Компаратор для измерения солености морской воды


 


Владельцы патента RU 2498284:

Федеральное государственное бюджетное учреждение "Арктический и Антарктический научно-исследовательский институт" (ФГБУ "ААНИИ") (RU)

Изобретение может быть использовано в качестве рабочего и эталонного средства измерений. Компаратор согласно изобретению содержит первичный преобразователь температуры и индуктивный первичный преобразователь электрической проводимости с входным и выходным тороидальными трансформаторами, питающий генератор синусоидального напряжения, трансформаторный делитель напряжения, цифровой и аналоговый компенсаторы тока с двухцикловым режимом уравновешивания, электронный блок, сопряженный с компьютером, термостат электронного блока, при этом индуктивная ячейка помещена в активный водяной термостат с фиксированной температурой, выполнена проточной, во внутренней полости которой размещены первичные преобразователи температуры и электрической проводимости. Изобретение обеспечивает повышение точности измерения солености и температуры пробы морской воды. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области гидрофизических измерений и может быть использовано в качестве рабочего и эталонного средства измерений солености морской воды в соответствии с шкалой практической солености 1978 (ШПС-78) [1. ГСССД 77-84. Морская вода.. Шкала практической солености. - М., Госстандарт, 1986]

Известны устройства типа компараторов для измерения относительной электропроводимости морской воды методом сравнения с эталонной пробой морской воды, каковой является международный стандартный образец «нормальная» морская вода, аттестуемый по значению солености 35 ПЕС и значению относительной электрической проводимости K15 [2. Seawater Standards-URL. http://www.osil.co.uk/Products.… Дата обращения: 9.02.2012]. Основу таких компараторов составляет кондуктометрическая ячейка контактного или бесконтактного принципа действия. Например, известен солемер [3. СОЛЕМЕР.. Патент RU 2365909 C2 от 27.08.09 МПК G01N 27/22 (2006.01)], содержащий две бесконтактные индуктивные ячейки, в одну из которых заливается эталонная проба «нормальная» морская вода, а в другую - исследуемая проба воды. Соленость воды определяется по соотношению удельных проводимостей эталонной и исследуемой проб воды. Для достижения высокой точности измерений в устройстве используется трансформаторный преобразователь код-напряжение, переключатели режимов работы, усилители, синхронный детектор, стрелочный блок индикации. Устройство обеспечивает повышение точности измерений за счет увеличения коэффициентов преобразования индуктивных ячеек. Недостатком данного устройства является ручной способ измерения электропроводимости проб воды путем переключения режимов трансформаторного преобразователя код-напряжение, ориентируясь на показания стрелочного индикатора. Последующее вычисление солености по соотношению измеренных электропроводимостей, в соответствии с ШПС-78, также выполняется вручную, что резко снижает производительность работы.

Известен также способ и устройство для измерения относительной электропроводимости морской воды с ячейкой индуктивного типа [4. СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УДЕЛЬНОЙ ЭЛЕКТРОПРОВОДИМОСТИ МОРСКОЙ ВОДЫ Патент RU 2366937 C2 от 10.09.2009 МПК G01N 27/06]. В этом устройстве высокая разрешающая способность измерений электропроводимости воды достигается путем измерения выходного сигнала ячейки за два цикла. В первом цикле осуществляется цифровое измерение основной части сигнала путем дискретного уравновешивания от эталонного делителя напряжения. Во втором цикле осуществляется измерение остаточной части сигнала путем аналогового уравновешивания нулевым методом с последующим преобразованием полученного результата в цифровую форму. Окончательный результат измерения получают суммированием отсчетов первого и второго циклов. Для реализации способа двухциклового измерения данное устройство содержит синусоидальный генератор, питающий индуктивную ячейку, трансформаторный делитель напряжения и электронную схему, сопряженную с компьютером.

Достоинством данного способа и устройства является высокая разрешающая способность и автоматический режим измерений за счет использования компьютера, включенного в состав изделия. Недостатком устройства является недостаточная точность измерений, требуемая для эталонного компаратора, что обусловлено несовершенством конструкции прибора и в частности индуктивной ячейки. Основной недостаток заключается в отсутствии термостабилизации ячейки и недостаточной механической жесткости корпуса ячейки, что проявляется в нестабильности ее «геометрической константы» в течение срока эксплуатации.

