Состав композиции и покрытие из нее


 


Владельцы патента RU 2497763:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный технологический институт (технический университет)" (RU)

Изобретение относится к составам огнеупорных композиций и покрытий для защиты деталей литейного оборудования, выполненных из чугуна, от воздействия расплава алюминия. Технический результат изобретения заключается в получении многократно используемого покрытия с повышенной огнестойкостью, температуроустойчивостью, термостойкостью, адгезией и отсутствие смачивания покрытия расплавом алюминия. Композиция для получения покрытия содержит следующие компоненты, мас.%: бета-сиалон 10,00-35,00; корунд 15,00-20,00; кремнийорганическое связующее 30,00-40,00 и фритту 20,00-30,00 состава мас.%: СаО 40,00-60,00; SiO2 22,00-35,00; B2O 18,00-25,00. Покрытие содержит следующие компоненты, мас.%: бета-сиалон 14,71-46,05; оксид алюминия 13,88-22,87; стеклообразную связку 40,07-62,43 следующего состава, мас.%: СаО 35,52-55,71; Al2O3 1,86-4,44; SiO2 25,72-37,83; В2О3 16,71-22,20. 2 н.п. ф-лы, 10 пр., 2 табл.

 

Изобретение относится к составам огнеупорных композиций и покрытий для защиты деталей оборудования выполненных, например из чугуна, которое используют при переработке, литье, транспортировке и рафинировании алюминия и его сплавов.

Покрытия по металлам, например на чугуне, необходимы для защиты их от воздействия расплава алюминия, так как непосредственный контакт расплава алюминия с чугуном приводит к сильному разъеданию чугуна и загрязнению расплава. (Алюминиевые сплавы (свойства, обработка, применение). Справочник. Пер. с нем. - М.: «Металлургия», 1979. - с.291).

Известен состав из патента (RU 2079472, МПК С04 В28/24, С04 В35/66. 1997.05.20). Сырьевая смесь для изготовления огнеупорных изделий для изготовления элементов литейной оснастки, контактирующих с расплавленным алюминием и его сплавами. Композиция содержит шамот, глинозем, цемент, жидкое стекло, волокнистый огнеупорный материал, модификатор жидкого стекла и воду.

Недостатком известного технического решения является введение в композицию цемента, жидкого стекла, снижающих огнеупорность и устойчивость к действию расплава алюминия.

Известен состав из патента (RU 2379239, МПК C03C 8/02, 2010.01.20). Защитное технологическое покрытие, содержащее SiO2, MgO, CaO*Al2O3, Al2P3*MgO, BaO*2SiO2, ZnO*Al2O3, Al2O3 в качестве огнеупорного наполнителя и воду, из которого получают защитное покрытие содержащее кристаллические фазы MgO*2SiO2, Al2O3*5CaO, 3Al2O3*5SiO2, с повышенной термостойкостью и температурой применения 1200°C.

Недостатком известного состава является низкая термостойкость температура применения ограничена температурой 1200°C, что связано с его многокомпонентным составом.

Известен состав покрытия из патента (RU 2292252, МПК C23C 26/00, B22C 3/00, 2007.01.27) Защитное покрытие, включающее глину, буру и хлористый калий, предназначенное для защиты металлических форм от разрушения.

Недостатком известного состава покрытия является применение низкоплавких компонентов и однократное применение покрытия.

Наиболее близким по технической сущности и достигаемому техническому результату является состав композиции по патенту (RU 2191221 МПК C23C 30/00, C09D 1/02, 2002.10.20). Силикатная композиция для получения термостойкого покрытия. Включающее огнеупорный наполнитель на основе порошкообразных оксидов металлов, жидкое минеральное стекло в качестве связующего, отличающийся тем, что содержит жидкое минеральное стекло с модулем 2,60-3,00 в качестве связующего, в качестве огнеупорного наполнителя - смесь оксидов щелочноземельных и переходных металлов и дополнительно содержит добавку оксид титана (IV) при следующем содержании ингредиентов, мас.%:

Оксид щелочноземельных металлов 5,00-10,00

Оксиды переходных металлов 15,00-20,00

Оксид титана (IV) 10,00-20,00

Жидкое минеральное стекло с модулем 2,60-3,00 остальное

Недостатком известного состава является применение в больших количествах легкоплавкого жидкого стекла, низкие огнестойкость, температуроустойчивость, адгезия, и не высокая стойкость к воздействию расплава алюминия.

Задачей предлагаемого технического решения является разработка состава композиции и покрытия из нее, которое используют для защиты оборудования при переработке, литье, транспортировке и рафинировании алюминия и его сплавов обладающего повышенной устойчивостью к действию расплава алюминия, высокой термостойкостью и адгезией огнестойкостью, температуроустойчивостью и пригодно для многократного применения.

