Глубоководный сваебойный копер

Группа изобретений относится к строительной технике и может быть использована под водой на больших глубинах для установки свай, крепежных свай и скважинных направлений в грунте морского дна и отбора образцов грунта на больших глубинах с возможностью использования на мелководье и на земле. Содержит ударную бабу, которая размещена в открытом каркасе и возвратно-поступательно перемещается гидросистемой, находясь в контакте с водой. Шток поршня размещен в цилиндре поршня и прикреплен одним концом к ударной бабе через соединительный механизм. При этом применен внешний источник гидравлической мощности с гидравлической цепью на борту. Соединительный механизм создает соединение между штоком поршня и ударной бабой с возможностью перехода, по существу, между жестким подъемным соединением и, по существу, нежестким соединением для удара, предотвращая потерю устойчивости штоком поршня, когда ударная баба наносит удар в крайнем нижней точке. Один вариант осуществления соединительного механизма включает в себя полый корпус, имеющий противостоящие продольные пазы, стержень, скользящий в полом корпусе, скользяще соединяющийся штифтом в одном конце противостоящих пазов и жестко соединяющийся штифтом в другом конце противостоящих пазах к ударной бабе, с пружиной в полом корпусе, создающей смещающее действие для толкания стержня к ударной бабе. Достигается упрощение в эксплуатации, а также уменьшение габаритов системы. 3 н. и 12 з.п. ф-лы, 9 ил.

 

Данное изобретение относится к сваебойным копрам, и, конкретнее к забивающему устройству, системе, включающей в себя копер, и способам и вариантам применения для забивки изделий в грунт под водой на большой глубине.

Большие, тяжелые, получающие энергию с поверхности забивающие устройства существуют для вертикальной забивки свай, скважинных направлений, устройств отбора образцов грунта и других изделий в грунт на морском дне. Существующие забивающие устройства являются очень большими, очень дорогими в развертывании, и, вследствие их габаритов и сложности, применение существующих забивающих устройств ограничено относительно малыми глубинами и забивкой больших изделий. Современная технология также включает в себя бурение скважины и/или выполнение скважины гидромонитором в морском дне, затем вставление изделия в скважину, но данные методики требуют использования очень больших и дорогостоящих кораблей или платформ и значительных затрат времени для установки изделия. Также, в варианте свай, скважинных направлений и других изделий, оставляемых в грунте, изделия должны быть длиннее, чем необходимо, если, альтернативно, изделие забивать в грунт на морском дне. Такое происходит вследствие уменьшения удерживающей способности или прочности изделия, размещаемого в пробуренной или выполненной гидромонитором скважине, в результате нарушения целостности грунта на стенках скважины, а также увеличенного размера скважины относительно изделия.

Патент США № 5,662,175, выдан Warrington et al. и включенный в данный документ в виде ссылки, описывает свайную бабу, которую можно использовать под водой, в которой используют воду, как рабочую жидкость гидросистемы. Гидравлический силовой блок размещен на поверхности и соединен шлангами гидравлически управляемым копром. Имеется ограничение рабочей глубины, на которой свайную бабу можно использовать, поскольку нецелесообразно перекачивать воду по шлангам на большую глубину.

Патенты США №№ 4,872,514; 5,667,341; 5,788,418; и 5,915,883, выданы Kuehn и включенные в данный документ в виде ссылки, описывают, в общем, сваебойные копры, которые можно использовать под водой на относительно большой глубине. Последний из патентов описывает погружной гидравлический приводной блок, который можно соединять с механизмом привода подводного копра или отсечным инструментом. Приводной блок имеет гидравлический насос, приводимый в действие электродвигателем, питаемым электроэнергией с поверхности через шлангокабель. Приводной блок имеет другой шлангокабель, соединенный с забивающим устройством или отсекающим инструментом, и аппарат дистанционного управления используют для наблюдения за данным соединением и его выполнения. В процессе спуска оборудования на шлангокабеле, шлангокабель подвержен повреждениям, и упомянутый выше патент 5,667,341 описывает использование шлангокабеля аппарата дистанционного управления для передачи сигналов и данных с приводным блоком.

Патентная заявка PCT/GB2006/001239, публикации WO 2006109018, изобретателя Clive Jones, включенная в данный документ в виде ссылки для всех целей, описывает устройство для забивки свай под водой в морское дно, включающее в себя свайное направляющее устройство с рамой основания, направляющим элементом, установленным на раме основания, и имеющим конфигурацию для направления сваи, устройство для забивки сваи в морское дно, и блок электропитания для подачи мощности, приводящей в действие устройство. Указанная заявка описывает блок электропитания, являющийся частью аппарата дистанционного управления. В указанной заявке описано, что гидравлические свайные бабы, такие как IHC Hydrohammer, поставляемые голландской компанией IHC Hydrohammer BV можно использовать в качестве сваебойного устройства. Согласно брошюре IHC, IHC Hydrohammer включает в себя ударную бабу и поршневой шток, сконструированные в виде единой детали и кожух для ударной бабы, в брошюре указано, что компоновка сконструирована для возвратно-поступательного перемещения ударной бабы, по существу, в чистой, сухой газовой среде, такую среду сложно поддерживать под давлением, создаваемым водой на большой глубине.

В одном варианте осуществления настоящим изобретением создан копер, включающий в себя каркас ударной бабы, имеющий верхний конец и нижний конец и боковую стенку, проходящую между верхним и нижним концами, где боковая стенка имеет отверстия, приспособленные для прохода воды через боковую стенку; ударную бабу, размещенную в каркасе ударной бабы, где каркас ударной бабы и ударная баба приспособлены для возвратно-поступательного перемещения ударной бабы внутри каркас ударной бабы, и где копер приспособлен для работы в контакте с водой. Ударная баба содержит тяжелый корпус, имеющий верхнюю и нижнюю поверхности, верхнюю направляющую ударной бабы, проходящую вверх от верхней поверхности тяжелого корпуса и нижнюю направляющую ударной бабы, проходящую вниз от нижней поверхности тяжелого корпуса. Верхняя направляющая ударной бабы, тяжелый корпус и нижняя направляющая ударной бабы имеют соосные каналы, и каркас имеет верхнее направляющее отверстие для размещения верхней направляющей ударной бабы и нижнее направляющее отверстие для размещения нижней направляющей ударной бабы. Копер имеет опорную плиту в нижнем конце каракаса бабы копра, и опорная плита выполнена с возможностью приема и передачи силы ударного воздействия от ударной бабы. Рама гидросистемы соединена с каркасом ударной бабы; гидравлический цилиндр размещен в раме гидросистемы; поршень размещен в гидравлическом цилиндре; и шток поршня прикреплен к поршню. Соединительный механизм выполнен с возможностью присоединения другого конца штока поршня к ударной бабе, и соединительный механизм создает, по существу, жесткое соединение между штоком поршня и ударной бабой при подъеме ударной бабы и по существу, не жесткое соединение между штоком поршня и ударной бабой при ударном воздействии ударной бабы на опорную плиту. Контур рабочей жидкости гидросистемы выполнен с возможностью создания подъемной силы для подъема ударной бабы и высвобождения ударной бабы. Предпочтительно, юбка проходит от нижнего конца каркаса ударной бабы, и юбка приспособлена для контакта с изделием, подлежащим забивке в грунт и приема и передачи силы ударного воздействия от ударной бабы на изделие, подлежащее забивке в грунт. В одном варианте осуществления соединительный механизм создает соединение между штоком поршня и ударной бабой, которое может перемещаться, по существу, между жестким соединением для подъема, по существу, жестким соединением для толкания вниз и, по существу, не жестким соединением для ударного воздействия для предотвращения потери устойчивости штока поршня.

Предпочтительно, контур рабочей жидкости гидросистемы включает в себя настраиваемый газовый аккумулятор давления, содержащий емкость, в которой хранится газ, где газ сжимается при подъеме ударной бабы и где газ расширяется после высвобождения ударной бабы, и где расширение газа создает направленную вниз силу, использующуюся для толкания ударной бабы вниз. Направленная вниз сила от расширения газа предпочтительно передается через шток поршня на ударную бабу через соединительный механизм и, предпочтительно, соединительный механизм и/или контур рабочей жидкости гидросистемы приспособлен для предотвращения удара штока поршня в ударную бабу около момента приема опорной плитой силы ударного воздействия от ударной бабы.

Соединительный механизм в одном варианте осуществления включает в себя полый трубчатый элемент соединения стержней, имеющий нижний конец и верхний конец; элемент соединения с ударной бабой, имеющий продольный участок и поперечный участок, где поперечный участок размещен внутри полого трубчатого элемента соединения стержней, и пружинное устройство, размещенное в полом трубчатом элементе соединения стержней между верхним концом полого трубчатого элемента соединения стержней и поперечным участком элемента соединения с ударной бабой, при этом, элемент соединения с ударной бабой может ограниченно возвратно-поступательно перемещаться относительно полого трубчатого элемента соединения стержней. Поперечный участок элемента соединения с ударной бабой предпочтительно прижимается к нижнему концу полого трубчатого элемента соединения стержней при подъеме ударной бабы для создания, по существу, жесткого соединения между штоком поршня и ударной бабой, и предпочтительно, поперечный участок элемента соединения с ударной бабой перемещается от нижнего конца полого трубчатого элемента соединения стержней и прижимается к пружинному устройству при толкании ударной бабы вниз. Скорость перемещения вниз штока поршня предпочтительно замедляется непосредственно перед ударным воздействием ударной бабы на опорную плиту.

В другом варианте осуществления настоящим изобретением создана система для забивки изделия в грунт под водой, и система включает в себя ударную бабу или бабу копра, приспособленную для забивки изделия в грунт под водой; подъемный механизм, функционально соединенный с ударной бабой, причем, подъемный механизм, выполненный с возможностью подъема ударной бабы; высвобождающий механизм, функционально соединенный с подъемным механизмом и/или ударной бабой, причем, высвобождающий механизм, выполненный с возможностью высвобождения ударной бабы после подъема ударной бабы; каркас, выполненный с возможностью функционального размещения ударной бабы, надводную структуру; подъемный канат между структурой и подъемным соединительным устройством на каркасе; аппарат дистанционного управления; шлангокабель аппарата дистанционного управления, проходящий между структурой и аппаратом дистанционного управления, причем, шлангокабель аппарата дистанционного управления, выполненный с возможностью подачи электропитания и сигналов управления от структуры на аппарат дистанционного управления; и шлангокабель копра, выполненный с возможностью функционального прохождения между аппаратом дистанционного управления и подъемным механизмом для обеспечения приведением в действие аппаратом дистанционного управления подъемного механизма, где аппарат дистанционного управления имеет ходовую систему, обеспечивающую перемещение аппарата дистанционного управления, и где аппарат дистанционного управления выполнен с возможностью функционального соединения шлангокабеля копра с подъемным механизмом. Подъемный механизм предпочтительно включает в себя гидравлический цилиндр с поршнем внутри и штоком поршня, прикрепленным к поршню, причем, шток поршня прикреплен к ударной бабе для подъема ударной бабы, и высвобождающий механизм дополнительно включает в себя толкающий механизм, выполненный с возможностью толкания ударной бабы вниз штоком поршня после высвобождения ударной бабы. Предпочтительно, крепление штока поршня к ударной бабе выполнено с возможностью предотвращения толкания штоком поршня ударной бабы вниз около момента достижения ударной бабой своей крайней нижней точки. Толкающий механизм предпочтительно выполнен так, что скорость перемещения вниз штока поршня меньше скорости перемещения вниз ударной бабы непосредственно перед достижением ударной бабой своей крайней нижней точки. Крепление штока поршня к ударной бабе, предпочтительно, выполнено так, что соединение между штоком поршня и ударной бабой является, по существу, жестким при подъеме вверх ударной бабы, но соединение между штоком поршня и ударной бабой является не жестким в момент достижения ударной бабой крайней нижней точки хода.

В одном варианте осуществления, шток поршня предпочтительно прикреплен к ударной бабе через элемент прикрепления штока к ударной бабе, который включает в себя трубчатый элемент, имеющий противостоящие пазы с ориентацией вдоль вертикальной продольной оси, причем, пазы, имеющие нижний конец и верхний конец; штифт, имеющий продольную ось, сориентированную горизонтально, причем, штифт, размещенный в пазах так, что штифт контактирует с нижними концами пазов для создания, по существу, жесткого соединения между штоком поршня и ударной бабой при подъеме ударной бабы; и пружинный механизм, размещенный в трубчатом элементе над штифтом так, что при толкании штоком поршня ударной бабы вниз сила передается через пружинный механизм на штифт, при этом, штифт скользит вверх в противостоящих пазах вначале, когда шток поршня толкает ударную бабу вниз. Шток поршня в одном варианте осуществления прикреплен к ударной бабе через элемент прикрепления штока к ударной бабе, включающий в себя трубчатый элемент, имеющий верхний и нижний концы и продольную ось; T-образный элемент, имеющий продольный участок и поперечный участок, при этом, поперечный участок размещен для скольжения в трубчатом элементе, и, при этом, продольный участок имеет продольную ось, по существу, соосную с продольной осью трубчатого элемента; и пружинное устройство, размещенное в трубчатом элементе между верхним концом трубчатого элемента и поперечным участком Т-образного элемента, где пружинное устройство выполнено с возможностью толкания поперечного участка к нижнему концу трубчатого элемента.