Наиболее близким техническим решением к заявленному изобретению по совокупности признаков является электросолемер модели ГМ-2007, выпускаемый Сафоновским заводом «Гидрометприбор» [4. Госреестр средств измерений. Электросолемер 2007. №42444-09 от 08.10.2009]

Электросолемер предназначен для измерения относительной электропроводимости и температуры проб морской воды и вычисления солености в соответствии с ШПС-78 по измеренным значениям с помощью компьютера входящего в состав электросолемера. Для проведения измерений электросолемер должен быть откалиброван по эталонной пробе «нормальная» морская вода.

В состав электросолемера входят следующие узлы: бесконтактная индуктивная ячейка наливного типа, питающий генератор синусоидального напряжения, трансформаторный делитель напряжения, электронная схема, реализующая двухцикловой режим измерений, термометр сопротивления, измеряющий температуру пробы воды в ячейке и термостат электронной схемы.

Согласно паспортным данным погрешность измерения солености данного прибора составляет 0.005 практических единиц солености (ПЕС), что уступает лучшим зарубежным аналогам всего в 2 раза (например, прибору "Autosal-8400 " канадской фирмы "Guildline"

[5. "Autosal" Laboratory Salinometer - URL Autosal 8400/manuals/ Дата обращения: 9.02.2012].

Недостатками электросолемера ГМ-2007, ограничивающими потенциальную точность измерения, являются в частности:

- недостаточная промываемость наливной ячейки, требующая многократного ополаскивания;

- недостаточная жесткость ячейки, изготовленной из прозрачной пластмассы;

- отсутствие термостатирования пробы воды;

- не оптимальная рабочая частота тороидальных трансформаторов электронной схемы и индуктивной ячейки.

Задачей настоящего изобретения является повышение точности измерения солености морской воды до уровня мировых стандартов. Указанная цель достигается усовершенствованием конструкции прототипа и оптимизацией режима работы индуктивной ячейки путем выбора элементов с оптимальной рабочей частотой.

Технический результат достигается тем, что индуктивная ячейка помещена в активный водяной термостат с фиксированной температурой и выполнена проточной с входным и выходным штуцерами, а в ее внутренней полости размещены первичные преобразователи температуры и электрической проводимости, Кроме того, в индуктивную ячейку введены следующие усовершенствования:

- корпус ячейки выполнен из кварцевого стекла или керамики с малым температурным коэффициентом расширения;

- ячейка дополнена теплообменником, подключенным к ее входному штуцеру и размещенным в водяном термостате вместе с ячейкой;

- два тороидальных трансформатора индуктивной ячейки и трансформаторы делителя напряжения выполнены на витых ленточных сердечниках из пермаллоя или трансформаторной стали, предназначенных для использования на низких звуковых частотах;

- обмотки двух трансформаторов индуктивной ячейки распределены по всему периметру ленточных сердечников с равномерным шагом независимо от числа витков.

Указанные усовершенствования обеспечивают получение заявленного эффекта по следующим причинам:

- выполнение индуктивной ячейки проточной по сравнению с ячейкой наливного типа в прототипе обеспечивает контроль качества промывки от остатков предшествующей пробы в процессе измерения. В итоге повышается точность и воспроизводимость измерений солености проб морской воды;

- термостатирование проточной ячейки в водяном термостате, по сравнению с наливной ячейкой, контактирующей с окружающей средой, устраняет градиенты температуры и электропроводимости в объеме пробы и тем самым значительно повышает точность измерений;

- термостатирование ячейки при температуре 22°C со стабильностью 0.02°C позволяет повысить точность измерения температуры до требуемого уровня 0.001°C за счет уменьшения диапазона измерения;

- изготовление корпуса ячейки из кварцевого стекла или керамики с малым температурным коэффициентом расширения, а также с большей механической жесткостью по сравнению с пластмассовым корпусом обеспечивает многократное повышение стабильности так называемой «геометрической константы» ячейки, что непосредственно влияет на точность измерения электропроводимости пробы;

- дополнение конструкции компаратора теплообменником, через который проба воды прокачивается в ячейку, ускоряет наступление температурного равновесия пробы с температурой термостата. В итоге повышается производительность труда при производстве измерений;