Поставленная задача достигается тем, что в состав композиции для получения покрытия входят, мас.%: дополнительно бета-сиалон (10,00-35,00), корунд (15,00-20,00), спекающая добавка в виде фритты (20,0-30,0) состава мас.%: CaO (40,00-60,00); SiO2 (22,00-35,00); B2O3 (18,00-25,00) и связующее кремнийорганическое (30,00-40,00). Композицию наносят на сформированный переходный слой на чугуне и преобразуют в покрытие, для этого: нанесенную композицию высушивают при температуре (50-250)°C, и производят термообработку при температуре (800-1000)°C в течение (5-60) мин. Состав покрытия содержит, мас.%: кристаллические фазы бета-сиалон (14,71-46,05) и корунд (13,88-22,87), стеклообразную связку (40,07-62,43) состава мас.%: CaO (35,52-55,71); Al2O3 (1,86-4,45); SiO2 (25,72-37,83); B2O3 (16,71-22,20).

Техническим результатом предлагаемого изобретения является увеличение устойчивости к действию расплава алюминия, повышение термостойкости, адгезии, огнестойкости, температуроустойчивости и возможность многократного применения покрытия.

Технический результат достигается тем, что состав композиции для получения покрытия содержит порошкообразный огнеупорный наполнитель бета-сиалон, корунд, спекающую добавку в виде фритты и связующее кремнийорганическое, а покрытие содержит кристаллические фазы бета-сиалон, корунд и стеклообразную связку.

Для разработки композиции и покрытия использовали исходные компоненты: бета-сиалон с размером зерна не более 3 мкм синтезированный методом карботермического восстановления каолина; корунд ОСТ 2 MT-71- 1-82 с размером зерна не более 10 мкм; фритта получена из шихты совместного помола (CaCO3 по ГОСТ 4530-76, SiO2 по ГОСТ 9428-73, H3BO3 по ГОСТ 9656-75) путем обжига при температуре 1200°C, дроблением и помолом до размера зерна не более 10 мкм; связка кремнеорганическая ГС-20П с содержанием сухого остатка SiO2 17,00-20,00 мас.%.

Композицию и покрытие из нее для защиты от воздействия расплава алюминия получают, смешивая в лопастной мешалке порошкообразный огнеупорный наполнитель (бета-сиалон, корунд), спекающую добавку (фритта) и связующее кремнеорганическое, взятое в заявляемом количестве, мас.%, в течение (15-40) мин. Для получения покрытия, полученную композицию наносят на предварительно подготовленную поверхность детали из металла, например чугуна, сушат и производят термообработку при температуре (800-1000)°C в течение (50÷60) мин.

Подготовку поверхности детали из металла осуществляют пескоструйной обработкой, очищают от загрязнения и формируют переходный слой на основе фритты и огнеупорного наполнителя, например корунда для компенсирования напряжений по коэффициенту термического линейного расширения.

Выбор заявляемого состава композиции обусловлен следующим:

- При содержании бета-сиалона менее 10,00 мас.% композиция имеет вязкость менее 5 Па*с, уменьшается толщина наносимого слоя для образования покрытия до 50 мкм, образует усадочные трещины, уменьшается термостойкость и адгезия к чугуну и увеличивается смачивание расплавом алюминия. При содержании бета-сиалона более 35,00 мас.% композиция имеет вязкость более 15 Па*с и затрудняется ее нанесение на поверхность чугуна.

- При содержании корунда менее 15,00 мас.% композиция образует усадочные трещины, уменьшается термостойкость и адгезия к чугуну, при содержании корунда более 20,00 мас.% композиции загустевает, уменьшается адгезия к чугуну.

- При содержании фритты менее 20,00 мас.% композиция образует усадочные трещины, при содержании фритты более 30,00 мас.% композиция комкуется и затрудняется нанесение слоя для формирования покрытия.

- При содержании кремнийорганического связующего менее 30,00 мас.% композиция имеет вязкость более 15 Па*с, затрудняется нанесение, и формирование покрытия, увеличивается, толщина слоя более 250 мкм, уменьшается термостойкость и адгезия к чугуну. При содержании кремнийорганического связующего более 40,00 мас.% композиция имеет вязкость менее 15 Па*с, толщина слоя менее 50 мкм, в процессе сушки возникают дополнительные напряжения, приводящие к отслоению.

Выбор состава покрытия обусловлен следующим:

- При содержании в покрытие бета-сиалона менее 14,71 мас.% уменьшается стойкость к действию расплава алюминия и краевой угол смачивания до значения менее 100 град. При содержании в покрытие бета-сиалона более 46,05 мас.% существенно уменьшается коэффициент термического линейного расширения, что приводит к дополнительным термическим напряжениям и снижению адгезии.

