Способ обнаружения в металле микротрещин



Способ обнаружения в металле микротрещин
Способ обнаружения в металле микротрещин

 


Владельцы патента RU 2498263:

Зорин Александр Евгеньевич (RU)

Изобретение относится к неразрушающим методам контроля, в частности к способу обнаружения в металле конструкции микротрещин, в том числе в процессе ее эксплуатации. Сущность: на подготовленную поверхность образца из металла, аналогичного металлу исследуемой конструкции, в трех различных зонах воздействуют индентором в форме пирамиды, осуществляя в каждой серии не менее 50 вдавливаний с величиной нагрузки, при которой отпечаток индентора по размерам не превосходит размеры зерна металла, и с шагом перемещения индентора, обеспечивающим исключение воздействия деформационных полей предыдущего вдавливания на последующее. Определяют распределение значений микротвердости, из которого определяют минимальное значение микротвердости, которое принимается как базовое минимальное значение для данного металла. Аналогично выполняют замеры микротвердости на рассматриваемом участке исследуемой конструкции из того же металла. По результатам измерений определяют распределение значений микротвердости, которое сравнивают с полученным базовым минимальным значением микротвердости. Более низкие значения микротвердости в металле исследуемой конструкции по сравнению с базовым минимальным значением микротвердости свидетельствуют о наличии микротрещин на участке исследуемой конструкции. Технический результат: повышение эффективности оценки технического состояния металла конструкции и прогнозирование ее эксплуатационной надежности. 2 ил.

 

Изобретение относится к неразрушающим методам контроля, в частности, к способу обнаружения в металле конструкции микротрещин, в том числе в процессе ее эксплуатации.

Для обеспечения требуемого уровня безопасности при эксплуатации различных металлических конструкций необходимо достоверное определение технического состояния металла конструкции.

В процессе изготовления металлических конструкций, а также в процессе их эксплуатации в металле может происходить накопление поврежденности, вызываемое протеканием пластической деформации, воздействием нестационарных нагрузок и другими процессами. Накопление металлом поврежденности сильно сказывается на изменении эксплуатационных характеристик металла, и в результате может привести к разрушению конструкции под действием проектных нагрузок.

В стадийности процесса накопления металлом конструкции поврежденности ключевым моментом является образование в металле микротрещин, поскольку с этого момента остаточный ресурс конструкции будет определяться процессом развития микротрещин. Кроме того, возникновение микротрещин вызывает резкое снижение эксплуатационных характеристик металла.

Для обнаружения трещиноподобных дефектов неразрушающим способом известен ряд методов неразрушающего контроля: ультразвуковой (ГОСТ 23667-85), вихретоковый (ГОСТ 26697-85), магнитопорошковый (ГОСТ 21105-87) и др. Недостаток данных методов заключается в том, что их чувствительность позволяет обнаруживать трещиноподобные дефекты размером от ≈1 мм в глубину и более, что является уже относительно поздней стадией развития трещины.

Известен метод акустико-эмиссионной диагностики (ГОСТ Р 52727-2007 «Национальный стандарт РФ. Техническая диагностика. Акустико-эмиссионная диагностика»), при котором регистрируют переменное поле упругих напряжений от развивающихся дефектов (в том числе на уровне структуры). Недостатком данного метода является сложность обработки и интерпретации получаемых результатов, кроме того, для регистрации сигналов акустической эмиссии необходимо обязательное нагружение конструкции.

Известен способ обнаружения усталостных микротрещин, который заключается в нанесении на конструкцию металлической пленки (например алюминиевой). По образованию локальных темных зон на поверхности пленки (или по нарушению сплошности пленки) после нагружения фиксируют появление в исследуемом металле микротрещин (RU 2390753 C1, G01N 3/32, 27.05.2010). Недостатками данного метода являются необходимость наличия пленки на конструкции в течение всего срока ее эксплуатации, а также необходимость применения специального увеличительного оборудования для идентификации полученных результатов.

