Микроэлектромеханический ракетный двигатель


 

F02K99/00 - Реактивные двигательные установки (размещение и крепление реактивных двигательных установок на наземных транспортных средствах или транспортных средствах вообще B60K; размещение и крепление реактивных двигательных установок на судах B63H; управление положением в пространстве, направлением и высотой полета летательного аппарата B64C; размещение и крепление реактивных двигательных установок на летательных аппаратах B64D; установки, в которых энергия рабочего тела распределяется между реактивными движителями и движителями иного типа, например воздушными винтами F02B,F02C; конструктивные элементы реактивных двигателей, общие с газотурбинными установками, воздухозаборники и управление топливоподачей в воздушно-реактивных двигателях F02C)

Владельцы патента RU 2498103:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) (RU)

Микроэлектромеханический ракетный двигатель предназначен для использования в составе космических разгонных блоков, наноспутников. Микроэлетромеханический ракетный двигатель выполнен в виде структуры из полупроводниковых кристаллов кремния, расположенных один над другим, в одном из которых выполнена камера сгорания с топливным элементом, и содержит блок поджига топлива с металлическими проводниками. Камера сгорания с топливным элементом выполнена в виде нанокристаллического пористого кремния глубиной не более 60 мкм, поры которого насыщены водородом и допированным нитратом калия. Во второй пластине выполнено сопло, расположенное симметрично нанокристаллическому пористому кремнию и сочленное с ним через металлические проводники. Изобретение направлено на упрощение и удешевление процесса изготовления двигателя, обеспечение высокой надежности двигателя по сопутствующим работе двигателя температурам, механическим нагрузкам, режиму работы двигателя и обеспечение нормальной газодинамической функции за счет предлагаемой конструкции и топлива. 1 ил.

 

Изобретение относится к космической ракетной технике, а именно к созданию ракетных двигателей нового поколения

Микромеханический ракетный двигатель предназначен для использования в составе космических разгонных блоков наноспутников.

Известны ракетные двигатели, содержащие работающие на экологически чистом криогенном топливе, состоящем из жидкого кислорода (окислитель) и жидкого водорода (горючее). Это топливо является наиболее эффективным на втором этапе полета, что обусловлено повышенными энергетическими характеристиками жидкого водорода при относительно малом, ввиду его низкой плотности, потребном весовом запасе (см. патент РФ №2397116, от 30.01.2009, МПК B64G 1/00).

Известно также решение, в котором реактивная сила для движения ракеты вырабатывается двигателем, состоящим из рабочей камеры с соплом и элементом (топлива) использующим эффект взрыва для создания реактивной силы (см. кн. Володина В.А. Конструкция и проектирование ракетных двигателей, изд. «Машиностроение», М., 1971 г., стр.44).

Однако, данное решение не получило своего развития.

Известно решение, являющееся наиболее близким, в котором микроэлектромеханический ракетный двигатель состоит из блока камеры сгорания, сопла, воспламенителя, блока подачи электрического импульса для воспламенения и уплотнительной пластины, выполненные из монокристаллического кремния (патент US 6378292 B1, F02K 9/42, опубл. 30.04.2002 г.).

В процессе сборки одной из основных операций является заполнение блока камеры сгорания пастообразным топливом. Процесс сборки состоит из следующих технологических операций: 1) сборка приклеиванием; 2) заполнение топливом; 3) сборка УФ склейкой; 4) заполнение топливом; 5) сборка склейкой эпоксидной смолой.

Недостатками данного двигателя являются: 1) сложность и дороговизна изготовления отдельных частей двигателя и их сборки; 2) необходимость двойного внедрения топлива с помощью трафаретной печати (топливо основное и для воспламенения); 3) невысокая надежность за счет использования стандартных технологических операций и материалов не выдерживающих высоких температур и механических нагрузок, сопутствующих работе двигателя.