- исполнение тороидальных трансформаторов первичного преобразователя электрической проводимости на ленточных сердечниках из пермаллоя или трансформаторной стали, вместо сердечников из феррита марки 6000НМ, позволяет изменить режим работы ячейки и перейти на использование рабочей частоты 250 Гц вместо используемой в прототипе частоты 8 кГц. Эта мера позволяет исключить влияние так называемого скин-эффекта в объеме ячейки. Скин-эффект проявляется в том, что при протекании тока по проводнику плотность тока неравномерно распределена по сечению этого проводника. Плотность тока в глубинных слоях проводника ослабляется по отношению плотности тока на поверхности. Распределение тока по сечению проводящего канала зависит от удельной электропроводимости, частоты тока и геометрических размеров поперечного сечения. Чем больше электропроводимость, геометрические размеры поперечного сечения и частота тока, тем сильнее проявляется скин-эффект. В морской воде скин-эффект проявляется относительно слабо по причине малой электропроводимости. Толщина скин-слоя на частоте 10 кГц составляет 1.15 м, на глубине которого плотность тока снижается в 2.7 раза. Применительно к кондуктометрической ячейке скин-эффект проявляется в том, что ее «геометрическая константа» изменяется в зависимости от солености воды. В ячейке диаметром проводящего канала 30 мм, на рабочей частоте 8 кГц, в диапазоне солености от 0 до 40 ПЕС скин-эффект вызывает нелинейность градуировочной характеристики около 0.1%.

На низкой частоте 250 Гц влиянием скин-эффекта на линейность характеристики можно пренебречь, поэтому в зарубежных эталонных установках (например, в солемере Autosal 8400) используется именно такая частота

- Исполнение ячейки с равномерным распределением витков обмоток значительно снижает паразитное влияние входного и выходного трансформаторов друг на друга через внешнее магнитное поле. Известно, что тороидальный сердечник с обмоткой не имеет внешней части магнитного поля, если магнитные характеристики сердечника однородны по его длине, а обмотка выполнена с равномерным шагом по всему периметру. Если обмотка состоит всего из одного или двух витков, то прибегают к использованию жгутового способа намотки с параллельным соединением витков.

В предлагаемой конструкции трансформаторов условия однородности выполняются в достаточной мере, что практически исключает взаимное влияние трансформаторов. В свою очередь такое исполнение позволяет упростить конструкцию ячейки, исключив глухие электромагнитные экраны поверх обмоток. Рекомендуемые меры позволяют практически полностью исключить так называемую «квадратурную помеху» и обусловленную этой помехой дополнительную погрешность измерения.

На фиг.1 изображена блок-схема компаратора для измерения солености морской воды.

Устройство содержит индуктивную проточную ячейку 1 с входным и выходным штуцерами, первичные преобразователи электрической проводимости 2 и температуры 3, размещенные во внутренней полости индуктивной ячейки и подключенные к электронной схеме, реализующей измерение выходных сигналов первичных преобразователей и сопряжение с компьютером, активный водяной термостат 4, обеспечивающий заданную термостабилизацию температуры, теплообменник 5, подключенный к входному штуцеру ячейки и к расходной емкости пробы морской воды 6, сливной стакан 7, подключенный к выходному штуцеру ячейки.

Устройство работает следующим образом Исследуемая проба морской воды или эталонного стандартного образца из расходной емкости 6 через теплообменник 5 поступает в ячейку 1 объемом 30 см3, в которой с помощью первичных преобразователей электрической проводимости 2 и температуры 3 производится измерение электрической проводимости и температуры исследуемой пробы в ячейке. По измеренным значениям температуры и относительной электропроводимости вычисляется соленость пробы с помощью компьютера. Температура воды в активном термостате объемом 2 л поддерживается на заданном уровне (22±0.1)°C со стабильностью ±0.02°C. При прохождении через теплообменник проба воды доводится до температуры термостата. Проба воды поступает в ячейку с малой, но регулируемой скоростью порядка 0.5 см3/с.. Заполнение ячейки происходит в течение 1 минуты. После заполнения ячейки вода продолжает поступать, а ее излишек медленно в капельном режиме сбрасывается в сливной стакан 7.

