Способ осуществления гиперпроводимости и сверхтеплопроводности

Изобретение относится к электричеству, к электрофизике и теплопроводности материалов, к явлению нулевого электрического сопротивления, т.е. к гиперпроводимости, и нулевого теплового сопротивления, т.е. к сверхтеплопроводности материалов при околокомнатных и более высоких температурах. Сущность изобретения: на поверхности или в объеме невырожденного или слабо вырожденного полупроводникового материала размещают электроды, образующие выпрямляющие контакты с материалом. При этом выбирают расстояние между электродами (D) значительно меньше глубины проникновения в материал электрического поля (L), (D<<L), вызванного контактной разностью потенциалов. Минимальное расстояние между электродами DMIN=20 нанометров, максимальное расстояние между электродами DMAX=30 микрометров. До, после или во время формирования электродов в материал вводят электронно-колебательные центры (ЭКЦ) в концентрации (N) от 2·1012 см-3 до 6·1017 см-3. Доводят температуру материала до температуры гиперпроводящего перехода (Th) или до более высокой температуры. Технический результат: возможность осуществления эффекта гиперпроводимости и сверхтеплопроводности при температурах вблизи и выше комнатной. 12 з.п. ф-лы, 26 ил.

 

Текст описания приведен в факсимильном виде.

1. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами, содержащем конденсированный материал с определенным химическим составом и технологические обработки материала, а также электродов, образующих электрический контакт с материалом, отличающийся тем, что в качестве упомянутого материала используют любой невырожденный или слабо вырожденный полупроводник, на поверхности или в объеме указанного материала размещают электроды, образующие выпрямляющие контакты с материалом, например контакты металл-полупроводник, контакты Шоттки, расстояние между электродами (D) выбирают значительно меньше длины проникновения в упомянутый материал электрического поля, вызванного контактной разностью потенциалов (L) (D<<L) и не более удвоенной длины когерентности (2Λ) (D≤2Λ), при этом минимальное расстояние между электродами DMIN=10 нм, максимальное расстояние между электродами DMAX=30 мкм; до, после или во время формирования электродов в материал вводят электронно-колебательные центры (ЭКЦ) в концентрации (N) от Nmin=2·1012 см-3 до Nmax=6·1017 см-3, нагревают упомянутый материал до температуры, превышающей температуру гиперпроводящего перехода (Th).

2. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.1, отличающийся тем, что электронно-колебательные центры вводят только в обедненную область упомянутого материала между электродами или в части обедненной области, которые примыкают к электродам, а длина линии электрического тока между электродами в упомянутой обедненной области не превышает удвоенную длину когерентности (2Λ).

3. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.2, отличающийся тем, что наименьший размер материала полупроводника выбирают не менее удвоенной длины когерентности 2Λ, например, выбирают толщину пластины упомянутого материала не менее 2Λ или толщину слоя упомянутого материала не менее 2Λ на полупроводниковой, полуизолирующей или диэлектрической подложке.

4. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.3, отличающийся тем, что в объеме упомянутого материала или на поверхности упомянутого материала с размерами, значительно превышающими удвоенную длину когерентности (2Λ), располагают систему электродов, например имеющих форму шариков, полосок или спиралей.

5. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.4, отличающийся тем, что в объеме или на поверхности упомянутого материала располагают систему электродов, например, в виде вкраплений, а наибольший размер каждого электрода выбирают значительно меньше длины когерентности Λ.

6. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.5, отличающийся тем, что в упомянутом материале между электродами создают постоянное, переменное или импульсное магнитное поле, направленное вдоль, по нормали или под острым углом к определенному направлению, например к направлению тока между упомянутыми электродами, с индукцией не более B = S 4 m ω 2 e , где ω - циклическая частота упругого колебания, формирующего гиперпроводящее состояние, S - константа связи этого колебания с электронами, m - эффективная масса электрона (дырки) и е - заряд электрона.

7. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по пп.1-6, отличающийся тем, что упомянутый материал между упомянутыми электродами освещают в спектральной области собственного, основного, фундаментального поглощения упомянутого материала и(или) в спектральной области поглощения ЭКЦ с интенсивностью до I = N C ζ τ , где NC - эффективное число электронных состояний в разрешенной энергетической зоне, ζ - коэффициент оптического поглощения и τ - время жизни электронов (дырок).

8. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.6, отличающийся тем, что между упомянутыми электродами создают разность температур величиной не более ΔT=Sħω/k, где S - константа связи электронов с фононами, ħ - постоянная Планка, k - постоянная Больцмана, ω - циклическая частота фонона, определяющего упругую связь между ЭКЦ в упомянутом материале между упомянутыми электродами.

9. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.8, отличающийся тем, что используют дополнительный электрод, образующий выпрямляющий контакт или контакт металл-диэлектрик-полупроводник (МДИ) к упомянутому материалу между упомянутыми электродами, или используют несколько таких дополнительных электродов; к дополнительному электроду или электродам подводят постоянные, переменные или импульсные внешние напряжения прямой или обратной полярности относительно упомянутого материала.

10. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.9, отличающийся тем, что между упомянутыми электродами создают переменную или постоянную разность электрических потенциалов величиной до Sħω/e, где S - константа электрон-фононной связи, ħ - постоянная Планка, ω - циклическая частота упругих колебаний материала, например частота фонона или частота I - колебаний ядер в атомах материала, e - заряд электрона.

11. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.10, отличающийся тем, что в материал между электродами направляют поток звука, ультразвука или гиперзвука, имеющий частоту f и объемную плотность мощности до (2ħSħfN)/τ, где S - константа электрон-фононного взаимодействия, N - концентрация ЭКЦ, τ - время жизни электронов (дырок) в материале между упомянутыми электродами, ħ - постоянная Планка.

12. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.1, отличающийся тем, что толщину полупроводниковой пластины, или толщину полупроводникового слоя на подложке, или толщину подложки, или общую толщину полупроводникового слоя и подложки, или расстояние (расстояния) между взаимно параллельными границами полупроводника выбирают равным (равными) или кратным (кратными) W=υ/2 f, где υ - скорость звука (фонона) с частотой f, распространяющегося между упомянутыми взаимно параллельными границами упомянутого полупроводника, упомянутой подложки или упомянутого полупроводника и упомянутой подложки, f - частота фонона, определяющего упругую связь между ЭКЦ.

13. Способ осуществления гиперпроводимости и сверхтеплопроводности в материале между электродами по п.1, отличающийся тем, что толщину полупроводниковой пластины, или толщину полупроводникового слоя на подложке, или толщину подложки, или общую толщину полупроводникового слоя и подложки, или расстояние (расстояния) между взаимно параллельными границами упомянутого полупроводника выбирают равным (равными) или кратным (кратными) W= υ /2f, где υ - скорость звука, распространяющегося между упомянутыми взаимно параллельными границами упомянутого полупроводника, упомянутой подложки или упомянутого полупроводника и упомянутой подложки, f=1/P, где P - период переменного электрического или магнитного поля, создаваемого в упомянутом материале между упомянутыми электродами.



 

Похожие патенты:

Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов, в частности к изготовлению подложек для этих материалов.
Изобретение относится к технологии изготовления тонкопленочных высокотемпературных сверхпроводящих материалов и может быть использовано при промышленном производстве длинномерных сверхпроводящих лент для создания токопроводящих кабелей, токоограничителей, обмоток мощных электромагнитов, электродвигателей и т.д.

Изобретение относится к области сверхпроводимости и нанотехнологий, а именно к способу получения и обработки композитных материалов на основе высокотемпературных сверхпроводников (BTCП), которые могут быть использованы в устройствах передачи электроэнергии, для создания токоограничителей, трансформаторов, мощных магнитных систем.

Изобретение относится к области получения сверхпроводящих соединений и изготовления нанопроводников и приборов на их основе, что может быть использовано в электротехнической, радиотехнической, медицинской и других отраслях промышленности, в частности для оптического тестирования интегральных микросхем, исследования излучения квантовых точек и в системах квантовой криптографии.

Изобретение относится к способам формирования методом лазерного напыления нанопленок сложного металлооксидного соединения состава YВа2Сu3O7-х (YBCO) повышенной проводимости и может быть использовано при создании элементов наноэлектроники.

Изобретение относится к устройствам для высокотемпературного осаждения сверхпроводящих слоев на подложках в форме ленты с использованием импульсного лазера и может быть использовано в электротехнической промышленности.

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к изготовлению сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник-изолятор-сверхпроводник (СИС), структур сверхпроводник-изолятор-нормальный металл (СИН), болометров на холодных электронах.
Изобретение относится к изготовлению сверхпроводящей ленты на основе соединения Nb3Sn и может быть использовано при изготовлении сверхпроводящих магнитных систем различного назначения.
Изобретение относится к изготовлению сверхпроводящей ленты на основе соединения Nb3Sn и может быть использовано при изготовлении сверхпроводящих магнитных систем различного назначения.