Решаемой технической задачей данного изобретения является: 1) упрощение и удешевление процесса изготовления двигателя; 2) обеспечение высокой надежности двигателя по сопутствующим работе двигателя температурам, механическим нагрузкам, режиму работы двигателя; 3) обеспечение нормальной газодинамической функции за счет предлагаемой конструкции и топлива.

Для реализации поставленной задачи в микроэлетромеханическом ракетном двигателе, выполненном в виде структуры из полупроводниковых кристаллов кремния, расположенных один над другим, в одном из которых выполнена камера сгорания с топливным элементом, и содержит блок поджига топлива с металлическими проводниками, камера сгорания с топливным элементом выполнена в виде нанопористого кремния глубиной не более 60 мкм и, поры, которого насыщены водородом и допированным нитратом калия, во второй пластине выполнено сопло, расположенное симметрично нанокристаллическому пористому кремнию и сочленное с ним через металлические проводники.

Изобретение поясняется чертежом, где изображен продольный разрез микроэлектромеханического ракетного двигателя.

Двигатель содержит: камеру 1 сгорания в виде слоя нанопористого кремния, верхнюю пластину 2 монокристаллического кремния, нижнюю платину 3 монокристаллического кремния, сопло 4, металлический проводник 5, предназначенный для подачи электрического импульса для воспламенения топлива. Камера 1 сгорания выполнена в пластине монокристаллического кремния 2, и образована областью нанопористого кремния, полученного при травлении кремния полирующими растворами, допированного нитратом калия. В нижней монокристаллической кремниевой пластине вытравлено сопло 4 Лаваля. Между ними расположены металлические проводники 5.

Пластины монокристаллического кремния соединяются, например, анодной посадкой, таким образом, что металлический проводник находится под частью нанопористого кремния, и через него подается электрический импульс, увеличивающий температуру в районе нанопористого кремния. Происходит воспламенение смеси топлива - водорода, допированного в нанопористый кремний в результате травления плавиковой кислотой или полирующими растворами, смешиваемого с окислителем-кислородом, выделяющимся при разложении нитрата калия. Инициированная быстрая экзотермическая реакция в зависимости от скорости истечения образующегося газа приводит к нормальному истечению сгоревших продуктов реакции и реализации классической газодинамической функции в течение десятка миллисекунд или к увеличению скорости ударной волны и созданию волны детонационного типа, превышающей скорость звука, и взрыву, происходящему за время менее 1 миллисекунды. Учитывая размеры и габариты, массу нанопористого кремния, в обоих случаях достигается эффект реактивного управляемого движения.

Работает устройство следующим образом: при подаче напряжения на металлический проводник 5 поджигается топливо находящееся в нанопористом кремнии 1. Горючие газы, образованные быстрой экзотермической реакцией вырываются через сопло 4, создавая реактивную тягу.

В зависимости от объема, в котором получен нанопористый кремний, возможны процессы, обеспечивающие нормальное квазистационарное истечение газа и получение детонационной волны. Границей между этими двумя режимами работы является глубина, на которую протравливается монокристаллический кремний. До 60 мкм глубины теплота экзотермической реакции, скорость отведения тепла по монокристаллическому кремнию обеспечивают нормальную газодинамическую функцию работы микроэлектромеханичекского ракетного двигателя.

Более 60 мкм глубины полученного нанопористого кремния создают условия для увеличения теплоты быстрой экзотермической реакции, увеличению температуры процесса в 1,5-2 раза до ~5000 K и образованию детонационной волны. При расчетах уравнений внутренней баллистики используется механизм образования ударных волн.

Данное устройство является идеальным решением для малых космических аппаратов, в которых размеры и масса двигателей являются критическими.

Описываемый микроэлектромеханический ракетный двигатель может быть использован для малогабаритных искусственных наноспутников.