Перед проведением измерений компаратор калибруется по стандартному раствору «нормальная» морская вода.

Измерение электропроводимости и температуры в проточной ячейке осуществляется непрерывно в автоматическом режиме с заданной цикличностью, например 15 с.

Температура воды в ячейке измеряется первичным преобразователем температуры с точностью 0.001°C. Термостатирование облегчает задачу точного измерения температуры благодаря узкому диапазону измерения.

Результат вычисления солености считывается с экрана компьютера после установления стабильного показания, которое наступает в течение примерно двух минут при скорости прокачки пробы 0.1 см3/с.

После завершения измерений солености одной пробы ячейка опорожняется в сливной стакан продувкой воздухом в течение достаточного времени, необходимого для удаления ее следов. Затем ячейка заполняется новой пробой.

1. Компаратор для измерения солености проб морской воды по относительной электропроводимости морской воды, содержащий первичный преобразователь температуры и индуктивный первичный преобразователь электрической проводимости с входным и выходным тороидальными трансформаторами, питающий генератор синусоидального напряжения, трансформаторный делитель напряжения, цифровой и аналоговый компенсаторы тока с двухцикловым режимом уравновешивания, электронный блок, сопряженный с компьютером, термостат электронного блока, характеризующийся тем, что индуктивная ячейка помещена в активный водяной термостат с фиксированной температурой, выполнена проточной, во внутренней полости которой размещены первичные преобразователи температуры и электрической проводимости,

2. Компаратор по п.1, характеризующийся тем, что корпус ячейки выполнен из кварцевого стекла или керамики с малым температурным коэффициентом расширения.

3. Компаратор по п.1, характеризующийся тем, что ячейка дополнена теплообменником, подключенным к ее входному штуцеру и размещенным в водяном термостате вместе с ячейкой.

4. Компаратор по п.1, характеризующийся тем, что два тороидальных трансформатора индуктивной ячейки и трансформаторы делителя напряжения выполнены на витых ленточных сердечниках из пермаллоя или трансформаторной стали, предназначенных для использования на низких звуковых частотах.

5. Компаратор по п.1, характеризующийся тем, что обмотки двух трансформаторов индуктивной ячейки распределены по всему периметру ленточных сердечников с равномерным шагом независимо от числа витков.



 

Похожие патенты:

Готовят 1% стерильный раствор глюкозы на физиологическом растворе, который используют в качестве питательной среды. Подсоединяют к аспиратору марки «Бриз-1» поглотитель Зайцева, в колбе которого помещают 10 мл подготовленного 1%-ного раствора глюкозы.

Измеряют гидробиологические показатели - индекс сапробности по Пантле и Букку в модификации Сладечек. Одновременно измеряют гидрохимические показатели - водородный показатель, химическое потребление кислорода, концентрация растворенного кислорода и электропроводность.

Изобретение относится к области измерительной техники и может быть использовано для повышения достоверности измерений в кондуктометрии. .

Изобретение относится к технической биохимии, а именно к определению количества пектиновых веществ в растительном сырье. .

Изобретение относится к технической физике, а именно к области контроля параметров влажного пара, и может быть использовано для контроля истинного объемного паросодержания и скоростей фаз потока влажного пара в паропроводе парогенератора.

Изобретение относится к аналитической химии и может быть использовано для определения висмута(III) в технических объектах. .

Изобретение относится к способам исследования процессов гидродинамики жидких гомогенных и гетерогенных сред и может найти применение в химической, нефтехимической, биохимической, фармакологической, пищевой и других отраслях промышленности, а также в экологических процессах очистки сточных вод.

Изобретение относится к технической физике, а именно к анализу материалов путем бесконтактного фотометрического определения удельного электрического сопротивления (электросопротивления) нагреваемого тела в зависимости от температуры, в частности к определению относительной электропроводности металлов и сплавов в жидком состоянии.

Настоящее изобретение относится к аналитической химии и может быть использовано для определения свинца(II) в технических объектах. Способ определения свинца заключается в потенциометрическом титровании пробы комплексоном(III) с индикаторным электродом из металлического висмута с буферным раствором при рН 3,5-9,0. Изобретение позволяет определять свинец (II) при содержании 0,14-2,3 мг/мл раствора в электрохимической ячейке с ошибкой единичных определений не более 1%. Результатом является упрощение анализа при использовании нетоксичных материалов. 2 табл., 1 ил.