Изобретение относится к области высокотемпературной сверхпроводимости и может использоваться для изготовления ленточных высокотемпературных сверхпроводников второго поколения. Сущность: устройство для нанесения сверхпроводящих слоев содержит камеру осаждения с зоной нагрева, через которую перемещается протяженная подложка; импульсно-периодический лазер, сфокусированный на мишень, имеющую покрытие из сверхпроводящего материала; механизм для перемещения импульсного лазерного луча по поверхности мишени, от которой в результате импульсной лазерной абляции отделяется материал и ударяет в нагреваемую протяженную подложку; механизм перемещения мишени, и блок управления последовательных движений лазерного луча и перемещения мишени. Технический результат достигается за счет того, что механизм перемещения мишени содержит постоянно вращающийся вал, на котором закреплена мишень, имеющая осевую симметрию относительно оси вращения, параллельной направлению перемещения подложки через зону нагрева. Технический результат: упрощение устройства при обеспечении возможности повышения скорости нанесения сверхпроводящих слоев. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к сборке из металлических элементов, составляющей заготовки для сверхпроводника. Сборка содержит, по меньшей мере, один проводниковый элемент, адаптированный для обеспечения сверхпроводящей нити в конечном сверхпроводнике, и по меньшей мере один легирующий элемент, обеспечивающий источник легирования для легирования проводникового элемента, и источник олова. Сборка содержит по меньшей мере такое число легирующих элементов, расположенных вне проводниковых элементов, каково число проводниковых элементов, и металлическая сборка содержит по меньшей мере два легирующих элемента для каждого проводникового элемента. Проводниковый элемент и легирующий элемент выполнены в виде прутков и составляют отдельные элементы. Трубчатый элемент размещен вне проводникового элемента и легирующего элемента. Сборка размещена так, что по меньшей мере два легирующих элемента позиционированы рядом и в двух различных направлениях каждого проводникового элемента. Изобретение обеспечивает получение высококачественного сверхпроводника, позволяет повысить производительность и снизить затраты на производство. 2 н. и 7 з.п. ф-лы, 9 ил.

Изобретение относится к технологии криоэлектроники и может быть использовано при изготовлении высокотемпературных сверхпроводящих (ВТСП) схем. Техническим результатом изобретения является повышение качества ВТСП схем, увеличение их температурного рабочего диапазона, повышение удельного сопротивления ВТСП материала в нормальном состоянии путем введения ферромагнитной примеси в ВТСП пленку при электроискровой обработке отрицательными импульсами, мощность которых находится из заявленного соотношения. 4 ил.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих пленок. Изобретение обеспечивает получение на золотом буферном подслое сверхпроводящих пленок с высокими токонесущими свойствами, обеспечивающими значения плотности сверхпроводящего критического тока не ниже 105 А/см2. В способе формирования YBa2Cu3O7-x пленок с высокой токонесущей способностью на золотом буферном подслое золотая контактная площадка формируется на диэлектрической подложке перед нанесением пленок YBa2Cu3O7-x на диэлектрической подложке. Для распылении мишеней из золота и керамики YBa2Cu3O7 используется лазер с длиной волны излучения 1,06 мкм, длительностью импульса 10÷20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения (5÷7)·108 Вт/см2, при этом предварительно нагревается мишень из золота и подложка до температуры T=450-500°C, устанавливается давление 0,1÷0,5 Па, после этого распыляется мишень из золота на подложку через маску, расположенную на расстоянии 0,3÷0,5 мм от подложки, затем нагревается мишень YBa2Cu3O7 до T=600÷700°C, нагревается подложка до температуры 800÷840°C, устанавливается давление 50-100 Па, и распыляется мишень YBa2Cu3O7 на сформированные контактные площадки до толщины 50 -200 нм с образованием пленок с критической температурой сверхпроводящего перехода Tc=88-89 K, шириной сверхпроводящего перехода ΔTc= 2÷3 K, плотностью критического тока Jc>105 А/см2. 6 ил.

Изобретение относится к формированию на диэлектрических подложках золотых контактных площадок к пленкам YBa2Cu3O7-х. Изобретение обеспечивает получение качественных золотых контактных площадок к сверхпроводящим пленкам. В способе формирования на диэлектрической подложке контактных площадок к пленкам YBa2Cu3O7-х контактные площадки формируют перед напылением пленок YBa2Cu3O7-х на диэлектрической подложке, для чего производится нагрев мишени и подложки до температуры 450-500°C, напыление контактной площадки из золота производится методом лазерного распыления мишени из золота твердотельным импульсным лазером с длиной волны излучения 1,06 мкм, длительностью импульса 10-20 нс и частотой повторения импульсов 10 Гц, плотностью мощности лазерного излучения (5-7)·108 Вт/см2. Диэлектрическая подложка устанавливается на расстоянии 4-6 мм от золотой мишени рабочей поверхностью к мишени при давлении в вакуумной камере 0,1-0,5 Па. 2 ил.

