазерного излучения 4, имеющим множество мод, которые характеризуют пространственное распределение интенсивности этого излучения. При вхождении лазерного луча 4 в материал 2, прозрачный для лазерного излучения, происходит его дисперсия, определяемая показателем преломления материала 2 в зависимости от частоты лазерного излучения 4. При взаимодействии мод лазерного излучения 4 с дифракционной решеткой 3 у ее поверхности в области лазерного пятна 5 происходит дифракция и многолучевая интерференция мод лазерного излучения 4. В результате в области лазерного пятна 5 образуется множество отраженных от дифракционной решетки лучей 6. В точках отражения лучей 6 от дифракционной решетки 3 последовательно происходит локальное выделение энергии, плавление прозрачного для лазерного излучения материала 2, образование центров кристаллизации и возникает взрывная кристаллизация прозрачного для лазерного излучения материала 2 по отраженным от дифракционной решетки 3 лучам 6 после завершения действия импульса лазерного излучения 4. В результате одновременно образуется множество ерошенных между собой слоев 7 из прозрачного для лазерного излучения материала 2.

Описанный процесс создания многослойной наноструктуры из прозрачного для лазерного излучения материала с низкой температурой плавления происходит на открытом воздухе, вне вакуумной камеры.

На фиг.1 показаны две полученные описанным способом наноструктуры, каждая из которых создана в результате воздействия одного импульса лазерного излучения на прозрачную для лазерного излучения пластмассу. Фотографии этих наноструктур получены при помощи атомно-силового микроскопа.

Таким образом после завершения действия одного импульса лазерного излучения длительностью порядка 10 нс, в пределах лазерного пятна в результате взрывной кристаллизации прозрачного для лазерного излучения материала, идущей со скоростью 80 м/сек-100 м/сек, одновременно образуется множество слоев из этого материала и создается многослойная наноструктура. Число образуемых таким образом слоев может превышать несколько тысяч и зависит от числа отраженных от дифракционной решетки лучей, количество которых в свою очередь определяется шагом и профилем дифракционной решетки, а также длиной волны, фокусировкой, мощностью и длительностью импульсов лазерного излучения. Варьируя этими параметрами можно в широком диапазоне менять условия для создания многослойной наноструктуры, создавая наноструктуры с различным числом и толщиной слоев из прозрачного для лазерного излучения материала. Можно также создавать многослойные наноструктуры внутри прозрачного для лазерного излучения материала.

Как видно на фиг.1, торцы созданных таким образом срощенных между собой слоев образуют развитую поверхность, на которую в дальнейшем любым известным способом могут быть нанесены слои различных материалов, в том числе металлов, полупроводников и т.д.

Предлагаемым способом также возможно создавать многослойные наноструктуры из чередующихся слоев двух различных материалов. Такая возможность создается при легировании металлом или окислом металла прозрачного для лазерного излучения материала, например, пластмассы. В этом случае в процессе взрывной кристаллизации прозрачного для лазерного излучения материала происходит оттеснение примесей из расплава на границу между образуемыми слоями и образование наноструктуры из чередующихся слоев металл-диэлектрик.

Предлагаемым способом можно также создавать многослойные наноструктуры из слоев прозрачного для лазерного излучения полупроводникового материала или из чередующихся слоев металл-полупроводник при легировании полупроводникового материала металлом. Однако в этом случае, с учётом высокой температуры плавления прозрачного для лазерного излучения материала, перед воздействием на него импульсом лазерного излучения, этот материал предварительно нагревают в контролируемой защитной атмосфере, близкой к температуре плавления.

Промышленная применимость

Описанным способом могут быть созданы развитые поверхности в виде многослойных наноструктур для использования при производстве солнечных батарей, фотоприемных устройств, катализаторов, высокоэффективных люминесцентных источников света.

1. Способ создания многослойной наноструктуры, заключающийся в образовании отдельных ее слоев под действием импульсов лазерного излучения и их соединения вплотную между собой, отличающийся тем, что на одну из поверхностей материала, прозрачного для лазерного излучения, наносят металлизированную дифракционную решетку, воздействуют на этот материал импульсом лазерного излучения, вызывают дифракцию и многолучевую интерференцию лазерного луча у поверхности дифракционной решетки в области лазерного пятна, образуют в этой области множество отраженных от дифракционной решетки лазерных лучей, вызывают последовательно в точках их отражения от дифракционной решетки локальное выделение энергии лазерного луча, плавление прозрачного для лазерного излучения материала, образование центров кристаллизации, взрывную кристаллизацию прозрачного для лазерного излучения материала по отраженным от дифракционной решетки лучам после завершения действия импульса лазерного излучения и создают одновременно множество ерошенных между собой слоев из прозрачного для лазерного излучения материала.

2. Способ по п.1, отличающийся тем, что устанавливают шаг дифракционной решетки, ее профиль, длину волны, фокусировку, мощность и длительность импульсов лазерного излучения и изменяют размер, толщину и число слоев многослойной наноструктуры.

3. Способ по п.1, отличающийся тем, что создают многослойную наноструктуру со слоями внутри прозрачного для лазерного излучения материала или с выступающими за его пределы.

