Способ определения температуры полного полиморфного превращения жаропрочных двухфазных титановых сплавов (альфа+бета)-мартенситного класса

Изобретение относится к области исследования процессов полиморфных превращений в металлах и твердофазных металлических сплавах и может быть использовано, например, в отделах технического контроля металлургических заводов, выпускающих титан и сплавы на его основе. Заявлен способ определения температуры полного полиморфного превращения жаропрочных двухфазных титановых сплавов (α+β)-мартенситного класса, включающий предварительную подготовку образца посредством многостадийной термической обработки последнего, которую проводят непосредственно в приборе дифференциального термического анализа (ДТА) в атмосфере очищенного аргона и его исследование методом ДТА. Осуществляют нагрев образца сплава в однофазную β-область, переохлаждение ниже температур активного диффузионного распада β-твердого раствора, кратковременную выдержку и повторный нагрев в однофазную область. Проводят фиксацию зависимости ДТА-сигнала от температуры и расчет значений производной ДТА-сигнала, а температуру окончания полного полиморфного превращения определяют по максимуму на кривой первой производной ДТА-сигнала при повторном высокотемпературном нагреве. Технический результат: повышение точности определения температуры полного полиморфного превращения в жаропрочных двухфазных титановых сплавах. 4 ил.

 

Изобретение относится к области исследования процессов полиморфных превращений в металлах и твердофазных металлических сплавов и может быть использовано, например, в отделах техническою контроля металлургических заводов, выпускающих титан и сплавы на его основе.

Температура полного полиморфного превращения (температура окончания полиморфного превращения, температура Тпп) - это температура, выше которой в структуре сплава отсутствует α-фаза и сплав состоит из стабильного β-твердого раствора.

Режимы термомеханической обработки, а именно температуры нагрева и деформационных обработок, промышленных марок сплавов на основе титана имеют вид

Tн=(Тпп±N)°C,

где Тн - температура нагрева/деформации конкретной плавки сплава;

Тпп - температура полного полиморфного превращения плавки, изменяющаяся в пределах марки сплава в некотором диапазоне;

N - Смещение относительно Тпп. N не зависит от химического состава плавки и в пределах марки сплава является постоянным.

Таким образом, для выбора конкретных температур нагрева/деформации сплава необходима информация о Тпп, используемой плавки. Кроме того, в большинстве случаев перегревы сплава выше Тпп за заключительных этапах обработки недопустимо, так как это приводит к значительному росту исходного β-зерна и ухудшению механических свойств полуфабриката.

Известен способ определения температуры полиморфного превращения (Тпп) титановых сплавов методом пробных закалок [1]. Сущность этого метода заключается в фиксировании структуры сплава после закалки с нагревом при последовательно повышающихся температурах в районе α+β→β-перехода.

Этот способ весьма трудоемок, требует изготовления большого количества специальных образцов, сложного лабораторного оборудования и, кроме того, не отличается большой точностью и высокой производительностью.

Известен также способ определения температуры Тпп в двухфазных титановых сплавах, включающий нагрев образцов под закалку до заданной температуры, определение их микроструктуры и выявление зависимости между температурой нагрева под закалку и количеством первичной α-фазы [2].

С помощью этого метода можно определить температуру Тпп путем закалки и исследования микроструктуры одного образца, но к основным недостаткам можно отнести то, что он остается весьма трудоемким и не отличается большой точностью и высокой производительностью.

Кроме того, известен упрощенный металлографический метод определения Тпп, основанный на глубоком травлении образцов после закалки, с различных температур в интервале протекания полиморфного превращения. При этом поверхность образцов, закаленных из α+β-области становится матовой, а после закалки из β-области остается блестящей [1].

Основным недостатком данного способа является его применимость только для сплавов (α+β)-класса, а также сравнительно низкая точность.

Иногда применяется расчетный способ определения Тпп [1] по данным химического анализа. Для этого используются экспериментально-полученные зависимости Тпп сплава от концентрации легирующих элементов.

Также известен более общий подход по аналитическому определению Тпп плавки на основе концентрации легирующих добавок для промышленных титановых сплавов любых марок [3].

Недостатками расчетных методов определения Тпп является использование экспериментальных корреляционных зависимостей, а также отсутствие общепринятых коэффициентов регрессии по всем используемым легирующим элементам и примесям.

Кроме того, известен способ определения температуры Тпп двухфазных титановых сплавов посредством фиксации температуры свободного прогиба, которая соответствует Тпп, жестко закрепленного исследуемого образца при непрерывном нагреве электроконтактным методом [4].