- При содержании корунда менее 13,88 мас.% снижается термостойкость покрытия, при содержании корунда более 22,87 мас.% возникают дополнительные термические напряжения и снижение адгезии

- При содержании в покрытие стеклообразной связки менее 40,07 мас.% уменьшается адгезия к чугуну и повышается пористость покрытия. При содержании стеклофазы более 62,43 мас.% уменьшается стойкость к действию расплава алюминия и уменьшается краевой угол смачивания до значения менее 100 град.

Предлагаемый состав покрытия для защиты деталей плавильного оборудования, выполненного, например, из чугуна позволяет осуществлять многократное использование покрытия, увеличить термостойкость и адгезию защитного покрытия, уменьшить смачивание покрытия расплавом алюминия, кроме того увеличить огнестойкость и температуроустойчивость.

Примеры осуществления заявляемого технического решения

Пример 1. Берут 10 кг бета-сиалона, 20 кг корунда, фритты 30 кг и 40 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 20 мин (пример №1, таблица 1). Подготовленную композицию наносят методом окраски на переходный слой на поверхности чугуна. Образованный слой сушат при температуре 120°C и производят термообработку при температуре 900°C в течение 40 мин. Адгезия полученного покрытия составляет 10-11 МПа, угол смачивания расплавом алюминия (140-150) град., термостойкость 25 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №1, таблица 2).

Пример 2. Берут 24 кг бета-сиалона, 17 кг корунда, фритты 25 кг и 34 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №2, таблица 1). Полученную композицию наносят методом окраски на переходный слой на поверхности чугуна. Образованный слой сушат при температуре 100°C и производят термообработку при температуре 850°C в течение 40 мин. Адгезия полученного покрытия составляет (12-13) МПа, угол смачивания расплавом алюминия (150-160) град., термостойкость 23 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №2, таблица 2).

Пример 3. Берут 35 кг бета-сиалона, 15 кг корунда, фритты 20 кг и 30 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №3, таблица 1). Полученную композицию наносят методом окраски на предварительно сформированный переходный слой на поверхности чугуна. Образованный слой сушат при температуре (15÷50)°C и производят термообработку при температуре 1000°C в течение 60 мин. Адгезия полученного покрытия составляет (10-11) МПа, угол смачивания расплавом алюминия (140-150) град., термостойкость 19 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №3, таблица 2).

Пример 4. Берут 20 кг бета-сиалона, 10 кг корунда, фритты 30 кг и 40 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №4, таблица 1). Полученную композицию наносят методом окраски на предварительно сформированный переходный слой на поверхности чугуна. Образованный слой сушат при температуре (15÷50)°C и производят термообработку при температуре 1000°C в течение 60 мин. Адгезия полученного покрытия составляет (12-13) МПа, угол смачивания расплавом алюминия (140-150) град., термостойкость 21 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №4, таблица 2).

Пример 5. Берут 30 кг бета-сиалона, 20 кг корунда, фритты 20 кг и 30 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №5, таблица 1). Полученную композицию наносят методом окраски на предварительно сформированный переходный слой на поверхности чугуна. Образованный слой сушат при температуре (15÷50)°С и производят термообработку при температуре 950°C в течение 60 мин. Адгезия полученного покрытия составляет (10-11) МПа, угол смачивания расплавом алюминия (140-150) град., термостойкость 25 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №5, таблица 2).

Пример 6. Берут 15 кг бета-сиалона, 15 кг корунда, фритты 30 кг и 40 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №6, таблица 1). Полученную композицию наносят методом окраски на предварительно сформированный переходный слой на поверхности чугуна. Образованный слой сушат при температуре (15÷50)°C и производят термообработку при температуре 800°C в течение 60 мин. Адгезия полученного покрытия составляет (10-11) МПа, угол смачивания расплавом алюминия (140-150) град., термостойкость 19 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №6, таблица 2).

Пример 7. Берут 20 кг бета-сиалона, 20 кг корунда, фритты 30 кг и 30 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №7, таблица 1). Полученную композицию наносят методом окраски на предварительно сформированный переходный слой на поверхности чугуна. Образованный слой сушат при температуре (15÷50)°C и производят термообработку при температуре 950°C в течение 60 мин. Адгезия полученного покрытия составляет (10-11) МПа, угол смачивания расплавом алюминия (140-150) град., термостойкость 25 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №7, таблица 2).

Пример 8. Берут 30 кг бета-сиалона, 10 кг корунда, фритты 30 кг и 30 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №8, таблица 1). Полученную композицию наносят методом окраски на предварительно сформированный переходный слой на поверхности чугуна. Образованный слой сушат при температуре (15÷50)°C и производят термообработку при температуре 1000°C в течение 60 мин. Адгезия полученного покрытия составляет (10-11) МПа, угол смачивания расплавом алюминия (150-160) град., термостойкость 22 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №8, таблица 2).