Настоящим изобретением также создан способ забивки изделия в грунт под водой, включающий в себя этапы спуска копра в водный объект, где копер включает в себя каркас, имеющий верхний конец и нижний конец; бабу копра, размещенную в каркасе; вспомогательную раму гидросистемы прикрепленную к каркасу; гидравлический цилиндр, размещенный каркасе; поршень, размещенный в гидравлическом цилиндре; шток поршня, прикрепленный к поршню и соединенный с каркасом; и первую гидравлическую цепь, выполненную с возможностью подъема бабы копра посредством гидравлического цилиндра, поршня и штока поршня и высвобождения бабы копра, при этом, высвобождение бабы копра обеспечивает падение бабы копра под действием силы тяжести, где копер выполнен с возможностью приложения забивающей силы к изделию, подлежащему забивке в грунт под водой; спуск аппарат дистанционного управления в воду, где аппарат дистанционного управления выполнен с возможностью иметь вторую гидравлическую цепь, и где аппарат дистанционного управления приспособлен для дистанционного управления, обеспечивающего аппарату дистанционного управления перемещение под водой ходовой системой на аппарате дистанционного управления, и соединение второй гидравлической цепи на аппарате дистанционного управления с первой гидравлической цепью на копре, и где аппарат дистанционного управления и первая и вторая гидравлические цепи дают возможность приведения в действие копра посредством аппарата дистанционного управления; и использование копра для забивки изделия в грунт под водой. Варианты применения настоящего изобретения включают в себя забивку свай, крепежных свай, скважинных направлений и устройств отбора образцов грунта на морском дне. Сваи и/или крепежные сваи можно использовать для якорного крепления донных оснований, подводных трубопроводов и различных элементов морских конструкций.

Лучшее понимание изобретения можно получить из подробного описания являющихся примерами вариантов осуществления, изложенных ниже со ссылками на прилагаемые чертежи, на которых показано следующее.

На Фиг. 1 показан вид сбоку системы забивки изделия в грунт на морском дне согласно настоящему изобретению.

На Фиг. 2 показан вид спереди копра согласно настоящему изобретению.

На Фиг. 3 показано сечение копра по линии 3-3 на Фиг. 2, при этом цилиндр поршня, шток поршня и соединительный механизм не показаны в сечении.

На Фиг. 4 показано сечение Фиг. 3, с бабой копра в поднятом положении согласно настоящему изобретению.

На Фиг. 5 на части сечения копра по линии 3-3 Фиг. 2, с поворотом на 90 градусов, показано сечение цилиндра поршня и соединительного механизма, при этом баба копра поднята.

На Фиг. 6 показана часть сечения Фиг. 5 с толканием бабы копра вниз.

На Фиг. 7 показан вид сбоку сечения альтернативного варианта осуществления соединительного механизма.

На Фиг. 8 показана схема гидравлической системы для приведения в действие копра Фиг. 2, согласно настоящему изобретению.

На Фиг. 9 показана схема альтернативного варианта осуществления гидравлической системы для приведения в действие копра Фиг. 2, согласно настоящему изобретению.

Настоящим изобретением создан копер или устройство забивки ударной бабой, которое можно использовать под водой на большой глубине, и способ и система для использования такого устройства. Устройство можно использовать для забивки свай, забивки труб для использования в качестве скважинных направлений под водой на большой глубине и для забивки устройств отбора образцов грунта на морском дне. Копер или устройство забивки ударной бабой можно использовать под водой на малой глубине и на земной поверхности, но оно рассматривается особенно полезным в вариантах применения под водой на большой глубине.

На Фиг. 1, показан вид сбоку системы 10 копра или забивающего устройства согласно настоящему изобретению. Копер или забивающее устройство 12 с ударной бабой соединено подъемным канатом 14 с судном 16, таким как корабль или баржа, через лебедку 16a, которую можно использовать для спуска и подъема копра 12. Подъемный канат 14 проходит через блок 16b, прикрепленный к крановой стреле 16c. Забивающее устройство 12 с ударной бабой показано в данном варианте осуществления забивающим сваю 18 в грунт S на морском дне, возможно находящимся на тысячи футов ниже поверхности WS воды W. Свая 18 показана частично забитой в грунт S на морском дне, и копер 12 можно использовать от начала процесса забивки сваи 18 копром или ударной бабой в грунт S на морском дне до окончания процесса забивки. В данном варианте осуществления изделие, забиваемое копром 12, является сваей 18, другие изделия, которые можно забивать копром 12, включают в себя скважинные направления, устройства отбора проб грунта и различные типы якорей, таких как для якорного крепления донных оснований и подводных трубопроводов. Копер 12 показан подвешенным на судне 16, но копер 12 может нести любая морская или наземная конструкция, такая как различные типы плавучих и стоящих на якорях платформ для морских сооружений и различные типы конструкций типа вышек сухопутных систем.

Копер или забивающее устройство 12 с ударной бабой показано в данном варианте осуществления с гидравлическим приводом от аппарата 20 дистанционного управления. Аппарат 20 дистанционного управления вначале размещают в подъемной клети или ангаре 22, который используют для безопасного спуска аппарата 20 дистанционного управления с судна 16 в воду W. Подъемная клеть 22 и аппарат 20 дистанционного управления подвешены на шлангокабеле 24 аппарата дистанционного управления, соединенным судном 16 через лебедку 16d. Шлангокабель 24 аппарата дистанционного управления проходит через блок 16e, прикрепленный к крановой стреле 16f на судне 16. После спуска подъемной клети 22 в нужное положение вблизи копра 12, аппарат 20 дистанционного управления, имеющий ходовую систему для перемещения под водой, приводится в действие и направляется оператором, который обычно, но не обязательно, является человеком, работающим через компьютерную систему, и аппарат 20 дистанционного управления перемещается, становясь вблизи устройства 12 с ударной бабой. Аппарат 20 дистанционного управления связан с подъемной клетью 22 вторым сегментом 24a шлангокабеля 24 аппарата дистанционного управления. Шлангокабели 24 и 24a аппарата дистанционного управления имеют линии управления и передачи сигнала для передачи команд и сигналов с судна 16 на аппарат 20 дистанционного управления и приема данных и сигналов обратной связи с аппарата 20 дистанционного управления на судно 16. Кроме того, шлангокабели 24 и 24a аппарата 20 дистанционного управления имеют провода электропитания, для приведения в действие бортовой гидравлической системы аппарата. Аппарат 20 дистанционного управления имеет манипулятор 20a, который используют для соединения пары гидравлических шлангов 20b с копром 12. Патент США № 4,947,782, выданный Takahashi и включенный в данный документ в виде ссылки, описывает аппарат дистанционного управления. Подходящий аппарат 20 дистанционного управления можно получить от компании Perry Slingsby Systems, Inc., Houston, Texas.

Копер

На Фиг. 2, показан вид копра 30 или забивающего устройства с ударной бабой согласно настоящему изобретению. На Фиг. 3 показано сечение копра 30 по линии 3-3 на Фиг. 2. Копер 30 включает в себя ударную бабу или бабу 32 копра, являющуюся тяжелой массой обычно металлического материала, иногда именуемую массой ударной баба или массой бабы 32 копра. Баба копра или ударная баба 32 размещена в каркасе 34 копра, имеющем множество отверстий, одно из которых показано, как отверстие 34a. Баба 32 копра имеет три дополнительных отверстия, аналогичных отверстию 34a, вместе именуемые отверстиями 34a. Каркас 34 копра может быть выполнен из секции трубы круглого сечения. Ударная баба 32 возвратно-поступательно перемещается под водой, поскольку отверстия 34a обеспечивают поступление и выход воды, когда копер 30 работает под водой. Ударная баба 32 предпочтительно выполнена с возможностью перемещения в воде с наименьшим возможным гидродинамическим сопротивлением и имеет закругленные углы 32a и 32b. Каркас 34 копра имеет нижний конец 34b и верхний конец 34c. Свайный наголовник или юбку 36 съемно прикрепляют, например, болтами или временными сварными соединениями, к нижнему концу 34b каркаса 34 копра. Юбку или наголовник 36 предпочтительно выполняют съемным, так что различные юбки или наголовники можно индивидуально изготовить для конкретного изделия, подлежащего забивке в грунт на морском дне. Скважинное направление 38 является изделием, подлежащим забивке в грунт на морском дне в данном варианте осуществления. Четыре штифта 40a, 40b, 40c и 40d (не показано), вместе именуемые штифтами 40, используют для съемного соединения юбки 36 со скважинным направлением 38. Штифты 40 предпочтительно снимают с помощью аппарата дистанционного управления. См., например, патент США № 5,540,523, выданный Foret, Jr. et al, и включенный в данный документ в виде ссылки, с описанием штифтового соединения, которым можно манипулировать с помощью аппарата дистанционного управления. Свайный наголовник или юбка 36 имеет внешнее, направленное вниз удлинение 36a и внутреннее, направленное вниз удлинение 36b, параллельное направленному вниз внешнему удлинению 36a. Выемка 36c образована между внешним, направленным вниз удлинением 36a и внутренним, направленным вниз удлинением 36b, и верхний участок скважинного направления 38 размещают в выемке 36c. Проходящий вниз защитный элемент 36d прикреплен к нижней поверхности свайного наголовника или юбки 36 и имеет отверстия 36e для поступления и выхода воды. Защитный элемент 36d закрыт на нижнем конце и открыт на верхнем конце.

На Фиг. 4 также показано сечение копра 30 по линии 3-3 на Фиг. 2, но с бабой копра или ударной бабой 32 в поднятом положении. Как показано на Фиг. 2-4, верхний конец 34c каркаса 34 копра заканчивается фланцем 34d. Направляющая плита 42 скреплена с фланцем 34d на верхнем конце 34c каркаса 34 копра. Рама 44 гидросистемы скреплена с верхней поверхностью 42a направляющей плиты 42 с аксиальным совмещением с рамой 34 бабы копра. Рама 44 гидросистемы может быть выполнена из секции трубы круглого сечения и имеет четыре относительно больших отверстия, вместе именуемые отверстиями 44a, разнесенными приблизительно на равные интервалы по окружности рамы 44 гидросистемы. Отверстия 44a обеспечивают поступление и выход воды, и при работе под водой внутренний объем рамы 44 гидросистемы заполнен водой. Рама 44 гидросистемы имеет нижний конец 44b и верхний конец 44c. Нижний фланец 44d соединяет нижний конец 44b с верхней поверхностью 42a направляющей плиты 42, и верхний фланец 44e скреплен с верхним концом 44c рамы 44 гидросистемы. Подъемная крышка 46 имеет нижний фланец 46a, скрепленный с верхним фланцем 44e рамы 44 гидросистемы, и подъемная крышка 46 может быть выполнена из секции трубы круглого сечения, но показана в данном варианте осуществления в виде двух пластин 46b и 46c, пересекающихся под прямым углом. Пластина 46b имеет отверстие 46d для приема подъемного каната (не показано).

На Фиг. 3 и 4, видно, что когда ударная баба или баба 32 копра падает, она наносит удар по подкладке 48, которая является прочным но упругим материалом, и сила удара проходит через подкладку 48 на опорную плиту 50. Предпочтительно, баба 32 копра бьет по подкладке 48 а не наносит удар по опорной плите 50 напрямую, металл по металлу, хотя подкладка 48, в общем считается просто частью опорной плиты 50. Усилие передается через подкладку 48 и опорную плиту 50 на юбку или наголовник 36 и через юбку или наголовник 36 на скважинное направление 38, забивая скважинное направление 38 в грунт на морском дне. Ударная баба или баба 32 копра имеет нижнюю направляющую 32с бабы копра и верхнюю направляющую 32d бабы копра для удержания бабы 32 копра на оси. Нижнюю направляющую 32с бабы копра принимает и защищает от повреждений защитный элемент 36d. Нижняя направляющая 32с бабы копра размещена в нижнем линейном подшипнике 52a, и верхняя направляющая 32d бабы копра размещена в верхнем линейном подшипнике 52b. Нижний линейный подшипник 52a размещен в опорной плите 50 и подкладке 48 и скреплен с ними. Верхний линейный подшипник 52b размещен в направляющей плите 42, имеющей центральное отверстие и фланцевый участок 42b для размещения и закрепления верхнего линейного подшипника 52b. Соединительный механизм или соединительная муфта 54, подробнее показанная на Фиг. 5-7 и описанная ниже, соединена штифтом 54a с нижней направляющей 32с бабы копра. В цилиндре 56 поршня размещен шток 58 поршня, имеющий нижний конец 58a, соединенный, например резьбой, штифтом или сваркой с соединительной муфтой 54, и верхний конец 58b. Цилиндр 56 поршня размещен в трубе 60 цилиндра поршня и защищен трубой, и цилиндр 56 поршня закреплен в трубе 60 цилиндра поршня аналогичным способом, например, болтами или штифтами (не показано). Труба 60 цилиндра поршня имеет фланцевый верхний конец 60a, открытый нижний конец 60b и множество достаточно больших отверстий 60c для поступления и выхода воды. Фланцевый верхний конец 60a скреплен, например, болтами или сваркой, с нижним фланцем 46a подъемной крышки 46, и труба 60 цилиндра поршня должна быть выставлена по вертикальной оси для надлежащего направления и подъема бабы 32 копра. Цилиндр 56 поршня, шток 58 поршня и соединительная муфта 54 не показаны в сечении для ясности в описании конструкции копра или забивающего или устройства 30 с ударной бабой.