Изобретение относится к способам формирования сверхпроводящих пленок с двух сторон диэлектрических подложек. Изобретение обеспечивает создание однородных по толщине сверхпроводящих пленок с двух сторон подложки в одном технологическом цикле. В способе формирования сверхпроводящих пленочных структур из материала YBaCuO с двух сторон подложки методом лазерной абляции вращение подложки осуществляют так, что каждая сторона подложки поочередно обращена к мишени YBa2Cu3О7 в течение времени 5÷7 секунд, при расстоянии до мишени 25÷30 мм. Данный способ позволяет формировать сверхпроводящие пленки YBaCuO как полностью однородные по толщине, так и с необходимым распределением толщины по поверхности подложки. 1 ил.

Использование: для получения высокотемпературных сверхпроводников и изготовления высокочувствительных приемников электромагнитного излучения. Сущность изобретения заключается в том, что способ включает в себя формирование пленки из высокотемпературного сверхпроводящего материала, который представляет собой монофазный текстурированный сверхпроводник состава (Bi,Pb)2Sr2Ca2Cu3O10, на диэлектрической подложке методом магнетронного распыления из мишени, изготовление чувствительного элемента, антенны и подводящих линий выполняется в едином процессе на одном слое образованной пленки ВТСП (Bi,Pb)2Sr2Ca2Cu3O10. Технический результат: обеспечение возможности повышения рабочей температуры детектора терагерцевого излучения и расширения частотного диапазона приемной антенны, увеличение надежности прибора.

Изобретение относится к способам формирования методом лазерного напыления сверхпроводящих ультратонких пленок сложного металлооксидного соединения состава YBa2Cu3O7-x путем оптимизации параметров лазерного излучения и условий постростового отжига в напылительной камере. Изобретение обеспечивает получение ультратонких сверхпроводящих пленок толщиной 12-25 нм с неровностью поверхности в пределах 1-2 нм. В способе формирования сверхпроводящей ультратонкой пленки YBa2Cu3O7-x на диэлектрических подложках на керамическую мишень YBa2Cu3O7-x воздействуют лазерным излучением плотностью мощности 3·108÷5·108 Вт/см2, длиной волны 1,06 мкм, длительностью импульса 10-20 нс и частотой следования импульсов 10 Гц в течение времени 15÷30 с при давлении 50÷100 Па, при температуре мишени 600÷700°С, температуре подложки 800-840°С, в результате формируют сверхпроводящую пленку толщиной 12-25 нм, после чего в диапазоне температур 840-780°С производят отжиг пленки со скоростью остывания 4°С/мин, в диапазоне температур 780-700°С - со скоростью остывания 10°С/мин, в диапазоне температур 700-400°С - со скоростью остывания 15°С/мин, в диапазоне температур 400-20°С - со скоростью остывания 19°С/мин. 2 ил.

Изобретение относится к области металлургии, в частности к получению сверхпроводящего материала в виде покрытия, и может быть использовано при изготовлении экранов электронных схем от воздействия электромагнитного и ионизирующего излучений в энергетике, транспорте, связи, приборостроении, в ракетной и аэрокосмической отраслях промышленности. Способ получения сверхпроводящего покрытия включает подачу в плазмотрон порошка материала покрытия фракцией 80-150 мкм, его нагрев до температуры плавления в прикатодной высокотемпературной области плазменной струи и напыление на подложку с предварительно нанесенным на ее поверхность изоляционным слоем. При напылении плазменную струю с напыляемым порошком SmBa2Cu3O7 на всей дистанции напыления охватывают коаксиальным цилиндрическим потоком кислорода, а подложку охлаждают теплоносителем, при этом путем регулирования расхода кислорода и скорости взаимного перемещения плазменной струи и подложки обеспечивают температуру в пятне напыления 940-980°С. Сокращается время процесса получения сверхпроводящего материала с сохранением структуры и стехиометрии исходного спеченного материала. 4 ил.

Использование: для изготовления сверхпроводниковых туннельных или джозефсоновских переходов. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих наноэлементов с туннельными или джозефсоновскими переходами включает формирование нанопроводов из веществ, обладающих сверхпроводящими свойствами, и преобразование их в несверхпроводящие в выбранных разделительных участках заданной ширины за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску с заданным рельефом. Технический результат: обеспечение возможности повышения производительности. 8 з.п. ф-лы, 2 ил.
Наверх