Пример 9. Берут 25 кг бета-сиалона, 20 кг корунда, фритты 25 кг и 30 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №9, таблица 1). Полученную композицию наносят методом окраски на предварительно сформированный переходный слой на поверхности чугуна. Образованный слой сушат при температуре (15÷50)°C и производят термообработку при температуре 1000°C в течение 60 мин. Адгезия полученного покрытия составляет (11-12) МПа, угол смачивания расплавом алюминия (140-150) град., термостойкость 25 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №9, таблица 2).

Пример 10. Берут 35 кг бета-сиалона, 10 кг корунда, фритты 20 кг и 35 кг связующего кремнийорганического (ГС-20П). Компоненты смешивают в лопастной мешалке в течение 30 мин (пример №10, таблица 1). Полученную композицию наносят методом окраски на предварительно сформированный переходный слой на поверхности чугуна. Образованный слой сушат при температуре (15÷50)°C и производят термообработку при температуре 1000°C в течение 60 мин. Адгезия полученного покрытия составляет (10-11) МПа, угол смачивания расплавом алюминия (150-160) град., термостойкость 19 теплосмен по режиму 20°C→950C°→20°C. Состав и показатели свойств покрытия (пример №10, таблица 2).

1. Состав композиции для получения покрытия, содержащий порошкообразный огнеупорный наполнитель, связующее, добавку, отличающийся тем, что дополнительно содержит бета-сиалон и спекающую добавку в виде фритты, мас.%: СаО (40,00-60,00); SiO2 (22,00-35,00); B2O3 (18,00-25,00), связующее кремнеорганическое и корунд при следующем соотношении, мас.%:

бета-сиалон 10,00-35,00
корунд 15,00-20,00
спекающая добавка, фритта 20,00-30,00
связующее кремнийорганическое 30,00-40,00

2. Покрытие из состава по п.1, включающее огнеупорный наполнитель и связку, отличающееся тем, что содержит кристаллические фазы бета-сиалон, корунд и стеклообразную связку состава, мас.%: СаО (35,52-55,71); Al2O3 (1,86-4,45); SiO2 (25,72-37,83); B2O3 (16,71-22,20), при следующем соотношении, мас.%:

бета-сиалон 14,71-46,05
корунд 13,88-22,87
стеклообразная связка 40,07-62,43



 

Похожие патенты:
Глазурь // 2484069
Изобретение относится к технологии силикатов и касается составов глазурей для нанесения на керамические изделия хозяйственно-бытового назначения, плитку. .
Изобретение относится к составам масс для получения эмалевого покрытия на керамических изделиях, в том числе хозяйственно-бытового назначения. .
Изобретение относится к промышленности строительных материалов и касается составов глазурей для нанесения на керамическую черепицу. .
Глазурь // 2472722
Изобретение относится к составам масс для получения эмалевого покрытия. .
Изобретение относится к эмалевым покрытиям. .
Изобретение относится к составам масс для получения эмалевого покрытия. .
Изобретение относится к составам масс для получения эмалевого покрытия на изделиях из грубой керамики. .
Изобретение относится к составам масс для получения эмалевого покрытия на изделиях из керамики, преимущественно облицовочной плитке, печных изразцах. .
Изобретение относится к составам масс для получения эмалевого покрытия на изделиях из чугуна, стали. .
Изобретение относится к составам масс для получения эмалевого покрытия на керамических изделиях, в том числе хозяйственно-бытового назначения. Масса для получения эмалевого покрытия содержит, мас.%: фритту 72,0-74,0; муллит 7,0-9,0; костяную золу 17,0-21,0. Техническим результатом изобретения является повышение термостойкости эмалевого покрытия. Термостойкость покрытия составляет 25 теплосмен. Суспензию наносят на поверхность керамических изделий и закрепляют обжигом при температуре 1200оС. 1 табл.
Изобретение относится к составам масс для получения эмалевого покрытия на керамических изделиях, в том числе, хозяйственно-бытового назначения. Технический результат заключается в повышении термостойкости эмалевого покрытия. Масса для получения эмалевого покрытия содержит, мас.%: фритта 63,0-67,0; муллит 11,0-15,0; полевой шпат 16,0-20,0. 1 табл.
Изобретение относится к составам масс для получения эмалевого покрытия на керамических изделиях, в том числе хозяйственно-бытового назначения. Масса для получения эмалевого покрытия содержит, мас.%: фритта 63,0-67,0; муллит 7,0-10,0; циркон 16,0-20,0; сподумен 4,0-6,0. Техническим результатом изобретения является повышение термостойкости эмалевого покрытия. Термостойкость покрытия составляет 25 теплосмен. Обжиг производят при температуре 1250оС. 1 табл.
Наверх