Рабочую жидкость гидросистемы под давлением снизу поршня используют для подъема штока 58 поршня и, следовательно, подъема бабы 32 копра, что дополнительно описано ниже и показано на Фиг. 8 и 9. Вспомогательная рама 62 гидросистемы прикреплена через амортизаторы 64a, 64b и 64c ударов и вибрации (вместе амортизаторы 64) к направляющей плите 42, примыкающей к раме 44 гидросистемы. Устройство гидросистемы установлено на вспомогательной раме 62, и вспомогательная рама 62 защищает устройство гидросистемы от повреждений. Вспомогательная рама 62 гидросистемы включает в себя плиту 62a основания, соединенную болтами или другим средством с тремя (или четырьмя или более) амортизаторами 64 ударов и вибрации, которые могут являться эластомерным материалом или спиральными пружинами с пластинами сверху и снизу. Плита 62a основания показана в виде стопки стержней прямоугольного сечения, но плита может иметь "L" -образное сечение в наклонной стопке. Трубчатая рама с вертикальными элементами 62b и горизонтальными элементами 62c скреплена с горизонтальной плитой 62a основания. Вид сверху в плане на Фиг. 2 не дан, но должен показывать, что горизонтальный элемент 62c трубчатой рамы имеет "U" образную форму и, в общем, находится вблизи, но не соединен с рамой 44 гидросистемы. Вспомогательная рама 62 гидросистемы прикреплена только к амортизаторам 64 ударов и вибрации для минимизирования передачи на гидравлические компоненты ударов и вибрации создаваемых, когда баба 32 копра наносит удар по подкладке 48 и опорной плите 50. Стержни 62d и 62e для захвата манипулятором аппарата дистанционного управления создают конструкцию на вспомогательной раме 62 гидросистемы, к которой аппарат дистанционного управления может сам швартоваться к копру или забивающему или устройству 30 с ударной бабой. Защитная пластина 62f создает поверхность, на которую компоненты гидросистемы можно устанавливать, и защищает компоненты гидросистемы от повреждений.

Соединительный механизм

Как показано на Фиг. 3 и 4, шток 58 поршня соединен на нижнем конце 58a с соединительной муфтой 54, например, резьбой или сваркой. Соединительная муфта 54 соединена с нижней направляющей 32с бабы копра штифтом 54a. Соединительная муфта 54 содержит полый цилиндрический корпус 54b и сплошной шток 54c, размещенный для скольжения внутри полого цилиндрического корпуса 54b. Штифт 54a крепит сплошной шток 54c к нижней направляющей 32с бабы копра. Полый цилиндрический корпус 54b имеет пару противостоящих пазов 54d, и штифт 54e соединяет сплошной шток 54c с полым цилиндрическим корпусом 54b со скольжением в корпусе. Когда шток 58 поршня поднимает вверх гидравлическая сила, полый цилиндрический корпус 54b поднимается вверх, и штифт 54e жестко опирается на нижний край пазов 54d, обуславливая подъем сплошным штоком 54c через штифт 54a нижней направляющей 32с бабы копра и бабы копра или ударной бабы 32. После достижения бабой 32 копра самой верхней точки, гидравлическую подъемную силу отсекают, и гидравлическая система дает возможность копровой бабе 32 падать под действием силы тяжести, и гидравлическая система приспособлена к толканию копровой бабы 32 вниз штоком 58 поршня. Если толкать шток 58 поршня жестко скрепленным с бабой копра 32 к крайней нижней точке падения бабы 32 копра, то шток 58 поршня должен терять устойчивость, и все ударное воздействие ударной бабы на опорную плиту должны воспринимать более чувствительные компоненты поршня 56. Данная проблема рассмотрена и ее решение раскрыто в патенте США № 2,798,363, выдан Hazak et al, и включен в данный документ в виде ссылки. Для предотвращения потери устойчивости штока 58 поршня, при толкании штока 58 поршня на полый цилиндрический корпус 54b, направленная вниз сила передается на сплошной шток 54c через пружинное устройство 54f, показанное на Фиг. 5 и 6. При толкании сплошного штока 54c вниз штифт 54e скользит к самой верхней точке пазов 54d, что обеспечивает не жесткое соединение между штоком 58 поршня и ударной бабой или бабой 32 копра. Вместе с тем, во время толкания вниз ударной бабы или бабы 32 копра, штифт 54e может опираться на самый верхний край пазов 54d, создавая, по существу, жесткое соединение для начального толкания вниз. Пружинное устройство содержится внутри полого цилиндрического корпуса 54b и выполнено с возможностью толкания штока 54c вниз. Штифт 54e толкается в промежуточное положение непосредственно перед ударным воздействием. Полый цилиндрический корпус 54b имеет отверстия 54g для поступления и выхода воды.

На Фиг. 5 и 6, соединительный механизм 54 Фиг. 3 и 4 показан в сечении и с поворотом на 90 градусов. На Фиг. 5 и 6 дополнительно показан цилиндр 56 поршня в сечении. Поршень 56a размещен в цилиндре 56 поршня и уплотнен к внутренней поверхности стенки цилиндра 56 поршня поршневым кольцом 56b. На Фиг. 5 показана рабочая жидкость гидросистемы, проходящая в трубу 56c и в цилиндр 56 поршня под поршень 56a, который поднимает бабу 32 копра вверх. Утечка рабочей жидкости гидросистемы вокруг штока 58 поршня предотвращена уплотнением 56d. Пружинное устройство 54f, которое может являться эластомерным материалом, спиральной пружиной или любым подходящим устройством, таким как тарельчатые пружины, показанные на Фиг. 5 и 6, разгружается, когда баба 32 копра поднята, как на Фиг. 5, и штифт 54e опирается на нижнюю кромку, образующую самый нижний участок противоположных пазов 54d. На Фиг. 6, шток 58 поршня вытолкнут вниз, и баба 32 копра находится почти в самом нижнем положении своего хода вниз перед ударом по подкладке 48 и опорной плите 50. Штифт 54e перемещен в самое верхнее положение с опиранием на верхнюю кромку противоположных пазов 54d, и пружинное устройство 54f по существу, полностью сжато. Перед ударом массы бабы 32 копра по подкладке 48, штифт 54e должен предпочтительно перемещаться от верхнего края противостоящих пазов 54d, как показано на Фиг. 3, как описано ниже, таким образом, создавая, по существу, не жесткое соединение между штоком 58 поршня и массой бабы 32 копра.

На Фиг. 7 показано сечение альтернативного варианта осуществления соединительного механизма или соединительной муфты 54' имеющей верхний полый цилиндрический корпус UB, навинченный на нижний конец 58a штока 58 поршня и нижний полый цилиндрический корпус LB, навинченный на нижний конец верхнего корпуса UB. Шток R имеет головку H, размещенную для скольжения в нижнем корпусе LB, и штифт P скрепляет шток R с нижней направляющей 32с бабы копра. Спиральная пружина CS прижимается к головке H, толкая шток R, и, таким образом, бабу 32 копра вниз. При подъеме штока 58 поршня, головка H опирается на дно внутренней поверхности нижнего корпуса LB, и масса бабы 32 копра поднимается посредством соединение штифта P с нижней направляющей 32с бабы копра. Когда шток 58 поршня вначале толкают вниз, головка H перемещается относительно нижнего корпуса LB к опиранию на верх внутренней поверхности, созданной нижним концом верхнего корпуса UB. Непосредственно перед концом перемещения вниз масс бабы 32 копра спиральная пружина CS толкает головку H вниз от нижнего конца верхнего корпуса UB. Затем, во время удара массы бабы 32 копра по опорной плите 50 с подкладкой, головка H находится в промежуточном положении между верхним и нижним пределами своего перемещения, и, таким образом, создавая, по существу, не жесткое соединение. Верхний корпус UB и нижний корпус LB имеют отверстия О для поступления и выхода воды. Соединительная муфта 54' работает способом, аналогичным работе соединительного устройства 54. Соединительные механизмы 54 и 54' можно назвать создающими соединение между штоком 58 поршня и массой бабы 32 копра, которое может перемещаться между, по существу, жестким подъемным соединением, по существу, жестким соединением при толчке вниз и по существу, не жестким соединением при ударном воздействии, предотвращающим потерю устойчивости штока поршня и уменьшающим передачу ударной нагрузки на цилиндр 56 поршня.

Гидравлическая цепь

На Фиг. 8 схематически показана гидравлическая цепь 70 в одном варианте осуществления для приведения в действие копра 30 или забивающего устройства с ударной бабой Фиг. 2, согласно настоящему изобретению. На Фиг. 7 и 8, аппарат 72 дистанционного управления имеет стрелу 72а манипулятора с манипулятором 72b. Аппарат 72 дистанционного управления имеет свою собственную гидравлическую систему, подающую рабочую жидкость гидросистемы под давлением через подающий шланг 72c и принимающую рабочую жидкость гидросистемы из приемного шланга 72d. Аппарат 72 дистанционного управления прикрепляется (с дистанционным управлением оператором на поверхности) не показанным средством для захвата стержней 62d и 62e (Фиг. 2), и использует манипулятор 72b для соединения подающего шланга 72c к входному соединению 62g на защитной пластине 62f и соединения приемного шланга 72d к выходному соединению 62h на защитной пластине 62f. Манипулятор 72b затем используют для открытия клапанов 62i и 62j, установленных на защитной пластине 62f. Когда шланги 72c и 72d присоединены и клапаны 62i и 62j открыты, рабочая жидкость гидросистемы под давлением выходит из аппарата 72 дистанционного управления через подающий шланг 72c, через клапан 62i, в гидравлический двигатель 74, выходит через клапан 62j, и возвращается на аппарат 72 дистанционного управления 72 через приемный шланг 72d. Рабочая жидкость гидросистемы из аппарата 72 дистанционного управления вращает гидравлический двигатель 74, приводящий в действие гидравлический насос 76, как указано линией 74a. Гидравлический двигатель 74 и гидравлический насос 76 установлены на вспомогательной раме 62 гидросистемы, но не показаны на Фиг. 2-4. Двигатель 74 и насос 76 приводят в действие рабочую жидкость гидросистемы на стороне бабы копра через гидравлическую цепь 70, установленную на вспомогательной раме 62 гидросистемы.

Рабочая жидкость гидросистемы со стороны копра подается насосом 76 через обратный клапан 76a по линии 76b на направляющий гидрораспределитель 78. Во время подъема массы бабы 32 копра текучая среда проходит через направляющий гидрораспределитель 78 через линию 78b (и трубу 56c на Фиг. 5 и 6) в нижний конец 56e цилиндра 56 поршня. Текучая среда под давлением заполняет объем в цилиндре 56 поршня под поршнем 56a и поднимает поршень 56a, который поднимает массу бабы 32 копра посредством штока 58 поршня. При подъеме поршня 56a рабочая жидкость гидросистемы выходит из объема в цилиндре 56 поршня над поршнем 56a через отверстие в верхнем конце 56f цилиндра 56 поршня в аккумулятор 80 через линию 80a. Газообразная текучая сред заперта в аккумуляторе 80, который именуют настраиваемым газовым аккумулятором 80 давления, и газообразная текучая среда сжимается, когда рабочая жидкость гидросистемы проходит в настраиваемый газовый аккумулятор 80 давления, сохраняя энергию в газообразной текучей среде. Энергию, сохраненную в газообразной текучей среде в настраиваемой газовом аккумуляторе 80 давления используют для перемещения массы бабы 32 копра вниз после достижения верхней точки хода. Настраиваемый клапан 82, реагирующий на давление в поршневой полости, измеряет давление в газовом аккумуляторе 80 давления через линию 82a, соединенную с линией 80a. Когда заданное давление достигнуто в настраиваемом клапане 82, реагирующем на давление в поршневой полости, клапан 82, реагирующий на давление, переключается, обуславливая проход рабочей жидкости гидросистемы под высоким давлением из клапана 82, реагирующего на давление, через линию 82b в направляющий гидрораспределитель 78. Рабочую жидкость гидросистемы под высоким давлением получают с напорной стороны насоса 76 через линию 82c, соединенную с линией 82b через клапан 82, реагирующий на давление, когда клапан 82 реагирующий на давление переключается из положения, показанного на Фиг. 8. Уставку заданного давления, обуславливающего переключение клапана 82, реагирующего на давление, можно менять с поверхности через аппарат 72 дистанционного управления во время операции забивки. Заданным давлением регулируют высоту подъема ударной бабы 32 и, таким образом, изменение уставки заданного давления изменяет энергию ударного воздействия ударной бабы 32 на подкладку 48 и опорную плиту 50. Возможность увеличить максимальную энергию ударного воздействия ударной бабы 32 является необходимой в сваебойном процессе, поскольку обеспечивает приложение пониженной ударной энергии к свае во время начальной фазы забивки, обеспечивая более медленную забивку сваи в данное время повышенной чувствительности сваи. После достаточной для придания устойчивости забивки сваи или другого изделия в грунт, заданное давление можно изменить для более высокого подъема ударной бабы 32, при котором свая 38 должна забиваться с большей силой.