Известен также способ определения температуры окончания α+β→β-превращения с использованием метода акустической эмиссии [5]. Сущность метода заключается в измерении излучаемой акустической эмиссии и анализ ее активности при непрерывном нагреве исследуемого образца. Фиксация температуры Тпп производится по скачкообразному снижению активности акустической эмиссии.

Недостатком данных способ является необходимость применения оборудования, не производящегося серийно, что серьезно снижает возможность использования указанных способов в промышленности, в частности в отделах технического контроля металлургических производств, т.к. сложно обеспечить воспроизводимость и повторяемость результатов анализа.

Также известно применение дилатометрического метода для определения температуры окончания α+γ→γ-превращения (Ас3) в сталях, являющейся аналогом температуры Тпп в сплавах на основе титана [6, 7].

Применение дилатометрического метода для определения температуры Тпп двухфазных титановых сплавов осложнено низкой величиной объемного эффекта при протекании α+β→β-превращения.

Также известны случаи применения методов дифференциального термического анализа и дифференциальной сканирующей калориметрии (ДСК) для определения температуры окончания полиморфного превращения в сплавах на основе титана [8, 9].

Известно [8…10] было отмечено, что при использовании термических методов анализа, таких как ДТА и ДСК, на вид фиксируемых в экспериментах кривых непрерывного нагрева сильно влияет исходная структура исследуемого образца, в частности морфология α-фазы в структуре сплава. В частности, при наличии в структуре крупных первичных выделений α-твердого раствора инструментально фиксируемая температура окончания α+β→β-превращения оказывается выше равновесной Тпп, определяемой металлографическим методом. Исходя из этого, для каждой плавки сплава необходимо использование различных скоростей нагрева с тем, чтобы инструментально-фиксируемая температура соотносилась с температурой Тпп, определенной металлографическим методом пробных закалок.

Технической задачей предлагаемого изобретения является повышение точности и производительности определения температуры полиморфного превращения двухфазных титановых сплавов с помощью метода дифференциального термического анализа.

Для решения указанной технической задачи предложен способ определения температуры полного полиморфного превращения жаропрочных двухфазных титановых сплавов (α+β)-мартенситного класса, включающий предварительную подготовку структуры сплава и его исследование методом дифференциального термического анализа (ДТА) при непрерывном нагреве образца сплава и отличающийся тем, что предварительную подготовку структуры осуществляют посредством многостадийной термической обработки исследуемого образца, которую проводят непосредственно в приборе ДТА в атмосфере очищенного аргона, причем предварительная многостадийная термическая обработка включает ускоренный нагрев в однофазную β-область, переохлаждение ниже температур активного диффузионного распада β-твердого раствора, кратковременную выдержку и повторный нагрев в однофазную область с предварительно заданной контролируемой скоростью, в ходе которою проводят фиксацию зависимости ДТА-сигнала от температуры и расчет значений производной ДТА-сигнала, а температуру окончания полною полиморфного превращения определяют по максимуму на кривой первой производной ДТА-сигнала при повторном высокотемпературном нагреве.

Изобретение поясняется графическими материалами, где на фиг.1 изображена схема температурной программы ДТА-экспериментов, на фиг.2 - микроструктуры образцов сплава ВТ3-1, закаленных с различных температур, на фиг.3, 4 - участки ДТА-кривых повторного непрерывного высокотемпературного нагрева исследуемых образцов сплавов ВТ3-1 и ВТ8М и рассчитанные зависимости частных производных ДТА-сигнала от температуры.

Порядок операций в указанном способе определения температур полного полиморфного превращения сплава ВТ3-1 следующий:

1. Образец исследуемой плавки сплава помещается в измерительную ячейку прибора ДТА.

2. Термокамера измерительного прибора заполняется инертной атмосферой, в качестве которой используется аргон технической чистоты дополнительно очищенный адсорбционным методом, причем в термокамере прибора в течение всего эксперимента должно поддерживаться избыточное давление (относительно атмосферного) контролируемой атмосферы.

3. Образец анализируемого сплава нагревается в однофазную β-область с максимальной, реализуемой используемым прибором, скоростью.

4. Образец непосредственно после окончания нагрева переохлаждается до температур 600…650°C (ниже интервала высокотемпературного распада β-твердого раствора большинства жаропрочных двухфазных α+β-сплавов мартенситного класса) с максимально-реализуемой скоростью на используемом приборе дифференциального термического анализа.