Микроэлектромеханический ракетный двигатель, выполненный в виде структуры, из полупроводниковых кристаллов кремния, расположенных один над другим, в одном из которых выполнена камера сгорания с топливным элементом, и содержит блок поджига топлива с металлическими проводниками, отличающийся тем, что камера сгорания с топливным элементом выполнена в виде нанокристаллического пористого кремния глубиной не более 60 мкм, поры которого насыщены водородом и допированным нитратом калия, во второй пластине выполнено сопло, расположенное симметрично нанокристаллическому пористому кремнию и сочлененное с ним через металлические проводники.



 

Похожие патенты:

Изобретение относится к ракетно-космической технике и может быть использовано в двигательных и энергетических установках перспективных средств межорбитальной транспортировки, предназначенных для доставки космических аппаратов на различные высокоэнергетические орбиты и отлетные от Земли траектории.

Изобретение относится к двигателям, используемым в составе имитаторов боевых средств тренажеров для обучения и тренировки операторов переносных зенитных ракетных комплексов.
Изобретение относится к ракетным двигателям жидкого и твердого топлива. .

Изобретение относится к ракетной технике, конкретно к ракетам для межзведных перелетов с жидкостным ракетным двигателем, выполненным по закрытой схеме, с дожиганием газогенераторного газа, и к средствам управления ракетой по крену, и предназначено для управления вектором тяги двигателя и ракетой по тангажу, рысканию и крену.

Изобретение относится к ракетно-космической технике. .

Изобретение относится к космической технике, в частности к реактивным двигателям, преобразующим тепловую энергию источника тепла в энергию газовой струи, создающей реактивную тягу двигателя.

Изобретение относится к устройствам соединения газоводов. .

Изобретение относится к ракетным двигателям, основанным на получении тяги путем поглощения лазерного излучения, и предназначено для управления малыми космическими аппаратами.

Изобретение относится к области реактивных двигательных установок, а именно к реактивным двигателям, основанным на получении тяги в результате поглощения лазерного излучения, и предназначено для управления малыми космическими аппаратами.

Изобретение относится к электротехнике и может найти применение в качестве электродвигателя. .

Изобретение относится к области измерительной техники, в частности к, микроэлектронным датчикам - химическим и биосенсорам, предназначенным для одновременных акустических на поверхностно-акустических волнах (ПАВ) и оптических исследований физико-химических и (или) медико-биологических свойств тонких порядка 0.1 мкм (100 нм) и менее нанопленок.

Изобретение относится к области нанометрологии и калибровочным структурам, а именно к устройствам, обеспечивающим наблюдение и измерение геометрической формы игл сканирующего зондового микроскопа, в том числе атомно-силовых микроскопов и сканирующих туннельных микроскопов.

Группа изобретений относится к области медицины и может быть использована для мультиплексного анализа. Анализирующее устройство содержит реакционное пространство, два набора индивидуально закодированных микроносителей (2), причем каждый микроноситель является функционализирующим, а каждый микроноситель одного из по меньшей мере двух наборов имеет одинаковую функционализацию, в котором реакционное пространство является микроканалом. При этом микроносители (2) имеют форму относительно сечения микроканала (1), которая позволяет иметь по всей длине микроканала (1) два каких-либо микроносителя (2), расположенных бок о бок без соприкосновения друг с другом и без соприкосновения с периметром микроканала (1). При этом устройство содержит средство (4) для ограничения перемещения микроносителей (2) в продольном направлении микроканала (1), наряду с тем, что жидкости все еще могут протекать, а код микроносителей является указывающим на его функционализацию. Группа изобретений относится также к способу приведения мультиплексного анализа и микросхеме для мультиплексных анализов. Группа изобретений обеспечивает ускорение массопереноса, уменьшение количества образцов, упрощает подготовку и выполнение анализа и облегчает снятие показаний биологических реакций. 3 н. и 14 з.п. ф-лы,18 ил., 1 пр.