При прохождении рабочей жидкости гидросистемы под высоким давлением от клапана 82, реагирующего на давление, через линию 82b на направляющий гидрораспределитель 78, направляющий гидрораспределитель 78 переключается из положения, показанного на Фиг. 8, обеспечивающего быстрый выпуск рабочей жидкости гидросистемы в цилиндре 56 поршня под поршнем 56a в эластичный баллон 84 низкого давления через линию 84a. Поток рабочей жидкости гидросистемы от насоса 76 в направляющий гидрораспределитель 78 через линию 76b останавливают, при этом, рабочую жидкость под поршнем 56a выпускают в эластичный баллон 84 низкого давления, и поток от насоса 76, взамен, направляют через линию 76c в эластичный баллон 84 низкого давления через клапан 86 разгрузки и линию 86a. При увеличении давления в линии 76c, давление измеряется в клапане 86 разгрузки через линию 86b, и когда давление в линии 86b является достаточно высоким для преодоления смещающего усилия пружины 86c, клапан 86 разгрузки переключается из положения, показанного на Фиг. 8, обеспечивая прохождение рабочей жидкости гидросистемы через линии 76c и 86a в эластичный баллон 84 низкого давления.

Энергия, сохраняемая в газе в настраиваемом газовом аккумуляторе 80 давления, заставляет рабочую жидкость гидросистемы в линии 80a менять направление потока на обратное, и текучая среда в настраиваемом газовом аккумуляторе 80 давления проходит через линию 80a в цилиндр 56 поршня над поршнем 56a, создавая толкающую вниз силу на поршне 56a, передаваемую затем через шток 58 поршня на массу бабы 32 копра через соединительную муфту 54 (Фиг. 5 и 6). Таким образом, направленная вниз сила, действующая на массу бабы 32 копра, является комбинацией силы тяжести и силы от высвобождения энергии, сохраняемой в газе в настраиваемом газовом аккумуляторе 80 давления во время хода вверх. Действие силы толкает поршень 56a вниз, когда сохраненная энергия высвобождается в настраиваемом газовом аккумуляторе 80 давления при ходе вниз. Для предотвращения удара поршня 56a по дну цилиндра 56 поршня и для предотвращения потери устойчивости штока 58 поршня от удара массы бабы 32 копра по подкладке 48 и опорной плите 50, поршень 56a выполнен с проходящим вниз выступом 56f в форме усеченного конуса, принимаемым в соответствующий паз 56g в форме усеченного конуса. Поршень 56a и цилиндр 56 поршня могут иметь другие формы для аналогичной цели. Отверстие 56h, в котором размещена труба 56c, принимающая линию 78b (Фиг. 5, 6 и 8), размещено в боковой стенке цилиндра 56 поршня на нижнем конце паза 56g в форме усеченного конуса. Проходящий вниз выступ 56f в форме усеченного конуса, выемка 56g в форме усеченного конуса и отверстие 56h должны быть выполнены с возможностью уменьшения скорости поршня 56a и штока 58 поршня вблизи конца хода вниз так, что проходящий вниз выступ 56f начинает сокращать подачу рабочей жидкости гидросистемы из нижнего конца 56e цилиндра 56 поршня с приближением проходящего вниз выступа 56f к самому нижнему концу цилиндра 56 поршня. При дросселировании выхода рабочей жидкости гидросистемы из нижнего конца 56e, направленная вниз скорость поршня 56a обязательно замедляется, предотвращая удар поршня 56a по нижнему концу 56e цилиндра 56 поршня. На Фиг. 6, показано, что при замедлении поршня 56a вблизи конца его хода вниз, пружинное устройство 54f растягивается, перемещая штифт 54e в промежуточное положение в противостоящих пазах 54d, показанное на Фиг. 3, так что штифт 54e, предпочтительно, не давит на верхние края пазов 54d в то время, когда масса бабы 32 копра ударяет по подкладке 48 и опорной плите 50. Для хода вверх, поршень 56a имеет направленный вверх выступ, аналогично размещаемый в выемке в верхнем конце цилиндра 56 поршня, и отверстия, расположенные аналогично, так что поток дросселируется вблизи конца хода вверх для предотвращения удара поршня 56a по верхнему концу цилиндра 56 поршня в конце хода вверх.

На Фиг. 8 показан клапан 88, реагирующий на крайнее нижнее положение и кулачковое следящее устройство 88a для детектирования и ограничения крайнего нижнего положения штока 58 поршня, и верхний конец 58b штока 58 поршня имеет кулачок 58c на самом верхнем конце штока 58 поршня. После уменьшения скорости штока 58 поршня и достижения проходящим вниз выступом 56f, по существу, дна стыкующейся с ним выемки 56g, кулачок 58c на верхнем конце штока 58 поршня перемещает кулачковое следящее устройство 88a (Фиг. 6), переключающее положение клапана 88 реагирующего на крайнее нижнее положение, обуславливая подачу рабочей жидкости гидросистемы под высоким давлением от насоса 76 через линию 88b в линию 88c к направляющему гидрораспределителю 78, обуславливая обратное переключение направляющего гидрораспределителя 78 в положение, показанное на Фиг. 8, обеспечивая вновь подачу насосом 76 текучей среды через направляющий гидрораспределитель 78 и линию 78b для еще одного хода подъема. При подъеме кулачка 58c вследствие подачи рабочей жидкости гидросистемы в нижний конец 56e цилиндра 56 поршня, пружина 88d переключает положение клапана 88, реагирующего на крайнее нижнее положение, обратно в положение, показанное на Фиг. 8. С клапаном, реагирующим на крайнее нижнее положение, переключенным назад в положение, показанное на Фиг. 8, сигнал низкого давления из эластичного баллона 84 низкого давления передается на направляющий гидрораспределитель 78 через линии 88e и 88c, и обеспечивающий низкое давление сигнал от эластичного баллона 84 низкого давления через линию 88e проходит через клапан 88, реагирующий на крайнее нижнее положение, в линию 88c для создания сигнала низкого давления на направляющий гидрораспределитель 78 от линии 88c.

Во время хода вниз, давление в настраиваемом газовом аккумуляторе 80 давления сбрасывается, и более низкое давление детектируется через линию 82a в настраиваемом клапане 82, реагирующем в поршневой полости, обеспечивая переключение пружиной 82d клапана 82, реагирующего на давление, обратно в положение, показанное на Фиг. 8 и обеспечивая прохождение сигнал низкого давления от эластичного баллона 84 низкого давления через клапан 82 реагирующим на давление в линию 82b и направляющий гидрораспределитель 78 через линию 82e и линию 82f. Линия 82g дает сигнал низкого давления на клапан 82 реагирующим на давление. Эластичный баллон 84 низкого давления имеет линию 84b соединения с линиями 82e и 88e для подведения подачи низкого давление от эластичного баллона 84 низкого давления на каждую сторону направляющего гидрораспределителя 78 так что направляющий гидрораспределитель 78 не перемещается кроме случая, переключения вследствие однократного сигнала высокого давления, переданного либо через линию 82b или линию 88c. Ход вверх описан выше, и когда давление растет в линии 82a до заданной величины, регулируемая рабочая камера клапана 82 реагирующим на давление переключается из положения, показанного на Фиг. 8, подавая сигнал высокого давления на верхний конец направляющего гидрораспределителя 78 от насоса 76 через линии 82c и 82b, переключая положение направляющего гидрораспределителя 78 из положения, показанного на Фиг. 8, и обеспечивая сброс рабочей жидкости гидросистемы под поршнем 56a в эластичный баллон 84 низкого давления.

Давление уставки для переключения положения клапана 82, реагирующего на давление в поршневой полости можно изменять и устанавливать вращением регулировочного винта, изменяющего и устанавливающего силу, приложенную пружиной 82d. Механическая связь (не показано) создана между регулировочным винтом пружины 82d и устройством 62k управления с T-образной рукояткой, размещенным на защитной плите 62f так, что аппарат 72 дистанционного управления и его манипулятор 72b можно использовать для изменения и установки давления уставки для переключения положения клапана 82, реагирующего на давление в поршневой полости. Изменение давления уставки изменяет предельную высоту подъема массы бабы 32 копра, и таким образом, силу ударного воздействия после сброса бабы 32 копра. Данное обеспечивает изменение силы ударного воздействия в процессе забивки изделия, такого как процесс забивки сваи, для начала такого процесса с осаживанием легкими ударами и окончания тяжелыми ударами.

Рабочую жидкость гидросистемы можно заправлять в эластичный баллон 84 низкого давления и нижний конец 56e цилиндра 56 поршня и сливать из них с помощью клапана 84c. Рабочую жидкость гидросистемы можно заправлять в настраиваемый газовый аккумулятор 80 давления и верхний конец цилиндра 56 поршня и сливать из них с помощью клапана 80b. Настраиваемый газовый аккумулятор 80 давления имеет мембрану 80c эластичного баллона внутри, и газ можно заправлять в верхний конец настраиваемого газового аккумулятора 80 давления над мембраной 80c эластичного баллона, через клапан 80d. Давление внутри настраиваемого газового аккумулятора 80 давления является предпочтительно превышающим расчетное давление воды снаружи настраиваемого газового аккумулятора 80 давления, зависящее от глубины работы копра 30. Эластичный баллон 84 низкого давления имеет мембрану 84d, и оборудован клапаном 84e заправки текучей среды в эластичный баллон 84 низкого давления над мембраной 84d. Клапан 84e заправки можно использовать для заправки воды в эластичный баллон 84 низкого давления над мембраной 84d и затем оставлять открытым для уравнивания давления при спуске эластичного баллона 84 низкого давления под воду на большую глубину. Перепускная линия 84f с ручным управлением и клапан 84g, которые в обычном состоянии закрыты, можно использовать для сброса давления в нижнем конце 56e цилиндра 56 поршня посредством выпуска рабочей жидкости гидросистемы через линию 84f в эластичный баллон 84 низкого давления. Различные регулировки следует выполнять в гидравлической цепи перед развертыванием копра для выполнения уставок или настройки копра для работы на конкретной глубине под водой и начальной высоты подъема массы ударной бабы. Конкретно, настраиваемый газовый аккумулятор 80 давления, эластичный баллон 84 низкого давления, клапан 82, реагирующий на давление и регулировочный винт для пружины 82d следует проверять перед развертыванием.

Альтернативная гидравлическая цепь

На Фиг. 9 показана альтернативная гидравлическая цепь 90, включающая в себя ряд компонентов, аналогичных показанным на Фиг. 8, обозначенных одинаковыми позициями с Фиг. 8, и ряд отличающихся компонентов, обозначенных новыми позициями. Аппарат дистанционного управления соединен, как описано выше и показано на Фиг. 8 с двигателем 74, показанным на Фиг. 9, который соединен, как показано линией 74a, с насосом 92 переменного объема с независмым от давления регулированием, который заменяет как насос 76, так и клапан 86 разгрузки Фиг. 8. Подача насоса 92 является автоматически саморегулируемой в зависимости от обратного давления на его напорной стороне, что зависит от прохода рабочей жидкости гидросистемы через обратный клапан 92a, линию 92b и через направляющий гидрораспределитель 78, как описано выше и показано на Фиг. 8. В варианте осуществления Фиг. 9 рабочая жидкость гидросистемы подается от напорной стороны насоса 92 через направляющий гидрораспределитель 78 на клапан 94 уменьшения скорости на нижнем конце через линию 94a и на нижний конец 56e цилиндра 56 поршня через линию 94b. Отличающийся поршень 56h использован в данном варианте осуществления, поскольку отличающийся способ используют для предотвращения удара поршня по нижнему и верхнему внутренним концам цилиндра 56 поршня. При закачке текучей среды в цилиндр 56 поршня под поршень 56h, поршень 56h поднимается, поднимая массу бабы 32 копра, и рабочая жидкость гидросистемы вытесняется из цилиндра 56 поршня от верха поршня 56h. Рабочая жидкость гидросистемы вытесненная из цилиндра 56 поршня, проходит в клапан 96 уменьшения скорости на верхнем конце через линию 96a и на настраиваемый газовый аккумулятор 80 давления через линию 96b.

Верхний шток 56i поршня размещен в цилиндре 56 поршня и прикреплен к верхней стороне поршня 56h. Верхний шток 56i поршня оснащен верхним кулачком 56j. Клапан 96 уменьшения скорости на верхнем конце имеет кулачковое следящее устройство 96c, перемещаемое верхним кулачком 56j, и когда поршень 56h приближается к концу хода вверх, верхний кулачок 56j перемещает кулачковое следящее устройство 96c, переключая клапан 96 уменьшения скорости на верхнем конце из положения, показанного на Фиг. 9 так, что рабочая жидкость гидросистемы, вытесненная из верхнего конца цилиндра 56 поршня, пропускается через дроссельное отверстие в клапан 96 уменьшения скорости на верхнем конце перед подачей в настраиваемый газовый аккумулятор 80 давления, что замедляет линейное перемещение поршня 56h и предотвращает сильный удар поршня 56h по верхнему концу цилиндра 56 поршня. Клапан 98, реагирующий на крайнее верхнее положение измеряет и контролирует или ограничивает максимальное значение хода вверх верхнего штока 56i поршня. Клапан 98, реагирующий на крайнее верхнее положение, имеет кулачковое следящее устройство 98a, размещенное несколько выше кулачкового следящего устройства 96c на клапане 96 уменьшения скорости на верхнем конце. При подъеме верхнего кулачка 56j сразу после контакта с кулачковым следящим устройством 96c, верхний кулачок 56j перемещает кулачковое следящее устройство 98a, обуславливая переключение клапана 98, реагирующего на крайнее верхнее положение, из положения, показанного на Фиг. 9, что обеспечивает подачу рабочей жидкости гидросистемы под высоким давлением от насоса 92 через линию 98b и линию 98c через клапан 98, реагирующий на крайнее верхнее положение, и через линию 98d в направляющий гидрораспределитель 78. При перемещении кулачкового следящего устройства 98a из положения, показанного на Фиг. 9, рабочая жидкость гидросистемы под высоким давлением проходит через линии 98b и 98d, переключая направляющий гидрораспределитель 78 из положения, показанного на Фиг. 9, запуская ход вниз при быстром выходе рабочей жидкости гидросистемы из цилиндра 56 поршня под поршнем 56h через клапан 94 уменьшения скорости на нижнем конце, через линии 94a и 94b, через направляющий гидрораспределитель 78, и через линии 84a в эластичный баллон 84 низкого давления. При выпуске рабочей жидкости гидросистемы из под поршня 56h, верхний шток 56i поршня перемещается вниз, и пружина 96d возвращает клапан 96 уменьшения скорости на верхнем конце в положение, показанное на Фиг. 9, обеспечивая приложение направленной вниз силы на верхней стороне поршня 56h, поскольку газ, захваченный в настраиваемый газовый аккумулятор 80 давления, который сжимался во время хода вверх, расширяется и выдавливает рабочую жидкость гидросистемы из настраиваемого газового аккумулятора 80 давления через линии 96b и 96a. Расширение газа, сжатого в настраиваемом газовом аккумуляторе 80 давления во время хода вверх, создает толкание вниз во время хода вниз, так что масса бабы 32 копра ускоряется вниз под действием данного толкания и силы тяжести. Пружина 98e возвращает клапан 98, реагирующий на крайнее верхнее положение в положение, показанное на Фиг. 9 во время хода вниз поршня 56h, обеспечивая передачу сигнала подачи низкого давления из эластичного баллона 84 низкого давления через линии 84b и 88e и линию 98f через клапан 98, реагирующий на крайнее верхнее положение через линию 98d на направляющий гидрораспределитель 78. Данное приводит в готовность направляющий гидрораспределитель 78 к переключению из положения, показанного на Фиг. 9 на вершине хода вверх, когда сигнал подачи под высоким давлением от линии 98b должен проходить через линию 98d для переключения направляющего гидрораспределителя 78 из положения, показанного на Фиг. 9.