4. Способ по п.1, отличающийся тем, что легируют металлом или окислом металла прозрачный для лазерного излучения материал, а при образовании слоев из этого материала оттесняют металл или окисел металла на границу между слоями и создают многослойную наноструктуру из чередующихся слоев двух различных материалов.

5. Способ по п.4, отличающийся тем, что при использовании в качестве материала, прозрачного для лазерного излучения, чистого или легированного примесями полупроводникового материала, перед воздействием на него импульсом лазерного излучения нагревают этот материал в контролируемой защитной атмосфере до температуры, близкой к температуре его плавления.



 

Похожие патенты:
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с пониженной плотностью дефектов.

Изобретение относится к базовой плате и способу ее производства. .

Изобретение относится к области лазерной обработки твердых материалов, в частности к способу отделения поверхностных слоев полупроводниковых кристаллов с помощью лазерного излучения.

Изобретение относится к микроэлектронике, оптической и оптоэлектронной технике, к нелитографическим микротехнологиям формирования на подложках тонкопленочных рисунков из наносимых на ее поверхность веществ.

Изобретение относится к полупроводниковой технологии и может быть использовано при изготовлении микро-, наноэлектронных и оптоэлектронных устройств, в частности тонкопленочных транзисторов, ячеек энергонезависимой памяти, солнечных элементов.
Изобретение относится к области полупроводниковой микроэлектроники и предназначено для создания полупроводниковых приборов на основе МДП-транзисторных структур, технология изготовления которых предусматривает использование плазменных обработок на этапе формирования металлизации приборов.

Изобретение относится к способам создания подложек, применимых в качестве эмиттеров ионов химических соединений в аналитических приборах, предназначенных для определения состава и количества химических соединений в аналитических приборах, в частности в масс-спектрометрах и спектрометрах ионной подвижности.

Изобретение относится к технологии арсенид галлиевой микроэлектроники и может быть использовано для снижения плотности поверхностных состояний как на свободной поверхности полупроводника, так и на границе раздела металл-полупроводник и диэлектрик-полупроводник.

Изобретение относится к системам контроля и, в частности, к системам контроля работы лазеров. .

Изобретение относится к способу изготовления трехмерно расположенных проводящих и соединительных структур для объемных и энергетических потоков. .

Изобретение может быть использовано при изготовлении материалов для электронной техники, присадок для ракетных топлив, катализаторов, смазочных масел и полимерных покрытий.
Изобретение относится к применению индикаторной добавки для формирования изображений с помощью магнитных частиц (ИМЧ) для визуального мониторинга биосовместимого продукта.

Группа изобретений относится к медицине, а именно к композициям и способам для доставки наноносителей к клеткам иммунной системы, способным стимулировать иммунный ответ в Т-клетках и/или в В-клетках.
Изобретение может быть использовано для производства защитных покрытий трубопроводов в нефтяной, газовой, нефтегазоперерабатывающей, горнодобывающей и химической промышленности.

Изобретение относится к способу получения алкилбензолов общей формулы , где R1=H: R2=Et, i-Pr или R1R2=-CH2-CH2-CH2-. Способ заключается в гидрировании стирола газообразным водородом в присутствии катализатора с последующим выделением целевых продуктов и характеризуется тем, что гидрированию подвергают стирол или его производные из ряда α-метилстирол или инден, а в качестве катализатора используют наночастицы никеля, получаемые восстановлением хлорида никеля (II) боргидридом натрия in situ и процесс проводят при атмосферном давлении водорода в среде изопропанола при температуре 55-65°C в течение 4-6 часов.

Изобретение относится к способу получения линейных алканов общей формулы Alk-CH2-CH3, где Alk=C6H13, C8H17. Способ заключается в гидрировании олефина водородом при атмосферном давлении водорода на катализаторе и характеризуется тем, что в качестве олефина используют октен-1 или децен-1, а в качестве катализатора используют наночастицы никеля, получаемые in situ восстановлением хлорида никеля(II) боргидридом натрия в среде изопропанола и процесс проводят при температуре 60-70°C в течение 6-8 часов с последующим выделением целевых продуктов.
Изобретение относится к химической промышленности. Фуллеренсодержащую сажу смешивают с жидкостью, взаимодействующей с находящимися в саже фуллеренами, например, с водным раствором щелочи концентрацией не менее 0,5 мас.%, из ряда, включающего КОН, NaOH, Ва(ОН)2 и/или с перекисью водорода Н2О2, при соотношении к саже 1:(20-300) мл/г.

Группа изобретений может быть использована при изучении физики плазмы высоких плотностей энергии, в микроэлектронике, в газовой диагностике и ядерной энергетике.
Изобретение может быть использовано при получении модифицирующих добавок для строительных материалов. Дисперсия углеродных нанотрубок содержит, мас.%: углеродные нанотрубки 1-20; поверхностно-активное вещество - натриевую соль сульфинированного производного нафталина 1-20; аэросил 5-15; вода - остальное.
Изобретение относится к наноэмульсии в качестве носителя биологически активного вещества, представляющего собой дельта-сон индуцирующий пептид (ДСИП) или растительный экстракт.

Изобретение относится к способу получения наноматериалов. Способ включает воздействие электрического разряда на электрод в водной электропроводящей среде.
Наверх