Изобретение относится к многослойной экранно-вакуумной изоляции (ЭВИ) с микроструктурными элементами для космических аппаратов (КА). Каждый слой ЭВИ выполнен в виде подложки, на которой закреплены теплоотражающие элементы в виде массива прямоугольных микропластин. Каждая микропластина закреплена на подложке с зазором 10...20 мкм. На обращенной к КА стороне подложки выполнены канавки прямоугольного или трапецеидального сечения, а также продольные углубления полукруглого сечения. Второй и последующие слои ЭВИ прикреплены к предыдущим слоям через сферические спейсеры, установленные между пластинами. Диаметр спейсеров составляет не менее величины указанного зазора. В местах установки спейсеров нанесены слои диоксида кремния толщиной 0,5...1 мкм. На внешнюю поверхность микропластин и открытые поверхности подложки нанесено алюминиевое покрытие толщиной 0,1...0,3 мкм с коэфф. отражения 0,7-0,9. Микропластины м.б. выполнены биморфными. При изготовлении микропластин электропроводными на поверхности кремниевой подложки м.б. выполнены токопроводящие шины. Технический результат изобретения состоит в снижении массы и габаритных размеров ЭВИ и КА. 6 з.п. ф-лы, 7 ил.

Изобретение относится к устройствам полимерной электроники, в частности к матричным устройствам для преобразования давления в электрический сигнал. Матричные датчики давления используются для определения формы предметов, воздействующих на датчик, и могут использоваться в робототехнике, медицине, при автоматизации производственных процессов. Матрица тактильных датчиков содержит чередующиеся слои проводящих взаимно перпендикулярных шин, контактирующих с расположенными между ними слоями тензорезистивного полимера. Наличие электрического контакта к каждому из проводящих слоев позволяет получить, при сохранении высокой чувствительности датчика, многоуровневый выходной сигнал, обеспечивая расширенный динамический диапазон передаточной характеристики датчика при измерении тактильного давления. Техническим результатом является повышение точности преобразования давление - электрический сигнал. 1 з.п. ф-лы, 4 ил.

Устройство для подачи пылеобразного рабочего тела в электроракетный двигатель относится к области электрических ракетных двигателей (ЭРД), в которых используют пыль в качестве рабочего тела для создания тяги. В устройстве для подачи пылеобразного рабочего тела в электроракетный двигатель пылеобразное рабочее тело хранится в одном или большем числе капсул, размещенных в магазине, имеется механизм для перемещения пылеобразного рабочего тела, который выполнен таким образом, что он имеет возможность вынимать капсулу из ячейки магазина и задвигать капсулу в ускоряющее пространство ЭРД и выдвигать капсулу обратно из ускоряющего пространства ЭРД. При этом капсула для хранения пылеобразного рабочего тела имеет обечайку из диэлектрического материала, донышко и быстросъемную крышку, которая имеет возможность сбрасываться вблизи первого, по ходу перемещения пылеобразного рабочего тела, ускоряющего электрода электроракетного двигателя. Изобретение позволяет исключить непосредственный контакт и трение механизмов с пылеобразным рабочим телом, регулировать подачу пылеобразного рабочего тела в ЭРД, а также уменьшить размеры ЭРД с пылеобразным рабочим телом. 8 з.п. ф-лы, 10 ил.

Изобретение относится к ракетно-космической технике и может быть использовано в качестве корректирующей двигательной установки космического аппарата. Жидкостно-газовый реактивный двигатель (ЖГРД) содержит бак, заполненный жидким рабочим телом - водой, с выходным отверстием в крышке, камеру и реактивное сопло. В камере жидкостно-газового реактивного двигателя установлен на выходе из бака разделитель фаз рабочего тела, после которого установлен регулировочный клапан с пружиной и электромагнитом. В ЖГРД камера снабжена устройством подогрева рабочего тела в области, прилегающей к выходному отверстию бака. Жидкостно-газовый реактивный двигатель создает реактивную тягу за счет истечения паров воды, которые образуются за счет процесса парообразования газа из жидкой фазы. Изобретение обеспечивает регулирование тяги, снижение энергопотребления двигателя и применение экологически чистого рабочего тела. 1 з.п. ф-лы, 1 ил.