Известен способ определения циклической прочности металла конструкций, который заключается в циклическом нагружении локальной области металла с помощью индентора и одновременном намагничивании и измерении намагниченности в зоне воздействия индентора (RU 2122721 C1, G01N 3/32, 27.11.1998). В процессе испытания регистрируют зависимость «усилие вдавливания - намагниченность», по изменению которой оценивают степень повреждения металла. Недостатком данного способа является то, что величина намагниченности металла является индикатором, реагирующим на накопление металлом поврежденности, и не может зафиксировать момент образования в металле микротрещин.

Известен способ определения поврежденности объекта, в котором для определения накопленной металлом поврежденности используется метод определения значений микротвердости и обработка получаемого распределения с помощью аналитических зависимостей (RU 2315971 C1, G01N 3/42, 27.01.2008). Данный способ принят за наиболее близкий аналог изобретения. Недостатком данного метода является отсутствие физической интерпретации получаемых коэффициентов поврежденности металла и невозможность определения реального технического состояния металла (в частности наличие или отсутствие микротрещин).

Задачей изобретения является создание неразрушающего способа качественной оценки наличия в металле конструкции (в конкретной наиболее нагруженной зоне) микротрещин размером порядка диаметра зерна металла и более, в том числе в процессе эксплуатации конструкции.

Для этого в способе обнаружения в металле конструкции микротрещин, включающем воздействие на участок конструкции индентором с заданными нагрузкой и шагом и определение микротвердости металла, сначала на подготовленную поверхность образца из металла, аналогичного металлу исследуемой конструкции, по крайней мере, в трех различных зонах воздействуют индентором в форме пирамиды, осуществляя в каждой серии замеров не менее 50 вдавливаний с величиной нагрузки, при которой отпечаток индентора по размерам не превосходит размеры зерна металла, и с шагом перемещения индентора, обеспечивающим исключение воздействия деформационных полей предыдущего вдавливания на последующее, определяют распределение значений микротвердости, из которого определяют минимальное значение микротвердости, которое принимается как базовое минимальное значение для данного металла, затем аналогично выполняют замеры микротвердости на рассматриваемом участке исследуемой конструкции из того же металла, по результатам измерений определяют распределение значений микротвердости, которое сравнивают с полученным базовым минимальным значением микротвердости, при этом более низкие значения микротвердости в металле исследуемой конструкции по сравнению с базовым минимальным значением микротвердости свидетельствуют о наличии микротрещин на участке исследуемой конструкции.

На фиг.1 представлены сводные гистограммы распределения базовых значений микротвердости металла и распределения микротвердости в металле после первичного нагружения, на фиг.2 - сводные гистограммы распределения базовых значений микротвердости металла и распределения микротвердости в металле после повторного нагружения.

Технология способа состоит в следующем.

Перед проведением комплекса замеров микротвердости, поверхность должна быть отполирована до шероховатости не выше Ra=1 мкм, для того, чтобы минимизировать влияние поверхностных неровностей на результаты измерений.

На первом этапе определяется базовое распределение значений микротвердости исследуемого металла, для чего на подготовленную зону металла воздействуют индентором (не менее 50 вдавливаний) с заданными нагрузкой и шагом. Форма индентора должна представлять собой пирамиду, поскольку благодаря такой форме индентор, попадая в микротрещину, будет проваливаться в нее, вызывая тем самым резкое снижение значений микротвердости. Усилие вдавливание выбирается исходя из структуры и свойств исследуемого металла, таким образом, чтобы отпечаток индентора по размерам не превосходил размеры зерна металла (к примеру для ферритоперлитных низколегированных сталей рекомендованное усилие вдавливания - 10÷50 г). Шаг перемещения индентора должен быть таким, чтобы исключить воздействие деформационных полей предыдущего вдавливания на последующее.

Для получения более достоверного распределения значений микротвердости, комплексы замеров выполняют не менее чем в трех различных зонах металла.

После выполнения комплексов замеров, определяют распределение значений микротвердости, из которого находят минимальное значение микротвердости, которое принимается как базовое минимальное значение для данного металла.

Затем аналогично выполняют замеры микротвердости на рассматриваемом участке исследуемой конструкции из того же металла. По результатам измерений определяют распределение значений микротвердости.