5. Образец выдерживается при температуре переохлаждения в течение нескольких минут для выравнивания температуры по его сечению.

6. После окончания изотермической выдержки производится повторный нагрев образца сплава в однофазную β-область со скоростью, выбираемой индивидуально для каждой марки сплава.

7. После проведения эксперимента производится расчет частной производной первого порядка численным методом исходного ДТА-сигнала по времени.

8. Температура окончания полиморфного превращения после обработки по указанному режиму определяется по максимуму на кривой частной производной первого порядка.

Это техническое решение подтверждено исследованиями плавок двухфазных титановых сплавов мартенситного класса ВТ8М и ВТ3-1.

Металлографическими исследованиями установлено, что температуры Тпп исследуемых плавок (по методу пробных закалок) равны 973°C и 980°C для сплавов ВТ3-1 и ВТ8М соответственно (фиг.1). По предлагаемому способу: Тпп сплава ВТ3-1 составляет 977°C и 982°C для сплава ВТ8М.

Образец исследуемого сплава размерами 3×3×3 мм (Д×В×Ш) помещается в измерительную ячейку прибора ДТА NETZSCH «STA 449C Jupiter» (максимальные скорости нагрева и охлаждения - 50°/мин) и обрабатывается по режиму, схема которого показана на фиг.1. При обработке фиксируются зависимости ДТА-сигнала от температуры при различных скоростях повторного нагрева в однофазную β-область (фиг.3, 4).

После окончания эксперимента производится численный расчет частной производной первого порядка исходного ДТА-сигнала по времени и построение зависимостей значения производной от текущей температуры.

Протекание полиморфного α+β→β-превращения при нагреве происходит с поглощением энергии (то есть процесс полиморфного превращения является эндотермическим) [11], поэтому при непрерывном нагреве образца исследуемого сплава на кривой ДТА в температурной области полиморфного превращения фиксируется эндотермический эффект. При этом, на построенной зависимости значения частной производной ДТА от температуры в температурной области нисходящей ветви эндотермического эффекта наблюдается локальный максимум.

Совместный анализ полученных зависимостей производной ДТА-сигнала от температуры показывает, что для сплава ВТ3-1 скорость повторного высокотемпературного нагрева 20°/мин обеспечивает возможность определения Тпп с точностью не ниже точности метода пробных закалок - фиг.3. Для сплава ВТ8М - скорость повторного нагрева, обеспечивающая расчет Тпп предлагаемым способом - 50°/мин.

Пример.

Образцы сплавов ВТ3-1 и ВТ8М помещались в измерительную ячейку прибора синхронного термического анализа NETZSCH «STA 449C Jupiter» и обрабатывались по режиму, схема которого показана на фиг.1. При обработке проводилась запись зависимостей ДТА-сигнала от температуры при различных скоростях повторного нагрева в однофазную β-область. После окончания эксперимента был проведен численный расчет частных производных первого порядка исходного ДТА-сигнала по времени и построены зависимости значений производной от текущей температуры (фиг.3, 4) для всех исследованных скоростей нагрева. Путем совместного анализа полученных зависимостей производной ДТА-сигнала от температуры были выбраны скорости повторного нагрева образцов для определния Тпп предлагаемым способом - 20°/мин для сплава ВТ3-1, 50°/мин для сплава ВТ8М.

Предлагаемый способ определения температуры полиморфного превращения в двухфазных титановых сплавах позволяет повысить точность определения температуры окончания полиморфного превращения жаропрочных двухфазных титановых сплавов (α+β)-мартенситного класса.

Источники информации

1. Металлография титановых сплавов. Под ред. Аношкина Н.Ф., Бочвара Г.А., Ливанова В.А. и др. М., Металлургия, 1980, с.36.

2. Авторское свидетельство №394709, G01N 25/02, 1973, №34, с.142.

3. Б.А. Колачев, Ю.Б. Егорова, С.Б. Белова. О связи температуры α+β→β-перехода промышленных титановых сплавов с их химическим составом / Металловедение и термическая обработка металлов. 2008. №8 (638), с.10…14.

4. Патент РФ 2248539, G01K 9/00, G01N 25/02.

5. Заявка на изобретение RU 2010134056, 13.08.2010.

6. Рыжков М.А., Попов А.А. Методические вопросы построения термокинетических диаграмм превращения переохлажденного аустенита в низколегированных сталях / Металловедение и термическая обработка металлов. №12 (666). 2010. с.37…41.