Нижний шток 56k поршня размещен в цилиндре 56 поршня, прикреплен к нижней стороне поршня 56h, и выходит из дна цилиндра 56 поршня через отверстие с сальниковым уплотнением. Когда поршень 56h приближается к нижней точке своего хода, нижний кулачок 56m, установленный на нижнем штоке 56k поршня, контактирует с кулачковым следящим устройством 94c в клапане 94 уменьшения скорости на нижнем конце, которое переключает клапан 94 уменьшения скорости на нижнем конце из положения, показанного на Фиг. 9 так, что рабочая жидкость гидросистемы выходит из нижнего конца цилиндра 56 поршня через дроссельное отверстие в клапан 94 уменьшения скорости на нижнем конце, замедляя поршень 56h или уменьшая его скорость так, что поршень 56h не наносит сильный удар по нижнему концу цилиндра 56 поршня. Сразу после замедления хода вниз поршня 56h в результате контакта нижнего кулачка 56m с кулачковым следящим устройством 94c, клапан 88, реагирующий на крайнее нижнее положение, переключается из положения, показанного на Фиг. 9, при перемещении кулачкового следящего устройства 88a верхним кулачком 56j. При переключении клапана 88, реагирующего на крайнее нижнее положение из положения, показанного на Фиг. 9, сигнал подачи высокого давления проходит через линию 98b через линию 88f через клапан 88, реагирующий на крайнее нижнее положение, и через линию 88g в направляющий гидрораспределитель 78, что переключает направляющий гидрораспределитель 78 обратно в положение, показанное на Фиг. 9, и вновь начинает ход вверх. При проходе рабочей жидкости гидросистемы под высоким давлением от насоса 92 через линии 94a и 94b в нижний участок цилиндра 56 поршня и подъеме поршня 56h и верхнего кулачка 56j, пружина 88d возвращает клапан 88, реагирующий на крайнее нижнее положение, в положение, показанное на Фиг. 9, обеспечивая передачу сигнала подачи низкого давления из эластичного баллона 84 низкого давления через линии 84b, 88e и 88g на направляющий гидрораспределитель 78 для создания готовности направляющего гидрораспределителя 78 к переключению из положения, показанного на Фиг. 9, когда вновь достигается верхняя точка хода вверх, и сигнал высокого давления проходит от линии 98b через клапан 98, реагирующий на крайнее верхнее положение, и через линию 98d в направляющий гидрораспределитель 78.

Клапан 96 уменьшения скорости на верхнем конце и клапан 98, реагирующий на крайнее верхнее положение, предпочтительно установлены на общей плите, которую можно перемещать ближе и дальше от верхнего конца цилиндра 56 поршня манипулятором 72b на аппарате 72 дистанционного управления. Зубчатый и/или винтовой механизм можно создать, вместе с подходящим соединительным механизмом и устройством, которыми может манипулировать аппарат 72 дистанционного управления для регулирования хода вверх для регулирования силы ударного воздействия массы ударной бабы 32 на подкладку 48 и опорную плиту 50 и, следовательно на скважинное направление 38. Для удобства, клапан 94 уменьшения скорости на нижнем конце можно разместить примыкающим к клапану 88, реагирующему на крайнее нижнее положение. Другие гидравлические цепи можно использовать для подъема и сброса (и предпочтительно толкания вниз) массы бабы 32 копра, и можно выполнять модификации описанных вариантов осуществления, при этом, выполняя задачи настоящего изобретения. Компоненты гидросистемы можно приобретать в таких компаниях, как Eaton Hydraulics Company, Eden Prairie, Minnesota, USA и Sun Hydraulics Company, Sarasota, Florida, USA.

Работа системы забивающего устройства с ударной бабой

Одним вариантом применения копра настоящего изобретения является забивка свай в грунт на морском дне под водой на большой глубине, например для нефтяной и газовой индустрии. Как показано на Фиг. 1 и 2 данной заявки, сваи можно погрузить на корабль 16 и доставить на водную поверхность над площадкой работ на морском дне. Сваи 18 могут иметь любую форму сечения, но обычно имеют круглое сечение. Свайный наголовник, именуемый так, поскольку его устанавливают на вершину сваи, или юбку 36, именуемую так, поскольку устанавливается снизу на копре 30, выбирают для данного конкретного варианта применения забивки свай нужной формы и размера. Выбранную юбку 36 закрепляют на нижнем конце 34b каркаса 34 копра. На палубе корабля 16, юбку 36, являющуюся частью копра 30, прикрепляют к концу сваи 18. Подъемный канат 14 соединяют с отверстием 46d в подъемнной крышке 46, и кран 16c используют для подъема копра 30 и сваи 18 с палубы корабля и спуска сваи 18 сквозь толщу воды в нужную точку для забивки сваи 18 в грунт S на морском дне. Аппарат 20 дистанционного управления хранится в своей подъемной клети 22 на палубе корабля 16, и кран 16f используют для подъема клети 22 и аппарата 20 дистанционного управления с корабля 16 и спуска клети 22 и аппарата 20 дистанционного управления сквозь толщу воды. После спуска сквозь толщу воды, аппарат 20 дистанционного управления может использовать оператор на корабле 16 для визуального наблюдения через камеру за нижним концом сваи 18, и аппарат 20 дистанционного управления можно использовать для небольшого перемещения нижнего конца сваи 18 для приведения сваи 18 в нужную точку, где сваю предстоит забивать. Технологию отраженных и акустических сигналов можно использовать для правильного позиционирования корабля 16 над проектной точкой забивки сваи 18.

Когда нижний конец сваи 18 размещен в нужной точке на морском дне, как показано на Фиг. 1, 2 и 8, манипулятор 72b на аппарате 72 дистанционного управления (Фиг. 8) используют для соединения шлангов 72c и 72d гидросистемы с соединительными устройствами 62g и 62h на вспомогательной раме 62 гидросистемы на копре 30 (Фиг. 2). Начальную высоту хода подъема массы бабы 32 копра предпочтительно устанавливают, когда копер 30 находится на палубе корабля 16, регулированием настройки пружины 82d на регулируемом клапане 82, реагирующем на давление в поршневой полости (Фиг. 8), или регулированием положения клапана 98, реагирующего на крайнее верхнее положение (Фиг. 9). Операцию забивки сваи предпочтительно начинают с осаживания относительно легкими ударами массой бабы 32 копра, при этом массу бабы 32 копра поднимают не на максимальную высоту, а на некоторую промежуточную высоту в каркасе 34 копра (Фиг. 2). Так гвоздь забивают в дерево вначале легкими ударами по шляпке, а затем мощными ударами, и сваю 18 забивают в грунт S на морском дне в аналогичном режиме. После забивки сваи 18 на достаточную глубину для устойчивости или после прекращения продвижения, меняют уставку пружины 82d на регулируемом клапане 82, реагирующем на давление в поршневой полости (Фиг. 8) или положение клапана 98, реагирующего на крайнее верхнее положение (Фиг. 9), для увеличения высоты подъема массы бабы 32 копра для более мощных ударов по вершине сваи 18 для создания большей забивающей силы. T-образная рукоятка 62k устройства управления на вспомогательной раме 62 гидросистемы (Фиг. 2) показывает, как можно использовать аппарат дистанционного управления для регулирования высоты подъема массы бабы 32 копра, поскольку T-образную рукоятку 62k устройства управления можно механически соединить либо с клапаном 82, реагирующим на давление, Фиг. 8, или с клапаном 98, реагирующим на положение, Фиг. 9, и конечно, существует другое средство реализации настоящего изобретения.

Когда копер 30 перенастроен на ударное действие с более мощными ударами, процесс забивки сваи продолжают до забивки сваи 18 на проектную глубину. В приведенном выше описании и на Фиг. 8 и 9, даны подробности возвратно-поступательного перемещения бабы 32 копра, но упрощенно, массу бабы 32 копра поднимают, закачивая рабочую жидкость гидросистемы в цилиндр 56 поршня под поршень для подъема массы бабы 32 копра на нужную высоту. Выше описаны и показаны на Фиг. 8 и 9 два варианта осуществления гидравлических цепей для подъема массы бабы копра и ее сброса вместе с толканием вниз. Как показано на Фиг. 8, мониторинг давления в верхнем участке цилиндра 56 поршня осуществляют и используют, как показатель, представляющий максимальную высоту подъема массы бабы 32 копра, и положение верхнего кулачка 56j на штоке 56i поршня используют, как показатель, представляющий на Фиг. 9 максимальную высоту подъема массы бабы 32 копра. На нужной высоте подъема, которая проходит до верхней точки хода подъема, направляющий гидрораспределитель 78 (Фиг. 8 и 9) переключается так, что рабочая жидкость гидросистемы быстро выходит из под поршня в цилиндре 56 поршня в эластичный баллон 84 низкого давления. Быстрый выпуск рабочей жидкости гидросистемы из под поршня обеспечивает падение массы бабы 32 копра под действием силы тяжести через окружающую воду с нанесением удара по подкладке 48 и опорной плите 50 для передачи забивающей силы через юбку 36 на вершину изделия, забиваемого в грунт.

Вместе с тем, дополнительную силу прикладывают к массе бабы 32 копра, поскольку при подъеме массы бабы 32 копра рабочая жидкость гидросистемы над поршнем в цилиндре 56 поршня вытесняется в настраиваемый газовый аккумулятор 80 давления. Настраиваемый газовый аккумулятор 80 давления разделен мембраной 80c (Фиг. 8 и 9) на нижний отсек, принимающий вытесненную рабочую жидкость гидросистемы и верхний отсек, содержащий газ, такой как азот. Газ сжимается при вытеснении рабочей жидкости гидросистемы над поршнем в цилиндре 56 поршня во время хода подъема в нижний отсек в настраиваемой газовом аккумуляторе 80 давления. Газовый аккумулятор 80 давления именуется настраиваемым, поскольку давление зарядки можно регулировать для различных глубин воды и также для сообщения более высокого или более низкого начального и максимального давления (сил давления).

Максимальную высоту подъема массы бабы 32 копра можно регулировать, изменяя давление, до которого газ сжимается в верхнем отсеке газового аккумулятора 80 давления при перемещении мембраны 80c эластичного баллона и уменьшении объема верхнего отсека в газовом аккумуляторе 80 давления, и при этом, изменяется количество энергии, которую можно аккумулировать в газе при его сжатии во время хода вверх. В работе при ходе вниз, сразу после переключения направляющего гидрораспределителя 78 и начала выхода рабочей жидкости гидросистемы из под поршня в эластичный баллон 84 низкого давления, рабочая жидкость гидросистемы проходит от настраиваемого газового аккумулятора 80 давления в цилиндр 56 поршня над поршнем, и сжатый газ расширяется за мембраной 80c эластичного баллона, поддерживая давление рабочей жидкости гидросистемы над поршнем в цилиндре 56 поршня, создающее толкающую вниз силу на поршне и, следовательно на штоке поршня и на массе бабы 32 копра либо через соединительную муфту 54 (Фиг. 5 и 6) или соединительную муфту 54' (Фиг. 7). Сила ударного воздействия массы бабы 32 копра на подкладку 48 и опорную плиту 50, которая передается на верх сваи 18 для забивки сваи 18 в грунт, является, таким образом, комбинацией силы тяжести, поскольку масса бабы 32 копра свободно падает в воде и толкания вниз, созданного расширением газа в настраиваемой газовом аккумуляторе 80 давления.