На заключительной стадии производится сравнение полученных значений микротвердости в металле исследуемой конструкции с базовым минимальным значением микротвердости для данного металла. В случае, если в металле конструкции обнаруживаются значения микротвердости, которые более чем на 10% ниже базового минимального значения микротвердости, то данный факт свидетельствует о наличии микротрещин в исследуемой зоне металла конструкции. Падение значений микротвердости менее чем на 10% относительно базового минимального значения может быть вызвано как наличием микротрещин на участке исследуемой конструкции, так и возможным разбросом свойств исследуемого металла.

Пример.

На листе из стали Ст3сп5 (ГОСТ 14637-89, σв=466 МПа, σт=311 МПа, δ=10 мм) были выбраны три зоны для определения базового минимального значения микротвердости. Подготовка поверхности выбранных зон включала в себя полировку до шероховатости Ra=0,5 мкм.

Для определения значений микротвердости использовался микротвердомер ПМТ-3М1. Вдавливания производились индентором в виде алмазной пирамидки с усилием в 25 г. Шаг перемещения индентора был выбран в 0,03 мм. В каждой зоне производилось по 100 вдавливаний.

Из полученного базового распределения значений микротвердости было найдено минимальное значение микротвердости, равное 102 кгс/мм2, которое было принято как базовое минимальное значение микротвердости для данного материала.

Затем, из рассматриваемого листа был вырезан образец для проведения усталостных испытаний с размерами рабочей части: ширина - 80 мм, длина - 180 мм, толщина - 10 мм.

Испытания включали в себя усталостное нагружение образца с параметрами σmax=250 МПа, σmin=0 МПа в течение 10000 циклов. После испытаний в рабочей части образца была выбрана зона для измерения значений микротвердости. Подготовка поверхности и методика проведения замеров были аналогичны тем, которые применялись для получения базового распределения значений микротвердости.

Полученное распределение значений микротвердости сравнивалось с базовым минимальным значением микротвердости.

Сводная гистограмма распределения базовых значений микротвердости металла и распределения микротвердости металла образца после нагружения приведена на фиг.1.

Результаты сравнения показали, что значения микротвердости металла образца после нагружения выше, чем базовое минимальное значение микротвердости, что свидетельствует о том, что эволюция дислокационной структуры в процессе нагружения металла не привела к зарождению в нем микротрещин.

В связи с этим, исследуемый образец был повторно нагружен с параметрами σmax=250 МПа, σmin=0 МПа в течение 40000 циклов. После нагружения образца в его рабочей части был повторно произведен комплекс замеров микротвердости. Сводная гистограмма распределения базовых значений микротвердости и распределения микротвердости после повторного нагружения приведено на фиг.2.

Результаты сравнения показали, что после повторного нагружения образца в его металле появился массив значительно более низких значений микротвердости в сравнении с базовым минимальным значением, что свидетельствует о наличии микротрещин в металле после повторного нагружения.

Для проверки корректности предложенного критерия наличия в металле микротрещин (снижение значений микротвердости металла после нагружения по сравнению с базовым минимальным значением микротвердости), были проведены металлографические исследования, включающие электронную микроскопию и рентгеноструктурный анализ металла образца после первичного и повторного нагружения, которые подтвердили наличие микротрещин размером порядка 15-20 мкм в металле образца после повторного нагружения, и отсутствие микротрещин в металле образца после его первичного нагружения.

Технический результат заключается в создании способа оперативной неразрушающей диагностики конструкции, с помощью которого появляется возможность не только оценивать накопление металлом поврежденности, но и фиксировать наличие в металле конструкции микротрещин, что позволит существенно повысить эффективность оценки технического состояния металла конструкции и прогнозирования ее эксплуатационной надежности.

Способ обнаружения в металле конструкции микротрещин, включающий воздействие на участок конструкции индентором с заданными нагрузкой и шагом и определение микротвердости металла, отличающийся тем, что сначала на подготовленную поверхность образца из металла, аналогичного металлу исследуемой конструкции, по крайней мере, в трех различных зонах воздействуют индентором в форме пирамиды, осуществляя в каждой серии не менее 50 вдавливаний с величиной нагрузки, при которой отпечаток индентора по размерам не превосходит размеры зерна металла, и с шагом перемещения индентора, обеспечивающим исключение воздействия деформационных полей предыдущего вдавливания на последующее, определяют распределение значений микротвердости, из которого определяют минимальное значение микротвердости, которое принимается как базовое минимальное значение для данного металла, затем аналогично выполняют замеры микротвердости на рассматриваемом участке исследуемой конструкции из того же металла, по результатам измерений определяют распределение значений микротвердости, которое сравнивают с полученным базовым минимальным значением микротвердости, при этом более низкие значения микротвердости в металле исследуемой конструкции по сравнению с базовым минимальным значением микротвердости свидетельствуют о наличии микротрещин на участке исследуемой конструкции.