7. ASTM A 1033-04. Standard Practice for Quantitative Measurement and Reporting of Hypereutectoid Carbon and Low-Alloy Steel Phase Transformations. ASTM, 2004. 14 p.

8. TIAN Fei, ZENG Wei-dong, MA Xiong, SUN Yu, ZHOU Yi-gang. Measurement of beta transus temperature of BT25 titanium alloy by physical analysis and metal lographic observation methods / Transactions of Materials and Heat Treatment. 2011. Issue 5.

9. Carton M., Jacques P., Clement N., Lecomte-Beckers J. Study of Transformations and Microstructural Modifications in Ti-LCB and Ti-555 Alloys Using Differential Scanning Calorimetry / Ti-2007 Science and Technology. 2007. pp.491…494.

10. Д.В. Гадеев, А.Г. Илларионов, А.А. Попов, М.А. Рыжков, Е.В. Колосова, М.А. Попова, П.С. Альтман, Н.Н. Бондарюк. Использование метода термического анализа для определения температуры полного полиморфного превращения двухфазного титанового сплава / Научно-технический журнал «Титан». 2010. №1. С.24-30.

11. Handbook of thermal analysis and calorimetry: Principles and Practice / Michael E. Brown. London: Chapman and Hall, V.2. 1998. - 725 p.

Способ определения температуры полного полиморфного превращения жаропрочных двухфазных титановых сплавов (α+β)-мартенситного класса, включающий предварительную подготовку структуры сплава и его исследование методом дифференциального термического анализа (ДТА) при непрерывном нагреве образца сплава, очищающийся тем, что предварительную подготовку структуры осуществляют посредством многостадийной термической обработки исследуемого образца, которую проводят непосредственно в приборе ДТА в атмосфере очищенного аргона, причем предварительная многостадийная термическая обработка включает ускоренный нагрев в однофазную β-область, переохлаждение ниже температур активного диффузионного распада d-твердого раствора, кратковременную выдержку и повторный нагрев в однофазную область с предварительно заданной контролируемой скоростью, в ходе которого проводят фиксацию зависимости ДТА-сигнала от температуры и определяют значение производной ДТА-сигнала, а температуру окончания полного полиморфного превращения определяют по максимуму на кривой первой производной ДТА-сигнала при повторном высокотемпературном нагреве.



 

Похожие патенты:

Изобретение относится к области определения физических параметров пластовых флюидов и может быть использовано в промышленных и научно-исследовательских лабораториях для определения температуры кристаллизации парафинов в нефти.

Изобретение относится к области физико-химического анализа и может быть использовано при тепловых испытаниях. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный круглый нагреватель.

Изобретение относится к области исследования или анализа небиологических материалов путем определения их химических или физических свойств, конкретно, исследования фазовых изменений путем удаления какого-либо компонента, например, испарением, и взвешивания остатка.

Изобретение относится к физико-химическому анализу вещества, а именно к способу построения солидуса. .

Изобретение относится к испытаниям смазочных материалов термоокислительной стабильности и может быть использовано в лабораториях при исследовании влияния металлов на окислительные процессы, происходящие в смазочных материалах, для определения каталитической активности.

Изобретение относится к области исследования процессов полиморфных превращений в металлах при высоких температурах и может быть использовано в процессе пластическо-деформационного формообразования материалов.

Изобретение относится к аналитическому приборостроению и, в частности, к комплексам, предназначенным для определения термической стойкости различных веществ. .

Изобретение относится к приборостроению. .

Изобретение относится к исследованию вибрационным методом с использованием измерительного сферического зонда малого диаметра сдвиговой вязкости небольших объемов жидкости с одновременным измерением ее текущей температуры в зоне измерения вязкости.

Использование: для определения фазового состояния газожидкостного потока в контрольной точке вертикального сечения трубопровода. Сущность: заключается в содержании устройством для определения фазового состояния газожидкостного потока измерительного устройства и терморезистивного датчика фазового состояния, включающего расположенную вдоль оси движения потока и жестко закрепленную одной короткой стороной печатную плату с установленным на ней чувствительным элементом, выполненным в виде подложки, на которой размещен пленочный резистор (терморезистор) в «точечном» исполнении. Чувствительный элемент установлен в контрольной точке по вертикальной оси поперечного сечения трубопровода и соединен с измерительным устройством, которое содержит измерительную схему и микроконтроллер с программным управлением и предназначено для измерения изменения сопротивления терморезистора, связанного с изменением фазового состояния среды в горизонтальных слоях газожидкостного потока, и обработки сигнала. При этом чувствительный элемент датчика одной короткой стороной подложки закреплен на краю короткой незакрепленной стороны печатной платы. Пленочный резистор (терморезистор), размещенный на подложке, смещен к краю свободной короткой стороны подложки и расположен на расстоянии не более 0,5 мм от этого края. Контактные площадки, предназначенные для присоединения подложки к печатной плате, выполнены напротив терморезистора у противоположной короткой стороны подложки. Технический результат: повышение быстродействия устройства для определения фазового состояния газожидкостного потока. 5 ил.