Ракетный двигатель включает жидкое или твердое ракетное топливо, в котором окислитель и/или горючее содержит связанный азот, а также мелкодисперсный или связанный бор, причем количество атомов бора и азота 1:1 с отклонением ±20%. Ракетное топливо имеет избыток горючего по отношению к окислителю. Изобретение позволяет повысить тепловыделение топлива. 8 з.п. ф-лы.

Конический ракетный двигатель бессоплового бескорпусного типа содержит шашку твердого топлива с одним или несколькими каналами на всю длину шашки, заполненными более быстро горящим топливом, чем основное топливо, или же шашка имеет несколько параллельных каналов, причем часть из них обрываются от поверхности шашки на расстоянии, равном или большем половине расстояния между соседними каналами. В случае если каналов в шашке несколько, они расположены в шашке параллельно или в направлении вершины конуса. В другом варианте выполнения ракетного двигателя по всей длине или в задней части шашки каналы на периферии выполняют наклонными, причем скорость горения лидер-топлива, либо лидер-топлива и основного топлива уменьшается. В задней части двигателя выполнено центральное конусное углубление, на котором выполняется еще несколько конусных углублений со своими лидер-зарядами, обрывающимися на заданном расстоянии от заднего конца двигателя. Кроме того, в передней части двигателя с одним центральным каналом может быть выполнено еще несколько параллельных или сходящихся каналов, заполненных более быстро горящим топливом, чем основное топливо, причем соотношение длины отдельного периферийного канала и скорости горения в нем таково, что заряды во всех каналах сгорают у переднего торца двигателя одновременно, и скорости горения топлива во всех каналах таковы, что газопроизводительность двигателя на единицу площади среза сопла остается постоянной. В других вариантах выполнения передняя боковая часть двигателя выполнена в виде одного или нескольких конусных слоев и сделана из основного топлива с большей скоростью горения, а изначально выполненная на заднем торце двигателя коническая выемка занимает не всю поверхность заднего торца. Кроме того, скорость горения основного топлива может непрерывно или слоями уменьшаться на периферии. При вертикальном старте конического ракетного двигателя задним торцом, имеющим на части своей поверхности коническую выемку, двигатель устанавливают на горизонтальную поверхность, имеющую эластичное покрытие и отверстие в центре. До старта двигатель удерживается в вертикальном положении эластичными присосками, расположенными по его внешней поверхности. Группа изобретений позволяет исключить необходимость разделения двигателя на ступени за счет отсутствия корпуса и сопла, а также обеспечить изменение тяги при работе двигателя. 11 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к области ракетно-космической техники. Плазменный двигатель на наночастицах металлов или металлоидов содержит последовательно расположенные камеру сгорания, один вход в которую служит для ввода твердых наночастиц металла или металлоида в качестве топлива, а другой - для ввода окислителя топлива в виде водяного пара или кислорода, при смешении которых в камере возникает горение, хемоионизационные реакции окисления, дающие тепловой эффект, высокие температуры и образование нагретой плазмы, содержащей жидкие оксиды металлов или металлоидов, устройство охлаждения плазмы до температуры ниже температуры плавления полученных оксидов и образования в нагретой плазме твердых пылевых отрицательно заряженных оксидов металлов или металлоидов, электростатическое или электромагнитное разгонное устройство, которое разгоняет электростатическим или электромагнитным полем истекающую из устройства охлаждения нагретую плазму и создает высокоскоростной поток нагретой пылевой плазмы с высокоскростными отрицательно заряженными оксидами металлов или металлоидов, который истекает в окружающую среду и создает реактивную тягу двигателя. Металл может быть применен любым из ряда алюминий, бериллий, цирконий, железо, титан, металлоид - из ряда бор, кремний. Изобретение обеспечивает увеличение удельного импульса тяги двигателя за счет дополнительного включения тепловой энергии хемоионизационных реакций и массы более тяжелых отрицательно заряженных оксидов металлов или металлоидов пылевидной плазмы. 3 з.п. ф-лы, 1 ил.
Наверх