Когда масса бабы 32 копра ударяет по подкладке 48 в конце хода вниз, имеется мощный удар и вибрация и возможный небольшой отскок вверх массы бабы 32 копра. Шток 58 поршня (Фиг. 3) является весьма тонким в сравнении с массой бабы 32 копра и должен терять устойчивость при жестком соединении с массой бабы 32 копра при ударном воздействии бабы 32 копра на подкладку 48. Два варианта осуществления нежесткого соединительного механизма описаны выше, соединительная муфта 54, показанная на Фиг. 3-6 и соединительная муфта 54', показанная на Фиг. 7. Настоящее изобретение предусматривает соединительный механизм, обеспечивающий подъем штоком поршня массы бабы 32 копра во время хода вверх и толкание массы бабы 32 копра во время хода вниз, но не являющийся жестко соединенным с массой бабы 32 копра при ударном воздействии в конце хода вниз. В вариантах осуществления, описанных выше и показанных на Фиг. 3-7, масса бабы 32 копра имеет нижнюю и верхнюю направляющие 32c и 32d бабы копра, проходящие вниз и вверх от основной массы бабы 32 копра, соответственно, для направления и удержания массы бабы 32 копра на вертикальной оси цилиндра 56 поршня и штока 58 поршня. На Фиг. 5 показано, что шток 58 поршня соединен с верхним концом соединительной муфты 54, и нижний конец соединительной муфты 54 соединен штифтом с нижней направляющей 32с бабы копра. Верхний конец соединительной муфты 54 имеет полый цилиндрический корпус 54b, с которым соединяется шток 58 поршня. Нижний конец соединительной муфты 54 содержит стержень 54c, размещенный для скольжения в верхнем корпусе 54b, и штифт 54a скрепляет стержень 54c с нижней направляющей 32с бабы копра. Верхний корпус 54b имеет пару вертикальных, аксиально удлиненных пазов 54d, и штифт 54e скользяще соединяет верхний конец стержня 54c с нижним концом корпуса 54a посредством соединения штифта 54e со стенкой, образующей противостоящие пазы 54d.

Как также показано на Фиг. 5, во время хода вверх штифт 54e опирается на низ стенки, образующей противостоящие пазы 54d, создавая, по существу, жесткое соединение для штока 58 поршня для подъема массы бабы 32 копра. Вначале хода вниз сжатый газ в настраиваемой газовом аккумуляторе 80 давления (Фиг. 8 и 9), толкает шток 58 поршня вниз быстрее свободного падения массы бабы 32 копра, и верхний корпус 54b соединительного устройства 54 перемещается вниз быстрее стержня 54c, прикрепленной к направляющей 32с бабы копра, пока штифт 54e скользит к верхней кромке стенки, образующей противостоящие пазы 54d в верхнем корпусе 54b. Данное скольжение штифта 54e в пазах 54d происходит быстро, и во время большей части хода вниз штифт 54e соединен с верхней кромкой пазов 54d, что создает, по существу, жесткое соединение во время большей части хода вниз. Вместе с тем, вблизи конца хода вниз, шток 58 поршня замедляется или его скорость уменьшается, становясь меньше скорости перемещения вниз массы бабы 32 копра. На Фиг. 8, уменьшение скорости выполняют с использованием проходящего вниз выступа 56f в форме усеченного конуса, дросселирующего выход рабочей жидкости гидросистемы через отверстие 56e постепенно закрывая отверстие 56e, таким образом, уменьшая сечение прохода потока через отверстие 56e, что замедляет перемещение штока 58 поршня. На Фиг. 9, уменьшение скорости выполняют с использованием клапана 94 уменьшения скорости на нижнем конце, переключающегося на дроссельное отверстие для дросселирования выхода потока из низа цилиндра 56 поршня для замедления перемещения штока 58 поршня. На Фиг. 5 и 6 показано соединительная муфта 54, имеющая пружинное устройство 54f толкающее стержень 54c вниз так, что обычно штифт 54e опирается на нижние края противостоящих пазов 54d. Во время большей части хода вниз, пружинное устройство 54f сжато, как показано на Фиг. 6, и штифт 54e прижат к верхним краям пазов 54d. Вместе с тем, вблизи конца хода вниз, после уменьшения скорости штока 58 поршня, пружинное устройство 54f расширяется к своему нормальному состоянию и отталкивает штифт 54e от верхних краев пазов 54d в промежуточное положение, показанное на Фиг. 3, создавая, по существу, не жесткое соединение при ударном воздействии бабы 32 копра на опорную плиту 50 с подкладкой. Когда масса бабы 32 копра ударяет в подкладку 48, штифт 54e находится в промежуточном положении между верхними и нижними краями пазов 54d, так что ударная нагрузка и вибрация динамического воздействия удара и возможного отскока массы бабы 32 копра не передается напрямую на шток 58 поршня, вместо этого, обеспечивая некоторое перемещение стержня 54c без перемещения верхнего корпуса 54b или штока 58 поршня. В данном способе соединительная муфта 54 служит для предотвращения потери устойчивости штока 58 поршня, когда масса бабы 32 копра ударяет в подкладку 48 и опорную плиту 50.

Масса бабы 32 копра возвратно-поступательно перемещается с таким количеством циклов ходов вверх и вниз, которое необходимо для забивки сваи 18 на нужную глубину в грунт S на морском дне. После забивки сваи 18 на нужную глубину штифты 40a, 40b, 40c и 40d (Фиг. 2) отсоединяют с использованием стрелы 20а манипулятора на аппарате 20 дистанционного управления (Фиг. 1), например, отвинчивая, если штифты 40 являются болтами. После отсоединения копра 12 (Фиг. 1) от сваи 18 лебедку 16a и крановую стрелу 16c на корабле 16 используют для подъема копра на палубу корабля 16 для соединения с другой сваей, и процесс забивки сваи повторяют.

Конкретные варианты осуществления изобретения

Настоящим изобретением создана в одном варианте осуществления система для забивки изделия в грунт под водой, содержащая элемент ударной бабы; конструкцию каркаса, в которой элемент ударной бабы размещен; цилиндр поршня, размещенный в конструкции каркаса; поршень, размещенный в цилиндре поршня; и шток поршня, с верхним концом, прикрепленным к поршню, и нижним концом; соединительную муфту, прикрепленную к элементу ударной бабы, при этом, нижний конец штока поршня прикреплен к соединительной муфте и, при этом, соединительная муфта выполнена с возможностью обеспечивать перемещение штока поршня вверх и вниз относительно элемента ударной бабы в ограниченном диапазоне; комплект гидравлических элементов, размещенных в конструкции каркаса или прикрепленных к ней, и имеющих гидравлическую связь с цилиндром поршня; надводную структуру (которая может являться кораблем или баржой, приспособленной к выполнению задач рабочего судна или платформы закрепленной к грунту под водой или к грунту, примыкающему к воде); подъемный канат, проходящий между надводной структурой и конструкцией каркаса; аппарат дистанционного управления, выполненный с возможностью функционального соединения с комплектом гидравлических элементов; и шлангокабель, проходящий между надводной структурой и аппаратом дистанционного управления, шлангокабель, выполненный с возможностью подачи электропитания и/или сигналов управления с надводной структуры на аппарат дистанционного управления для осуществления возвратно-поступательного перемещения элемента ударной бабы и, при этом, нанесения ударов для забивки изделия в грунт под водой.

Соединительная муфта, предпочтительно, содержит полый трубчатый элемент соединения стержней, имеющий нижний конец и верхний конец; элемент соединения с ударной бабой, имеющий продольный участок и поперечный участок, при этом, поперечный участок размещен внутри полого трубчатого элемента соединения стержней, и пружинное устройство, размещенное в полом трубчатом элементе соединения стержней между верхним концом полого трубчатого элемента соединения стержней и поперечным участком элемента соединения с ударной бабой, при этом, элемент соединения с ударной бабой может ограниченно возвратно-поступательно перемещаться относительно полого трубчатого элемента соединения стержней. В одном варианте осуществления соединительная муфта содержит трубчатый элемент, имеющий противостоящие пазы с ориентацией вдоль вертикальной продольной оси, пазы, имеющие нижний конец и верхний конец; штифт имеющий продольную ось, сориентированную горизонтально, причем штифт, размещенный в пазах так, что штифт контактирует с нижними концами пазов для создания, по существу, жесткого соединения между штоком поршня и элементом ударной бабы при подъеме элемента ударной бабы; и пружинный механизм, размещенный в трубчатом элементе над штифтом, при этом, пружинный механизм имеет смещающее действие для выталкивания штифта вниз от верхних концов пазов. В другом варианте осуществления соединительное устройство содержит трубчатый элемент имеющий верхний и нижний концы и продольную ось; T-образный элемент, имеющий продольный участок и поперечный участок, при этом, поперечный участок размещен для скольжения в трубчатом элементе, и, при этом, продольный участок имеет продольную ось, по существу, соосную с продольной осью трубчатого элемента; и пружинное устройство, размещенное в трубчатом элементе между верхним концом трубчатого элемента и поперечным участком Т-образного элемента, при этом, пружинное устройство выполнено с возможностью выталкивать поперечный участок к нижнему концу трубчатого элемента.

Элемент ударной бабы предпочтительно содержит массу ударной бабы; верхнюю направляющую массы ударной бабы, проходящую аксиально вверх от массы ударной бабы; и нижнюю направляющую массы ударной бабы, проходящую аксиально вниз от массы ударной бабы; где конструкция каркаса имеет верхнее отверстие, выполненное с возможностью размещения верхней направляющей массы ударной бабы и нижнее отверстие, выполненное с возможностью размещения нижней направляющей массы ударной бабы. Предпочтительно, масса ударной бабы имеет аксиальный канал; верхняя и нижняя направляющая массы ударной бабы каждая имеет канал, соосный с каналом в массе ударной бабы; соединительная муфта прикреплена к массе ударной бабы или к верхней или нижней направляющей массы ударной бабы и размещена в канале массы ударной бабы или в канале верхней или нижней направляющей массы ударной бабы; и шток поршня проходит вниз в канал верхней направляющей массы ударной бабы. Конструкция каркаса предпочтительно выполнена с возможностью обеспечения поступления и выхода воды, так что масса ударной бабы находится в контакте с водой, находясь под водой.

Комплект гидравлических элементов предпочтительно включает в себя механизм подъема для подъема элемента ударной бабы; механизм высвобождения для высвобождения элемента ударной бабы после подъема элемента ударной бабы; и толкающий механизм, где толкающий механизм выполнен с возможностью толкания элемента ударной бабы вниз штоком поршня после высвобождения элемента ударной бабы. Толкающий механизм предпочтительно включает в себя настраиваемый газовый аккумулятор давления, содержащий емкость, имеющую гидравлическую связь с гидравлической цепью и выполненную с возможностью содержать газ, сжимающийся и аккумулирующий энергию при подъеме элемента ударной бабы. Соединительная муфта предпочтительно выполнена с возможностью предотвращения толкания штоком поршня элемента ударной бабы вниз около момента достижения элементом ударной бабы крайней нижней точки. Соединительная муфта предпочтительно выполнена так, что соединение между штоком поршня и ударной бабой является, по существу, жестким при подъеме вверх ударной бабы, но соединение между штоком поршня и ударной бабой является не жестким в момент достижения ударной бабой крайней нижней точки хода. В одном варианте осуществления соединительной муфты поперечный участок элемента соединения с ударной бабой прижимается к нижнему концу полого трубчатого элемента соединения стержней при подъеме элемента ударной бабы для создания, по существу, жесткого соединения между штоком поршня и элементом ударной бабы, и поперечный участок элемента соединения с ударной бабой перемещается от нижнего конца полого трубчатого элемента соединения стержней и прижимается к пружинному устройству при толкании элемента ударной бабы вниз.

Другие варианты осуществления изобретения включают в себя различные варианты осуществления устройства копра, сваебойного устройства, устройства отбора образцов грунта или устройства с ударной бабой, описанного в данном документе, а также различные применяемые, если необходимо, аксессуары устройства, такие как внешний источник питания и свайный наголовник или юбка, и различные способы для использования различных вариантов осуществления устройства и системы и различные варианты применения изобретения.

Варианты применения

Настоящее изобретение может быть приспособлено для работы под водой на глубине более около 1000 футов (305м), предпочтительно, более около 3000 футов (915м), более предпочтительно, более около 5000 футов (1525м) и наиболее предпочтительно, более около 7000 футов (2135м). Конструктивное исполнение и работа настоящего изобретения в основном являются независимыми от глубины воды, поскольку ударная баба работает в контакте с водой, но гидравлическую систему следует проектировать надлежащим образом для расчетной глубина, особенно настраиваемый газовый аккумулятор давления. Настоящее изобретение можно приспособить для работы на глубине около 10000 футов (3050м). В дополнение к различным вариантам подводного применения для забивки свай, существует ряд других вариантов применения, для которых забивающая система настоящего изобретения является конкретно полезной, включающих в себя установку скважинных направлений, стабилизацию донных оснований и установку крепежных свай.

На морских площадях, глубоководные скважины обычно начинают строить с гидромониторного бурения под скважинные направления, обычно представляющие собой трубы диаметром в пределах от около 30 до около 36 дюймов (76-92см), в которые устанавливают трубы меньшего диаметра при строительстве нефтяных скважин.

Скважинных направления устанавливают с буровых установок на кораблях или полупогружных платформах с огромными расходами вследствие высокой стоимости их аренды. Кроме того, гидромониторное бурение ослабляет грунт. При использовании свай, забиваемых подводным копром, согласно настоящему изобретению, грунт должен ослабляться гораздо меньше, чем если использовать гидромониторное бурение под сваи. Таким образом, можно использовать более короткие скважинные направления, создающие вертикальную и боковую опору, эквивалентную опоре более длинных скважинных направлений, выполненных гидромониторным бурением. Более короткие скважинные направления дают значительные преимущества, поскольку можно использовать менее крупные корабли для предварительной установки забиваемых скважинных направлений, как делают на мелководье.