Настоящее изобретение относится к аналитической химии и может быть использовано для определения меди (II) в технических объектах. Способ определения меди заключается в прямом потенциометрическом титровании комплексоном (III) при рН от 4,1-9,0 с индикаторным электродом из металлического висмута в ацетатном буферном растворе. Изобретение позволяет определять медь (II) при ее содержании 32-660 мкг/мл раствора в электрохимической ячейке с ошибкой единичных определений не более 1%. Результатом является упрощение анализа при использовании нетоксичных материалов. 2 табл., 1 ил., 1 пр.

Способ контроля качества (безопасности) растительных масел и расплавленных жиров, который заключается в том, что измеряют удельную активную электропроводность растительного масла или расплавленного жира при различных частотах электромагнитных колебаний и разных температурах, при этом для контроля качества (безопасности) отбирают пробу исследуемого растительного масла или жира, делят пробу на две части, одну из которых подвергают окислению на воздухе при температурах 100…110°C до перекисного числа 10-12 мэкв/кг активного кислорода, перекисное число масла или жира определяют стандартными методами, затем готовят калибровочный образец растительного масла или расплавленного жира с максимально допустимым для пищевого масла или жира содержанием перекисных соединений (10 мэкв активного кислорода/кг), смешивая в определенных соотношениях по массе исходный и окисленный образец масла или жира, измеряют в полученном калибровочном образце в диапазоне частот от 1 до 200 кГц зависимость удельной активной электропроводности от частоты при двух температурах измерения, по пересечению указанных зависимостей находят характеристическую частоту электромагнитного поля, при которой характеристическая удельная активная электропроводность не зависит от температуры измерения, считают полученные значения характеристической частоты и характеристической удельной активной электропроводности максимально допустимыми нормативными значениями характеристической частоты и характеристической удельной активной электропроводности для данного пищевого масла или жира. Техническим результатом изобретения является разработка оперативного способа контроля снижения качества (безопасности) растительного масла при хранении. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе в модельных водных растворах методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении методом циклической вольтамперометрии, при котором происходит электрокаталитическое окисление глутатиона на графитовом электроде, модифицированного частицами серебра. Способ согласно изобретению включает модифицирование графитовых электродов коллоидными частицами серебра из золя серебра в течение 300 с при потенциале электролиза -1,0 В с последующей регистрацией анодных максимумов электроокисления глутатиона на анодной кривой при скорости развертки потенциала 100 мВ/с на фоне 0,1 М раствора NaOH в диапазоне потенциалов от -1,0 до 1,0 В, концентрацию глутатиона определяют по высоте анодных максимумов вольтамперных кривых в диапазоне потенциалов от 0,30 до 0,60 В относительно насыщенного хлоридсеребряного электрода методом добавок аттестованных смесей. Изобретение обеспечивает повышение чувствительности способа определения глутатиона. 2 пр., 1 табл., 2 ил.

Изобретение относится к области диагностики состава органических и неорганических жидкостей электрофизическими методами, в частности к оперативным методам контроля степени очистки растительных масел по стадиям процесса очистки (рафинации). Способ контроля процесса рафинации растительных масел согласно изобретению заключается в том, что на основании измерения достаточного количества образцов определяют в диапазоне электромагнитных колебаний от 1 до 200 кГц показатели характеристической частоты и характеристической удельной активной электропроводности данного вида растительного масла после каждой стадии регламентированного технологического процесса рафинации, которые считают нормативными. Отклонения характеристической удельной активной электропроводности, измеренной при характеристической частоте электромагнитного поля на отдельных стадиях, от нормативной используют как критерий отклонения степени очистки масла после каждой стадии процесса рафинации от установленной для соответствующей корректировки параметров технологического процесса. Техническим результатом заявляемого технического решения является разработка единого оперативного способа контроля степени очистки растительного масла после каждой стадии рафинации или после важнейших из этих стадий для установления соответствия степени очистки масла требованиям действующего технологического регламента на основе измерения характеристической частоты и характеристической удельной активной электропроводности растительного масла после каждой стадии рафинации. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области кондуктометрии и может быть использовано при физико-химических исследованиях растворов. Способ измерения электропроводности раствора электролита, размещенного в жидкостном контуре первого и второго первичных преобразователей с обмотками возбуждения, включенными в цепь генератора частоты, состоит в регистрации выходного сигнала напряжения каналов измерения в зависимости от концентрации раствора при условии, что измерение проводят в стабилизированном температурном поле, при этом согласно изобретению уровень чувствительности первого и второго первичных преобразователей определяется значением напряжения на выходном трансформаторе канала измерения в зависимости от концентрации раствора, размещенного в жидкостном контуре, его температуры, и находится в функциональной зависимости от напряжения и частоты источника питания обмотки возбуждения питающего трансформатора, причем измерение электропроводности раствора проводят с включением генератора на рабочую частоту, определяемую при экспериментальном исследовании растворов как оптимальную для исследуемого диапазона концентрации раствора; а регистрируют значение выходного сигнала напряжения каналов измерения, по значению которого и определяют электропроводность раствора. Изобретение обеспечивает повышение точности измерения электропроводности в широком диапазоне концентрации растворов электролита, включая (для водных растворов) микрограммы содержания солей в растворе. 2 ил.