 

Похожие патенты:

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к испытательной технике, в частности к устройствам для лабораторных испытаний усталостного изнашивания прецизионных пар дизельной топливной аппаратуры.

Изобретение относится к технике испытаний на усталость, а именно к способам испытаний материалов, в частности асфальтобетона, на усталость при циклических динамических воздействиях.

Изобретение относится к исследованию физико-механических свойств металлов и может использоваться в различных областях промышленности. .

Изобретение относится к испытательной технике, к испытаниям на прочность. .

Изобретение относится к области испытаний деталей машин, а более точно касается способа определения скорости роста трещин от циклических нагрузок в образцах, вырезанных из деталей авиационных двигателей.

Изобретение относится к установкам для ударных нагружений образцов горных пород, моделей из эквивалентных материалов. .

Изобретение относится к характеризации сопротивления усталостным напряжениям детали, начиная с ее профиля поверхности. .

Изобретение относится к испытательной технике, а именно к установкам для испытания трубчатых образцов на усталость при сложном напряженном состоянии, и может быть применена в заводской и исследовательской лаборатории.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка для испытаний материалов на усталость при кручении содержит основание, соосные активный и пассивный захваты для концов образца, механизм возвратно-вращательных движений активного захвата, включающий зубчатое колесо, установленное на активном захвате, и привод его вращения. Установка имеет направляющую, радиально закрепленную на пассивном захвате, груз, установленный на направляющей, привод перемещения груза вдоль направляющей, выполненный в виде набора электромагнитных катушек, установленных вдоль направляющей и взаимодействующих с грузом. Установка имеет вал, соосно закрепленный на пассивном захвате, груз, установленный на валу с возможностью вращения относительно вала, фиксатор для соединения груза с валом и привод вращения груза. Технический результат - обеспечение проведения испытаний при нагружении образца знакопеременными крутящими усилиями в режиме заданных нагрузок с плавным, ступенчатым, циклическим или импульсным изменением уровня нагрузок в ходе испытаний. 2 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка для испытания образцов на усталость содержит корпус, установленные на нем эксцентриковый механизм нагружения, консольный захват образца, связанный с механизмом нагружения, привод вращения и торцевой захват образца, закрепленный на валу привода вращения. Установка имеет шарнирную опору с отверстием, через которое проходит вал привода вращения, платформу и привод возвратно-поступательного перемещения платформы радиально относительно шарнирной опоры. Привод вращения установлен на платформе. Установка имеет вал и привод возвратно-вращательного движения вала. Шарнирная опора выполнена дисковой и установлена на валу. Технический результат - обеспечение испытания образцов в новых условиях: при нагружении вращаемого образца как одноцикловым, так и двухцикловым или трехцикловым изгибом. 1 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, а именно к испытаниям на прочность. Стенд для ударных испытаний образцов содержит основание, установленные на нем разгонное устройство, включающее маховик с приводом его вращения, штангу, приспособление для создания фрикционного взаимодействия штанги с маховиком, направляющую для перемещения штанги и соосные захваты для образца. Указанный стенд дополнительно снабжен дополнительными штангами по количеству точек нагружения поверхности образца, дополнительными приспособлениями для создания фрикционного взаимодействия дополнительных штанг с маховиком, ударниками для взаимодействия с поверхностью образца, установленными на торцах штанг, и приспособлениями для возврата штанг в исходное положение. При этом ось захватов перпендикулярна осям штанг, а штанги и соответствующие приспособления для создания фрикционного взаимодействия штанг с маховиком выполнены с возможностью изменения положения вдоль образующей маховика. Предлагаемый стенд обеспечивает проведение испытаний в новых условиях, а именно при нанесении повторных ударов по поверхности образца в произвольно регулируемой последовательности ударов, интервалов между ударами и мест нанесения ударов. 1 ил.