Изобретение относится к области тепловых исследований свойств жидкостей и может быть использовано для исследования динамических процессов термостимулированной структурной перестройки жидкостей. Заявлен способ исследования теплофизических свойств жидкостей, при котором в металлической кювете с пробой жидкости, снабженной датчиком температуры, размещают металлический зонд вибровискозиметра, снабженный датчиком температуры. Зонд приводят в режим гармонических колебаний, изменяют температуру кюветы посредством управляемого устройства охлаждения-нагрева. Измеряют температуру, амплитуду, фазу, частоту колебаний зонда и определяют плотность, вязкость и температуропроводность жидкости в зависимости от ее температуры. Также измеряют зависимость от температуры оптического пропускания жидкости в непосредственной близости от зонда для моментов прохождения зондом его равновесного положения. Устройство для осуществления способа включает кювету, управляемое устройство охлаждения-нагрева, сферический металлический зонд вибровискозиметра, размещаемый внутри кюветы. Зонд и кювета снабжены датчиками температуры. Также кювета снабжена волоконно-оптическим датчиком оптического пропускания жидкости, установленным в непосредственной близости от зонда. Технический результат: повышение точности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике. Способ основан на экспериментальном определении температуры лавинообразного распада охлаждающей жидкости на горячей поверхности, в статических условиях, без потока жидкости. Технический результат - упрощение процесса отбраковки различных партий охлаждающей жидкости, уменьшение количества вещества в исследуемой пробе, что в свою очередь обеспечивает безопасность персонала, проводящего исследования. 1 ил.

Изобретение относится к области инновационных технологий и может быть использовано для повышения эффективности определения функциональных параметров полимерных композиционных материалов, определяющих эффективность перспективных технических систем. Заявлен способ определения температуры стеклования полимерных композиционных материалов на основе тетразола, согласно которому температуру стеклования определяют по изменению наклона на графике температурной зависимости обратной величины действительной части комплексной диэлектрической проницаемости 1/ε′=f(T). Технический результат - повышение точности и достоверности определения температуры стеклования полимерных композиционных материалов на основе тетразола. 4 ил., 1 табл.

Изобретение относится к пограничной области между физикой, химией и биологией и может быть использовано в научных и промышленных лабораториях для определения параметров фазового перехода в воде и влияния на них условий (давление, температура), добавок веществ и полей. Предлагается способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов измерением теплового эффекта разбавления раствора амфифила растворами ПЭО в зависимости от концентрации амфифила. Технический результат - повышение достоверности идентификации и разделения двух осциллирующих состояний системы. 3 з.п. ф-лы, 1 ил.

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу. Нагревают исследуемый образец с постоянной скоростью с помощью индуктора. Автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора. Для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(Tобр.), где W - относительная мощность индуктора, %, Tобр. - температура исследуемого образца, °C. По построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке. Затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр.) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр.=f(Tобр.). Определяют начало и окончание фазовых превращений 1 рода в виде критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от пулевого уровня на фоне изменения функции Δl=f(Tобр.). Определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) по положению максимума первой производной относительной мощности индуктора. Технический результат - повышение точности определения начала и конца фазовых превращений 1 и 2 рода в исследуемом металлическом материале. 5 ил.

Изобретение относится к термическому анализу веществ и может быть использовано для определения содержания металлических веществ в полупроводниковых материалах. Способ определения содержания металлических включений в полупроводниковых материалах заключается в охлаждении предварительно нагретых исследуемого и эталонного веществ, помещенных на сенсорах из анизотропных элементов с термоэлектрическими свойствами. Измеряют дифференциальный тепловой поток от температуры и по величине скачков на этой зависимости определяют искомую величину. При этом эталон и исследуемый образец, приготовленный в виде порошка массой ≤1 мг с дисперсностью ≈0,1 мг, располагают непосредственно на тепловых сенсорах. Нагревают воздействием инфракрасного лазера с длиной волны 10,6 мкм в течение 1-5 секунд на 100-200 градусов выше температуры плавления микровключений галлия. Затем с такой же скоростью осуществляют закалку расплава галлия с образованием жидкой фазы β-Ga. Далее снимают искомую зависимость при термоэлектрическом охлаждении в области температур кристаллизации фазы β-Ga при температуре -25°C и при превращении β-Ga в α-Ga при температуре -90°C. Технический результат - повышение чувствительности определения галлиевых микровключений для контроля качества полупроводниковых материалов. 3 ил.