Донные основания являются большими структурами из конструктивно армированных панелей, установленных на океанском дне, использующимися в нефтяной и газовой индустрии для несения тяжелого подводного оборудования или оборудования устья скважин. См., например, Патент США № 5,244,312, выданный Wybro et al. и включенный в данный документ в виде ссылки. Донные основания противостоят боковым усилиям посредством вертикальных плит, называемых юбками, и несущая площадь донного основания, опирающаяся на морское дно работает, воспринимая вертикальную нагрузку и опрокидывающие моменты. Площадь донного основания и, таким образом вес в погруженном состоянии данных оснований можно значительно увеличивать с использованием вспомогательных свай, установленных через свайные направляющие, расположенные по периметру основания. Добавление свай обеспечивает возможность уменьшения площади основания с увеличением способности основания противостоять боковым усилиям и способность противодействию опрокидывающим моментам, приложенным к основанию. Комбинированный фундамент с донным основанием и сваями уменьшает стоимость материала, уменьшает сложность конструктивного исполнения, и уменьшает грузоподъемность кораблей и кранов, требуемых для установки комплексной системы фундамента с донным основанием и сваями.

Крепежные сваи являются более мелкими сваями для вариантов применения, где сваи обычных размеров являются слишком большими. Одним применением для крепежных свай является закрепление трубопроводов. Положение трубопровода часто необходимо контролировать во время монтажа по установленному совмещению с внутренним радиусом кривизны трубопровода или по крутизне угла падения трубопровода при пересечении крутого склона. Глубоководные трубопроводы можно заякоривать с использованием крепежных свай установленных экономически эффективно с использованием системы с ударной бабой настоящего изобретения.

Настоящее изобретение можно использовать для отбора проб грунта морского дна посредством забивки устройства трубной формы в грунт на морском дне. Для получения характеристик типов грунта и их прочности в море, часто берут пробы грунта, которые следует аккуратно извлекать и отправлять в лабораторию для дополнительных испытаний и изучения. Под водой на большой глубине, требуются значительные усилия и затраты для отбора образцов грунта, поскольку бурение и отбор образцов требует использования буровой установки, реактивной массы и специализированного оборудования отбора образцов для извлечения хороших, неповрежденных образцов грунта. Отбор образцов грунта можно выполнять быстрее с использованием компоновки копра настоящего изобретения не требующей специальных буровых установок и оборудования отбора проб.

Ключевым преимуществом настоящего изобретения в различных глубоководных вариантах применения является уменьшение стоимости и затрат времени. Известное оборудование и способы уровня техники для данных вариантов применения требуют больших буровых судов или баржи с конструкцией с очень высокой арендной платой. При уменьшении размера цилиндрического погружаемого изделия (сваи, скважинного направления или побоотборника), можно использовать уменьшенный подводный сваебойный копер согласно настоящему изобретению забивки изделия в морское дно. Размер судна и подъемно-транспортного оборудования можно также уменьшить, уменьшая арендную плату за судно и, возможно, уменьшая продолжительность выполнения работы. В дополнение к преимуществам по времени и стоимости, сваебойное оборудование настоящего изобретения может быть проще в эксплуатации, чем известное сваебойное оборудование уровня техники для ремонта морских подводных структур, используемых в добыче нефти и газа, и такие морские подводные структуры можно легче модифицировать и приспосабливать к меняющимся требованиям в течение срока службы установки. С использованием глубоководного сваебойного копра настоящего изобретения, возможно выполнение всей системы подводной добычи нефти с уменьшенными габаритами без уменьшения показателей добычи, и систему добычи можно передислоцировать с использованием менее крупных судов или барж.

Забивающее устройство с ударной бабой или копер настоящего изобретения можно также использовать на мелководье и в наземных вариантах применения. Для наземных вариантов применения копер 30 на Фиг. 2 может являться установкой на автомобильном кране, и мощность для копра можно подводить от оборудования на автомобиле. Копер 30 можно также эксплуатировать с баржи для мелководного варианта применения и с конструкции, закрепленной якорями к океанскому дну. Копер 30 можно использовать в соленой воде и в пресной воде.

Для описанного выше изобретения различные модификации методик, процедур, материалов и оборудования должны быть ясны специалистам в данной области техники. Все такие изменения в объеме и сущности изобретения направлены на включение в объем прилагаемой формулы изобретения. Прилагаемая формула изобретени включена в состав данного описания в виде ссылки для поддержки в описании формулы изобретения.

1. Система для забивки изделия в грунт под водой, содержащая: элемент ударной бабы; конструкцию каркаса, в которой элемент ударной бабы размещен; цилиндр поршня, размещенный в конструкции каркаса; поршень, размещенный в цилиндре поршня; и шток поршня с верхним концом, прикрепленным к поршню, и нижним концом; соединительную муфту, прикрепленную к элементу ударной бабы, при этом, нижний конец штока поршня прикреплен к соединительной муфте, и, при этом соединительная муфта выполнена с возможностью обеспечения перемещения штока поршня вверх и вниз относительно элемента ударной бабы в ограниченном диапазоне; комплект гидравлических элементов, размещенных в конструкции каркаса или прикрепленных к ней, и имеющих гидравлическую связь с цилиндром поршня; надводную структуру на водной поверхности; подъемный канат, проходящий между надводной структурой и конструкцией каркаса; аппарат дистанционного управления, выполненный с возможностью функционального соединения с комплектом гидравлических элементов; и шлангокабель, проходящий между надводной структурой и аппаратом дистанционного управления, шлангокабель, выполненный с возможностью подачи электропитания и/или сигналов управления с надводной структуры на аппарат дистанционного управления для осуществления возвратно-поступательного перемещения элемента ударной бабы и при этом нанесения ударов для забивки изделия в грунт под водой.

2. Система по п.1, в которой соединительная муфта содержит: полый трубчатый элемент соединения стержней, имеющий нижний конец и верхний конец; элемент соединения с ударной бабой, имеющий продольный участок и поперечный участок, при этом поперечный участок размещен внутри полого трубчатого элемента соединения стержней, и пружинное устройство, размещенное в полом трубчатом элементе соединения стержней между верхним концом полого трубчатого элемента соединения стержней и поперечным участком элемента соединения с ударной бабой, при этом элемент соединения с ударной бабой может ограниченно возвратно-поступательно перемещаться относительно полого трубчатого элемента соединения стержней.

3. Система по п.2, в которой соединительная муфта содержит: трубчатый элемент, имеющий верхний и нижний концы и продольную ось; Т-образный элемент, имеющий продольный участок и поперечный участок, при этом поперечный участок размещен для скольжения в трубчатом элементе, и при этом продольный участок имеет продольную ось, по существу, соосную с продольной осью трубчатого элемента; и пружинное устройство, размещенное в трубчатом элементе между верхним концом трубчатого элемента и поперечным участком Т-образного элемента, при этом пружинное устройство выполнено с возможностью толкать поперечный участок к нижнему концу трубчатого элемента.

4. Система по п.1, в которой элемент ударной бабы содержит: массу ударной бабы; верхнюю направляющую массы ударной бабы, проходящую аксиально вверх от массы ударной бабы; и нижнюю направляющую массы ударной бабы, проходящую аксиально вниз от массы ударной бабы; и при этом конструкция каркаса имеет верхнее отверстие, выполненное с возможностью размещения верхней направляющей массы ударной бабы и нижнее отверстие, выполненное с возможностью размещения нижней направляющей массы ударной бабы.

5. Система по п.4, в которой конструкция каркаса выполнена с возможностью обеспечения поступления и выхода воды, так что масса ударной бабы находится в контакте с водой, находясь под водой.

6. Система по п.1, в которой комплект гидравлических элементов включает в себя: подъемный механизм для подъема элемента ударной бабы; механизм высвобождения для высвобождения элемента ударной бабы после подъема элемента ударной бабы; и толкающий механизм, при этом толкающий механизм выполнен с возможностью толкания элемента ударной бабы вниз штоком поршня после высвобождения элемента ударной бабы.

7. Система по п.6, в которой соединительная муфта выполнена с возможностью предотвращения толкания штоком поршня элемента ударной бабы вниз около момента достижения элементом ударной бабы крайней нижней точки.

8. Способ забивки изделия в грунт под водой, содержащий следующие этапы: спуск копра в водный объект, при этом копер содержит: конструкцию каркаса, имеющую верхний конец и нижний конец, при этом конструкция каркаса выполнена с возможностью обеспечения прохода воды в конструкцию каркаса и выхода из нее; ударную бабу, размещенную в конструкции рамы и выполненную с возможностью работы в контакте с водой; гидравлический цилиндр, размещенный в конструкции рамы; поршень, размещенный в гидравлическом цилиндре; соединительную муфту, прикрепленную к ударной бабе; шток поршня, прикрепленный к поршню и соединительной муфте и проходящий между ними, при этом соединительная муфта выполнена так, что соединение между штоком поршня и ударной бабой является, по существу, жестким при подъеме вверх ударной бабы, но соединение между штоком поршня и ударной бабой является, по существу, не жестким, когда ударная баба достигает своей крайней нижней точки; и первую гидравлическую цепь, выполненную с возможностью подъема ударной бабы гидравлическим цилиндром, поршнем и штоком поршня и высвобождения ударной бабы, при этом высвобождение ударной бабы обеспечивает падение ударной бабы под действием силы тяжести, при этом копер выполнен с возможностью передавать забивающую силу на изделие, подлежащее забивке в грунт под водой; спуск аппарата дистанционного управления в воду, при этом аппарат дистанционного управления выполнен с возможностью иметь вторую гидравлическую цепь, и при этом аппарат дистанционного управления приспособлен для дистанционного управления, обеспечивающего аппарату дистанционного управления следующее: перемещение под водой с помощью ходовой системы на аппарате дистанционного управления, и соединение второй гидравлической цепи на аппарате дистанционного управления с первой гидравлической цепью на забивающем устройстве, и при этом аппарат дистанционного управления и первая и вторая гидравлические цепи дают возможность управления работой копра через аппарат дистанционного управления; и использование копра для забивки изделия в грунт под водой.

9. Способ по п.8, в котором изделие, подлежащее забивке в грунт под водой является трубой, и при этом труба подлежит использованию в качестве скважинного направления.

10. Способ по п.8, дополнительно содержащий якорное крепление трубопроводов к грунту под водой.

11. Способ по п.8, в котором оборудование и/или конструктивный элемент используют в добыче нефти и/или газа.

12. Способ по п.8, в котором изделие, подлежащее забивке в грунт под водой, является устройством отбора образцов грунта.

13. Способ по п.8, дополнительно содержащий создание корабля, имеющего кран для спуска копра, в котором проволочный канат проходит от крана к забивающему устройству для удержания копра, при этом электропитание, воздух и/или сигналы управления подают на копер исключительно через аппарат дистанционного управления, и при этом глубина воды превышает 3000 футов (915 м).

14. Копер, содержащий каркас ударной бабы, имеющий верхний конец и нижний конец и боковую стенку, проходящую между верхним и нижним концами, при этом боковая стенка имеет отверстия, приспособленные для прохода воды через боковую стенку; ударную бабу, размещенную в каркасе ударной бабы, при этом ударная баба содержит тяжелый корпус, имеющий верхнюю и нижнюю поверхности, верхнюю направляющую ударной бабы, проходящую вверх от верхней поверхности тяжелого корпуса, и нижнюю направляющую ударной бабы, проходящую вниз от нижней поверхности тяжелого корпуса, при этом верхняя направляющая ударной бабы, тяжелый корпус и нижняя направляющая ударной бабы имеют соосные каналы, при этом каркас имеет верхнее направляющее отверстие для размещения верхней направляющей ударной бабы и нижнее направляющее отверстие для размещения нижней направляющей ударной бабы, при этом каркас и ударная баба приспособлены для возвратно-поступательного перемещения ударной бабы внутри каркаса, и при этом ударная баба приспособлена для работы в контакте с водой; опорную плиту в нижнем конце каркаса ударной бабы, причем опорную плиту, выполненную с возможностью приема и передачи силы ударного воздействия от ударной бабы; раму гидросистемы, соединенную с верхним концом каркаса ударной бабы; гидравлический цилиндр, размещенный в раме гидросистемы; поршень, размещенный в гидравлическом цилиндре; шток поршня, имеющий один конец, прикрепленный к поршню; соединительный механизм, выполненный с возможностью соединения другого конца штока поршня с ударной бабой, при этом соединительный механизм создает, по существу, жесткое соединение между штоком поршня и ударной бабой при подъеме ударной бабы и, по существу, не жесткое соединение между штоком поршня и ударной бабой при ударном воздействии на опорную плиту ударной бабы; и контур рабочей жидкости гидросистемы, выполненный с возможностью создания подъемной силы для подъема ударной бабы и высвобождения ударной бабы.

15. Копер по п.14, в котором соединительный механизм содержит: полый трубчатый элемент соединения стержней, имеющий нижний конец и верхний конец; элемент соединения с ударной бабой, имеющий продольный участок и поперечный участок, при этом поперечный участок размещен внутри полого трубчатого элемента соединения стержней; и пружинное устройство, размещенное в полом трубчатом элементе соединения стержней между верхним концом полого трубчатого элемента соединения стержней и поперечным участком элемента соединения с ударной бабой, при этом элемент соединения с ударной бабой может ограниченно возвратно-поступательно перемещаться относительно полого трубчатого элемента соединения стержней.