Изобретение относится к турбомашиностроению, в частности к способам определения долговечности дисков турбомашин путем моделирования в процессе стендовых испытаний эксплуатационных условий нагружения и поврежденности в критических зонах дисков турбомашин. Сущность: в верхнем крепежном отверстии элемента обода диска создают контактные напряжения. Нагружают элемент обода диска повторяющимися циклическими растягивающими усилиями. Последовательность повторяющихся циклических растягивающих усилий задают в виде нарастающих ступенчатых циклов, воспроизводящих график набора оборотов турбомашины от пуска из холодного состояния до ее остановки. Каждая ступень нагружения сопровождается определенной выдержкой нагрузки по времени. Воспроизводят место возникновения и траекторию роста трещины в критических зонах дисков турбомашин, наблюдаемую при эксплуатации. Фиксируют количество циклов нагружения до разрушения элемента обода диска. Технический результат: возможность моделирования в процессе стендовых испытаний эксплуатационных условий нагружения и поврежденности в критических зонах дисков турбомашин. 1 ил.

Изобретение относится к испытательной технике, а именно к устройствам для оценки энергии разрушения материалов на изгиб, интенсивности износа материала, смазывающей способности масел и смазок. Устройство содержит станину, маятник с грузом, закрепленный на маятнике захват для первого образца, фиксатор для стопорения маятника в заданном исходном положении, отличном от положения равновесия. Устройство снабжено датчиком контроля движения маятника, подключенным к компьютеру, гибким элементом, закрепленным на каретке, установленной на нижней части станины, и снабженным устройством его натяжения, захватом для второго образца, установленным в верхней части станины, при этом маятник жестко соединен со станиной через второй образец. Технический результат: увеличение объема информации при нагружении образца циклическими нагрузками с изменением силы нагружения, а также комплексная оценка энергии разрушения образцов материалов на изгиб и (или) интенсивность износа, смазывающей способности внешних сред по величине потенциальной энергии маятника. 6 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, а именно к усталостным испытаниям групп образцов из сравниваемых материалов в условиях их нагружения, аналогичных изгибному нагружению зуба шестерни в коробках передач автомобилей. Стенд содержит динамометрическую платформу с закрепленной на ней связкой приспособлений, в которых консольно зажаты испытываемые образцы, в качестве базового элемента, вертикально-фрезерный станок, оснащенный торцевой фрезой с регулируемыми вдоль оси фрезы ложементами-толкателями и механическим креплением в них твердосплавных пластин, рабочие концы которых выполнены сферическими, приспособление для закрепления образцов с коромыслом, передающим последовательно изгибающую нагрузку от ложементов-толкателей при вращении фрезы, в качестве силоизмерительного прибора - динамометрическую платформу, единую для замера величины усилия, действующего на свободный конец каждого из последовательно нагружаемых образцов. Коромысло выполнено с возможностью качения вокруг оси подвижной каретки и зафиксировано от бокового смещения штырем, а также для возврата в строго зафиксированное исходное положение снабжено регулируемым упором. На свободном конце каждого из испытываемых образцов установлена накладка с регулировочными наборными пластинами для настройки усилия нагружения каждого из образцов. С нижней стороны зажатого конца каждого из образцов располагается акустический датчик для фиксации процессов, происходящих в образце во время нагружения, а также датчик, фиксирующий температурное состояние образца в процессе испытания. На столе фрезерного станка размещены видеодатчики, фиксирующие появление и развитие усталостных трещин на образцах. Технический результат: повышение производительности испытаний группы образцов, повышение точности испытаний, увеличение информативности состояния образцов и процессов происходящих в них, а также повышение надежности результатов испытаний. 6 з.п. ф-лы, 2 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит корпус, закрепленную на нем матрицу с криволинейным пазом и толкатель для перемещения образца вдоль паза матрицы. Матрица выполнена разрезной, а стенд снабжен основанием матрицы, консольно закрепленным на корпусе. Одна часть матрицы закреплена на части основания, закрепленной на корпусе, другая часть матрицы закреплена на консольной части основания, при этом стенд снабжен кулачком, взаимодействующим с консольной частью основания, и приводом вращения кулачка. Технический результат: повышение объема информации путем обеспечения исследований как при релаксации напряжений изгиба образца, так и при чередовании релаксации с циклическими разгрузками образца с регулированием параметров разгрузки в ходе испытаний. 