Изобретение относится к электроаналитической химии, направлено на определение глутатиона и может быть использовано в анализе модельных водных растворов методом циклической вольтамперометрии по высоте анодного максимума на анодной кривой. Способ определения глутатиона заключается в определении методом циклической вольтамперометрии, при котором проводится электрокаталитическое окисление глутатиона на графитовом электроде, модифицированного коллоидными частицами золота. Техническим результатом изобретения является разработка более чувствительного способа определения глутатиона в модельных водных растворах методом циклической вольтамперометрии. 2 ил., 2 табл.

Использование: для определения электрической проводимости жидкостей. Сущность изобретения заключается в том, что устройство содержит кондуктометрический датчик контактного типа, электрод 1 датчика состоит из нескольких сегментов 2, 3 и 4, а электрод 5 выполнен сплошным и является общим для сегментов 2, 3 и 4. Устройство также содержит функциональный генератор 6, включающий интегратор 7, триггер Шмитта 8 и усилитель 9, и датчик температуры 15, микропроцессор 11, коммутаторы 10, 14. Первый, второй и третий выходы коммутатора 14 подсоединены к сегментам 2, 3 и 4. Технический результат: расширение диапазона измерения и повышение точности измерения электрической проводимости жидкости. 4 з.п. ф-лы, 1 ил.

Изобретение предназначено для определения чистоты нейтральных газов, используемых при производстве изделий электронной техники. Способ измерения концентрации примесей в нейтральных газах заключается в том, что анализируемый нейтральный газ подают в камеру, где находится чувствительный элемент, измеряют его электрическое сопротивление, по изменению величины которого судят о концентрации примеси, при этом в качестве чувствительного элемента используют деионизованную воду. Изобретение обеспечивает расширение диапазона определяемых концентраций в сторону меньших значений, а также упрощение конструкции используемого оборудования, уменьшение его стоимости и затрат на обслуживание. 2 ил.

Изобретение относится к аналитической химии и может быть использовано для анализа вод различного происхождения: питьевые воды, геотермальные источники, смывы хвостов обогащения, а также технологические сливы. Способ определения рения (VII) в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из интерметаллического соединения RexCuy заключается в том, что рений осаждают на поверхности графитового электрода вместе с медью, образуя сплав, накопление ионов рения на графитовом электроде в перемешиваемом растворе в присутствии ионов меди (II) проводят в течение 120-180 секунд при потенциале электролиза минус 1,0 В из фонового электролита 1 М HCl с последующей регистрацией анодных пиков селективного электроокисления меди из сплава с рением при скорости развертки потенциала 10-20 мВ/с, концентрацию ионов рения определяют по току анодного пика селективного электроокисления меди в диапазоне потенциалов от -0,4 до -0,1 В отн. нас. х.с.э., используя метод добавок аттестованных смесей. Изобретение обеспечивает возможность количественно определять содержание ионов рения (VII) в интервале содержаний 0,01-1 мг/дм3 по пику селективного электроокисления меди из сплава с рением, полученного на стадии предварительного электроконцентрирования. 2 ил., 1 пр., 2 табл.
Наверх