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах. Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, в котором для определения энергии активации фазовых превращений определяют энергию активации образования зародышей новых ферритной и цементитной фаз и энергию активации роста упомянутых зародышей. Проводят закалку стальных образцов, отпуск упомянутых образцов при различных температурах, определяют количество микроструктурных объектов (N), образующихся при распаде мартенсита, и среднюю площадь зерна (Scp), с помощью которой определяют температурный коэффициент (αr) приращения среднего диаметра зерна по формуле: α r = Δ с р Т , где Δ с р = S с р , Т - температура отпуска, °С. Затем строят график зависимости натурального логарифма количества микроструктурных объектов (N) как функцию обратной величины произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации образования зародышей ферритной и цементитной фаз. Затем строят график зависимости натурального логарифма температурного коэффициента (αr) приращения среднего диаметра зерна как функцию обратного произведения постоянной Больцмана и температуры (RT) в виде прямой и по тангенсу угла наклона прямой определяют энергию активации роста упомянутых зародышей. Энергию активации фазовых превращений при распаде мартенсита в стали определяют как сумму энергий активации образования зародышей ферритной и цементитной фаз и энергии активации роста упомянутых зародышей. Обеспечивается повышение точности определения энергии активации при распаде мартенсита закаленной стали и возможность оценки доли энергии активации, отдельно приходящейся на энергию активации зародышеобразования и энергию активации роста новой фазы. 7 ил., 1 табл.

Изобретение относится к области исследования материалов и может быть использовано для исследования вязкостно-температурных свойств жидкости и количественной оценки интенсивности и динамики структурных превращений в процессе подбора состава смазочных композиций моторных масел на стадии их разработки. Способ включает регистрацию процессов термодинамического структуропреобразования путем определения термоэнергетической функции каждой пробы, при этом приготавливают несколько проб масла с различным, точно известным количеством депрессорной присадки в них, для определения степени интенсивности структуропреобразования каждой пробы исследуемого масла пробу непрерывно с заданной скоростью охлаждают от комнатной температуры до температуры застывания, определяют температурные области структуропреобразования исследуемого масла по безразмерному динамическому критерию подобия температуровязкостных свойств ηδ, а степень интенсивности структуропреобразования исследуемого масла в указанных температурных областях количественно выражают через изменение термоэнергетической функции исследуемого масла Е(Т), определяемой по формуле: Е(Т)=(1/2-ηδ(T))·RT, где R - универсальная газовая постоянная; Т - текущая абсолютная температура масла; Θ - скорость изменения температуры; η - динамическая вязкость; ηδ=δη(Т, Θ)/δТ; затем определяют среднюю интенсивность микроструктурных процессов в каждой пробе через среднеквадратическое отклонение термоэнергетической функции. Оптимальное содержание депрессорной присадки определяют как соответствующее пробе с максимальной средней интенсивностью микроструктурных процессов. Достигается повышение точности и достоверности определения. 2 з.п. ф-лы, 1 табл.

Блок держателя нанокалориметрического сенсора, предназначенный для размещения в дифрактометре на X-Y-Z движителе (столике), дает возможность проведения экспериментов с одновременным использованием данных методов, что позволяет проводить in-situ исследования структуры и теплофизических свойств материалов различного типа. Держатель представляет собой пластину из инертного материала, на которой есть возможность жесткого пространственного крепления электрической платы, обеспечивающей переход от 20-контактного разъема держателя нанокалориметрического сенсора к 25-контактному разъему D-Sub блока управления нанокалориметра. Также данная плата имеет возможность жесткого пространственного крепления на любом X-Y-Z движителе стандартных конструкций, использующихся в рентгеновских дифрактометрах. Технический результат - возможность жесткого закрепления термопары вблизи рабочей области нанокалориметра и уменьшение шумов электрических сигналов прибора. 4 з.п. ф-лы, 7 ил.
Наверх