 

Похожие патенты:

Изобретение относится к горному делу, строительству и геофизике - к гидравлическим ударным устройствам импульсного действия, применяется при разрушении горных пород и других твердых материалов и при сейсморазведке в качестве импульсного невзрывного источника сейсмических колебаний.

Изобретение относится к машиностроению и может найти применение в горном деле при отбойке монолитов, в строительстве, а также в сейсморазведке как механический источник возбуждения сейсмических волн на малых глубинах.

Изобретение относится к горным машинам и предназначено для ударного разрушения крепких породоподобных материалов и мерзлого грунта, для забивки свай и трамбования грунта и т.д.

Изобретение относится к горной и строительной технике, а именно к пневмоударным устройствам, и может быть использовано для забивания в грунт, в шпуры горных пород и искусственных каменных материалов клиновых инструментов различного профиля.

Изобретение относится к строительной и горной промышленности, а именно к пневматическим ударным устройствам для забивания в грунт стержневых элементов, например труб, и может найти применение также в других областях промышленности, где требуется ударное воздействие.

Изобретение относится к области строительства и может быть использовано для погружения свай при устройстве оснований под фундаменты гражданских и промышленных сооружений, при возведении мостов, пристаней, набережных и для защиты сооружений от подмыва, для погружения свай под заданным углом к поверхности грунта.

Изобретение относится к строительному оборудованию для погружения в грунт железобетонных свай, стальных труб, шпунта и других забивных элементов. .

Изобретение относится к конструкциям гидромолотов для погружения в грунт железобетонных и стальных свай, шпунтов и других забивных элементов. .

Изобретение относится к строительным машинам для забивки в грунт железобетонных свай, стальных труб, шпунта и других забивных элементов. .

Изобретение относится к строительным машинам для забивки в грунт свай, стальных труб, шпунта и других забивных элементов. Гидромолот для забивания свай содержит трубчатый корпус, ударную массу, два гидроцилиндра для подъема ударной массы, гидрораспределитель для управления потоками гидрожидкости, напорную и сливную гидролинии. Имеются два подъемно-сбрасывающих устройства на концах штоков гидроцилиндров с металлическими экранами. Два бесконтактных датчика на трубчатом корпусе для взаимодействия с металлическими экранами. Поршневые полости гидроцилиндров образуют запертый объем рабочей жидкости соединением их трубопроводом, а гидрораспределитель взаимодействует только со штоковыми полостями гидроцилиндров. Технический результат состоит в обеспечении максимальной скорости падения ударной массы, соответствующей скорости свободного падения, обеспечении приемлемой высоты падения для получения заданной энергии удара, обеспечении сменности ударной массы, снижении материалоемкости и упрощении конструкции. 6 ил.

Изобретение относится к гидромолотам для погружения в грунт железобетонных и стальных свай, шпунта и других забивных элементов. Способ управления сваебойным гидромолотом заключается в переключении двух двухпозиционных клапанов, один из которых периодически сообщает поршневую полость гидроцилиндра со сливной магистралью, другой периодически сообщает поршневую полость гидроцилиндра со штоковой полостью. Каждый клапан управляется от отдельного электрогидравлического распределителя, сигналы для переключений которых формируются контроллером при взаимодействия подвижного элемента молота с датчиком положения. Открытие любого клапана начинается при полном или частичном закрытии другого клапана, причем указанная последовательность переключения клапанов обеспечивается временными задержками срабатывания электрогидравлических распределителей, задаваемых контроллером от момента взаимодействия подвижного элемента молота с датчиком положения. Обеспечивается устойчивость цикла работы гидравлического сваебойного молота. 1 ил.

Изобретение относится к горной и строительной технике, применяется для забивания вертикальных стальных труб и при бестраншейной прокладке трубопровода для забивания труб-кожухов в грунт. Устройство содержит основной ударный узел, установленный в отверстии переходного элемента, а также как минимум один дополнительный ударный узел, установленный по оси основного ударного узла в дополнительном отверстии переходного элемента, и соединенный с этим переходным элементом. Обеспечивается увеличение скорости забивания стержневого элемента в грунт путем повышения частоты ударов и возникновения эффекта "разжижения грунта". 6 з.п. ф-лы, 6 ил.

Группа изобретений относиться к области строительства, а именно к устройствам, используемым для забивки в грунты свай, шпунта, труб и других строительных элементов. Гидромолот содержит верхний и нижний корпуса, направляющие, закрепленные в верхнем и нижнем корпусах, наголовник, закрепленный в нижнем корпусе, гидродвигатель, включающий напорный клапан, содержащий корпус, седло, разделительный клапан, выполненный с отверстием, сообщающим между собой полости со стороны переднего и заднего его торцов, управляющие поршни, сливной клапан, содержащий корпус, седло, разделительный клапан, выполненный с отверстием, сообщающим между собой полости со стороны переднего и заднего его торцов, управляющие поршни, гидроцилиндр, закрепленный на верхнем корпусе и выполненный содержащим поршень, шток, соединенный с поршнем, штоковую полость, постоянно соединенную с напорной магистралью, и поршневую полость, выполненную подключающейся либо через напорный клапан к напорной магистрали, либо через сливной клапан к сливной магистрали, ударную массу, выполненную передвигающейся вверх вниз по направляющим и соединенную со штоком, узел управления, золотник, выполненный соединенным с узлом управления и напорным и сливным клапанами. Гидромолот снабжен фальштоком, расположенным в поршневой полости гидроцилиндра и соединенным с поршнем. В гидродвигателе сливной клапан выполнен дополнительно содержащим пружину, расположенную между корпусом клапана и управляющим поршнем. Обеспечивается исключение эффекта «короткого замыкания» при переключения давления между напорной и сливной магистралями при работе гидромолота с частотой от 120 до 240 ударов в минуту, достигается повышение быстродействия, надежность и стабильность работы и, как следствие, повышенным КПД гидромолота. 2 н. и 6 з.п. ф-лы, 1 ил, 1 табл.

Изобретение относится к конструкциям гидромолотов для погружения в грунт железобетонных и стальных свай, шпунта и других забивных элементов. Технический результат - упрощение сборки с одновременным обеспечением точной расчетной затяжки соединения штока и ударной массы гидромолота. Узел соединения штока гидродвигателя c ударной массой гидромолота содержит соединенный со штоком гидродвигателя кронштейн, эластомерные кольца и подпятники. Узел дополнительно содержит цилиндрический корпус с отверстием в дне и крышкой. Кронштейн, эластомерные кольца и подпятники расположены внутри корпуса. Кронштейн закреплен на торце штока гидродвигателя, вставленного в отверстие в дне корпуса. С обеих сторон к кронштейну примыкают кольца из эластомера, в свою очередь опирающиеся на подпятники, один из которых опирается на дно корпуса, а второй - на крышку, которая закреплена на корпусе с возможностью регулирования зазора между ними. 1 з.п. ф-лы, 3 ил.

Группа изобретений относится к машиностроению, применяется в горном деле при отбойке монолитов, в строительстве, а также в сейсморазведке. Технический результат - повышение эффективности и надежности работы регулируемой ударной машины (РУМ) за счет четкого и надежного ее запуска путем снижения перетечек рабочей среды между камерами прямого и обратного хода и камерой управления и, как следствие, увеличения мощности регулируемой ударной машины, а также путем расширения возможностей ее использования. Управляющее устройство РУМ по второму варианту в отличие от управляющего устройства РУМ по первому варианту не имеет источника рабочей среды и дросселя, имеет блок управления и ресивер, соединенный с химическим источником рабочей среды, электроклапаном запуска, при этом блок управления связан с упомянутым датчиком давления и электроклапаном запуска, соединенным с камерой обратного хода. 2 н.п. ф-лы, 2 ил.

Изобретение относится к горной и строительной технике, а именно к пневматическим машинам ударного действия, и предназначено для забивания в грунт длинных стержней. Технический результат - увеличение ресурса работоспособности и экономичности машины, повышение технологичности и удобства в эксплуатации. Пневматическая машина ударного действия включает корпус с выпускным каналом, расположенные в нем ударник, охватывающий центральную трубку, наковальню с конусными кулачками для захвата длинного стержня, камеры рабочего и обратного хода с питающими каналами. В задней части центральной трубки выполнена ступень большего диаметра. Базирование ударника выполнено по наружной поверхности центральной трубки и ее ступени. Камера рабочего хода образована внутренней поверхностью ударника и наружной поверхностью центральной трубки. При этом по меньшей мере один питающий канал камеры рабочего хода выполнен в упомянутой ступени центральной трубки и постоянно соединен с магистралью. 2 з.п. ф-лы, 1 ил.

Изобретение относится к строительной технике, а именно к конструкциям гидромолотов для погружения в грунт длинномерных стержневых элементов. Технический результат - повышение надежности и долговечности работы гидромолота за счет снижения изгибающей нагрузки на шток цилиндра гидропривода. Гидромолот содержит корпус с направляющими, установленную на направляющих ударную массу, закрепленный на корпусе гидроцилиндр, шток которого связан с ударной массой через подпятник, установленный в теле ударной массы с возможностью перемещения относительно ударной массы, неподвижно закрепленную на ударной массе ограничительную крышку. При этом часть штока, контактирующая с подпятником, выполнена в виде сферической головки с выступающей относительно штока опорной поверхностью, на которой установлены поджатые ограничительной крышкой тарельчатые пружины, а сопряженная со сферической головкой поверхность подпятника выполнена в виде усеченного конуса. 1 ил.

Изобретение относится к ударным устройствам. Технический результат - быстрое отведение гидравлической жидкости из цилиндра. Ударное устройство, функционирующее со средой под давлением, такой как сжатая текучая среда гидравлической системы, содержащее удлиненный корпус (19), прикрепляемый к рабочей машине, подвижную ударную массу (10) для опирания на корпус (19), снабженный частью линейного регулирования, и механизм для поднятия вверх подвижной массы (10) для удара. Ударная масса (10) содержит первый цилиндр (20) с пространствами (6) и (4) цилиндра и поршень (16), который может перемещаться в нем посредством сжатой текучей среды и штока (1) поршня. При этом в механизме шток (1) поршня прикреплен к указанной массе (10) и дополнительно содержит клапанный механизм (15), имеющий находящуюся под давлением подводящую магистраль (22) и не находящуюся под давлением обратную магистраль (23). С помощью клапанного механизма (15) давление гидравлической жидкости может быть направлено через трубу (14) в первое пространство (6) цилиндра в первом цилиндре (20) к другой стороне поршня (16) для поднятия массы (10) и образования газа в пространстве (4) под давлением. При этом указанное давление в пространстве (6) может быть быстро понижено при направлении массы (10) для удара. Во время удара массы (10) гидравлическая жидкость или ее часть, возвращающаяся из пространства (6) цилиндра первого цилиндра (20), может быть направлена к расширяющемуся пространству (2) внутри штока (1) поршня посредством клапанного механизма (15), в результате чего вредное противодавление, вызванное гидравлической жидкостью, отводимой из пространства (6) цилиндра, существенно уменьшается. 5 з.п. ф-лы, 2 ил.

Изобретение относится к горной и строительной технике, предназначено для проходки скважин в грунте, разрушения горных пород и т.д. Технический результат - обеспечение по команде оператора реверсивного режима работы устройства. Устройство ударного действия содержит корпус с патрубком, имеющим впускное отверстие, и выхлопным/выхлопными отверстиями в стенке задней части, установленный в корпусе с возможностью перемещения ударник, камеру прямого хода и камеру обратного хода, канал в ударнике для сообщения камер прямого и обратного хода и запорный клапан. На наружной поверхности ударника в передней его части выполнена кольцевая канавка, а корпус содержит наковальню. На внутренней поверхности корпуса выполнены передний кольцевой выступ и ограничитель обратного хода ударника. Запорный клапан выполнен в виде упругого кольца, установленного в указанной кольцевой канавке ударника с возможностью взаимодействия с внутренней поверхностью корпуса. Наковальня, передний кольцевой выступ и ограничитель обратного хода ударника выполнены в средней части корпуса, упругое кольцо запорного клапана установлено с возможностью взаимодействия с внутренней поверхностью средней части корпуса. Корпус в передней части имеет накопительную камеру сжатого воздуха с размещенным в ней клапаном отсечки. Камера прямого хода сообщена с камерой обратного хода через эту накопительную камеру, для чего последняя снабжена центральной трубкой, пропущенной в указанный канал ударника через отверстие в наковальне для подачи сжатого воздуха из накопительной камеры в камеру обратного хода. Центральная трубка имеет отверстие для подачи сжатого воздуха в накопительную камеру из магистрали. Клапан отсечки установлен на наружной поверхности центральной трубки с возможностью осевого смещения по ней и взаимодействия верхним торцом с ударником через указанное отверстие в наковальне, а нижним торцом - с буртиком наружной поверхности указанной трубки. Камера прямого хода образована патрубком, ударником и наружной поверхностью центральной трубки и не сообщена с накопительной камерой и камерой обратного хода. Центральная трубка пропущена через камеру прямого хода до магистрали. Устройство ударного действия имеет два крана для подачи сжатого воздуха в камеру прямого хода через патрубок и в камеру обратного хода через центральную трубку. 3 з.п. ф-лы, 2 ил.
Наверх