1 з.п. ф-лы, 1 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит два двигателя разной мощности с параллельными валами и встречно направленными крутящими моментами, два рычага, одни концы которых соединены с валом соответствующего двигателя, захваты для образца, один из которых установлен на конце первого рычага, и формирователь нагрузки, шарнирно связанный с концом второго рычага и соединенный со вторым захватом. Формирователь нагрузки выполнен в виде гидроцилиндра, заполненного рабочей средой, со штоком, одним торцом соединенным со вторым захватом, набора дисков разных диаметров, расположенных на штоке в гидроцилиндре с возможностью взаимодействия с рабочей средой, и фиксаторов для соединения дисков со штоком. Технический результат: увеличение информативности исследований на воздействие циклической знакопеременной осевой и изгибающей нагрузок путем обеспечения испытаний при ступенчатых изменениях уровня осевых нагрузок. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области измерения, в частности определения механических свойств материалов. Способ заключается в возбуждении колебаний образца композиционного материала в виде прямоугольной пластины со свободными краями и определении частот и картин форм собственных колебаний пластины. Причем экспериментально полученные картины форм колебаний разделяют на три группы, к первой из которых относят формы колебаний пластины с узловыми линиями, параллельными меньшей стороне прямоугольной пластины, ко второй группе - формы колебаний с узловыми линиями, параллельными большей стороне пластины, и к третьей - с узловыми линиями, параллельными обеим сторонам пластины, а характеристики композиционного материала определяют путем перебора значений модуля упругости, модуля сдвига и коэффициента Пуассона, подставляя их в математическую модель пластины и сравнивая каждый раз вычисленную частоту колебаний для каждой формы колебаний с частотами и формами колебаний, полученными экспериментально. По частотам и формам колебаний, отнесенным к первой группе, определяют модуль упругости с индексом оси, параллельной большей стороне - Еx, по частотам и формам колебаний второй группы определяют модуль упругости с индексом оси, параллельной меньшей стороне - Еy, по частотам и формам третьей группы - модули сдвига Gxy, Gxz, Gyz. Определение девяти упругих постоянных (Еx, Еy, Еz, vxy, vxz,, Gxy, Gxz, Gyz) осуществляют в следующей последовательности: сначала осуществляют перебор значений модуля упругости, затем модуля сдвига и на заключительном этапе - коэффициента Пуассона. Перебор значений модуля упругости, модуля сдвига и коэффициентов Пуассона завершают в момент расчетного выявления всех экспериментально полученных форм и частот колебаний пластины. Техническим результатом является создание способа определения механических свойств ортотропного композиционного материала посредством возбуждения колебаний последнего. 3 з.п. ф-лы, 5 ил.

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит станину, установленные на ней захваты образца и механизм циклического нагружения, выполненный в виде зубчатого колеса, взаимодействующей с ним зубчатой рейки, установленной с возможностью перемещения и связанной с одним из захватов, штанги, торцом соединенной с зубчатым колесом, и груза, установленного на другом торце штанги. Установка дополнительно содержит вторую зубчатую рейку, связанную со вторым захватом, и механизмы ударного нагружения в соответствии с числом ударных импульсов, каждый из которых выполнен в виде зубчатого колеса, взаимодействующего со второй рейкой, рычага с осью вращения, установленной соосно колесу с возможностью независимого поворота, груза, установленного на рычаге, и двух упоров, установленных на колесе с возможностью взаимодействия с рычагом, при этом груз расположен выше оси вращения рычага, рычаг расположен с зазором между упорами, а упоры на каждом колесе расположены с угловым смещением относительно упоров на других колесах. Технический результат: увеличение информативности исследований образцов материалов путем испытаний при наложении сжимающих и растягивающих ударных импульсов на циклы затухающих колебаний нагрузки. 1 з.п. ф-лы, 1 ил.
Наверх