Способ включения в работу кулонометрической ячейки


 


Владельцы патента RU 2498285:

Общество с ограниченной ответственностью "Научно-производственное предприятие ОКБА" (RU)

Предложен способ включения в работу кулонометрической ячейки, применяемой в кулонометрических гигрометрах, состоящей из двух частей: рабочей и контрольной, расположенных во внутреннем канале стеклянного корпуса трех проволочных платиновых или родиевых геликоидальных электродов, один из которых является общим. Согласно изобретению подают постоянное напряжение разной величины на электроды кулонометрической ячейки, причем на контрольный электрод подается меньшее напряжение, а на рабочий электрод подается большее относительно общего электрода, при этом анализируемый газ подают со стороны контрольной части. Изобретение позволяет увеличить верхний предел измерений объемной доли влаги кулонометрического гигрометра и увеличить его срок службы. 1 ил.

 

Изобретение относится к области аналитического приборостроения и может быть использовано в кулонометрических гигрометрах, применяющих кулонометрические ячейки.

Для измерения влажности газов широкое распространение получили кулонометрические гигрометры. Относительная простота и высокая надежность способствовали их массовому внедрению в промышленность. Как правило, измеряемой величиной в этих гигрометрах является объемная доля влаги (ОДВ), а для измерения ОДВ используются кулонометрические ячейки с равномерным распределением поглотителя влаги по длине.

Известна кулонометрическая ячейка (А.с. №448774, G01n 27/02, патент №2228520), состоящая из двух частей: рабочей и контрольной, расположенных во внутреннем канале стеклянного корпуса, трехпроволочных платиновых или родиевых геликоидальных электродов, один из которых является общим, а два других электрода расположены между витками общего электрода с зазором между витками, пленки сорбента, покрывающей электроды и внутренний канал корпуса, выводов к наружной поверхности корпуса.

Условно принято, что электрод наибольшей длины называется общим, а два других электрода, имеющих длину по отношению к длине общего электрода, например, 75% и 25%, соответственно называются рабочим и контрольным. Та часть ячейки где расположен рабочий электрод называется рабочей частью, а та где расположен контрольный электрод - контрольной частью.

В качестве пленки сорбента применяется пленка частично гидратированного фосфорного ангидрида Р2О5 К электродам через выводы, расположенные на наружной поверхности корпуса подводится электрическое напряжение постоянного тока.

Анализируемый газ пропускается по внутреннему каналу корпуса со стороны рабочей части. В ячейке непрерывно происходит два процесса:

практическое полное поглощение влаги пленкой сорбента с образованием фосфорной кислоты и электролиз воды на кислород и водород под действием приложенного напряжения к электродам и регенерации фосфорного ангидрида, описываемые соотношениями:

P2O5+H2O→2HPO3

2HPO3→H2+½O2+P2O5

При известном расходе газа согласно закону Фарадея ток электролиза воды является мерой влагосодержания газа.

Известно, что при равномерном распределении сорбента по длине ячейки ОДВ в газе, проходящем по каналу, уменьшается в соответствии с естественным для подобных случаев экспотенциальным законом

Be=Bo e-α1

где Be - ОДВ в газе на расстоянии 1 от входа ЧЭ;

Во - ОДВ в газе на входе в чувствительный элемент.

коэффициент α в показателе экспоненты зависит от диаметра канала в ячейке, качества заполнения его сорбентом, межэлектродного напряжения, коэффициента диффузии, связанного с родом газа, его расхода.

Для выполнения условия полного поглощения влаги из анализируемого газа и электролиза кулонометрической ячейкой во время проведения анализа на электроды подается постоянное напряжение, во много раз превышающее потенциал разложения воды и составляет порядка 45-60 В.

Ввиду большой активности применяемого сорбента процессы поглощения влаги и электролиза проходят на начальном участке кулонометрической ячейки. Это выражается так, что плотность тока электролиза на первых витках будет намного выше чем во всей ячейки, что ведет к нагреванию начального участка ячейки и появлению перемычек между электродами. Все это уменьшает срок службы ячейки и ограничивает верхний предел измерений диапазона измерений ОДВ.

Целью настоящего изобретения является увеличение срока службы и увеличение верхнего предела диапазона измерений ОДВ кулонометрической ячейки.

На фигуре 1 представлена схема включения в работу кулонометрической ячейки.

Кулонометрическая ячейка конструктивно состоящая из двух частей: рабочей (lр) и контрольной (lк), расположенных во внутреннем канале стеклянного корпуса (1), трех проволочных платиновых или родиевых геликоидальных электродов (2, 3, 4), один из которых является общим, а два других электрода расположены между витками общего с зазором между витками, пленки сорбента (5), покрывающий электроды и внутреннюю поверхность корпуса, и выводов (6, 7, 8) от электродов к наружной поверхности корпуса, отличается от способа включения в работу прототипа тем, что газ подается со стороны контрольной части, а к электродам подводится разное постоянное напряжение, причем на рабочую часть подается большее напряжение (GP, 70-80B), а на контрольную часть меньшее (GK, 10-15 В), следовательно коэффициент (α) и в контрольной и рабочей частей чувствительного элемента будет разный, и в соответствии с формулой, приведенной выше, распределение ОДВ в контрольной и рабочей части будет разное. В контрольной части будет уменьшена поглощаемость влаги, а в рабочей части поглощаемость влаги будет увеличена. В результате этого будет выполнено условие полного поглощения влаги кулонометрической ячейкой. Ввиду того, что поглощаемость в контрольной части кулонометрической ячейки уменьшается и, соответственно, уменьшается ток электролиза. Следовательно, контрольная часть кулонометрической ячейки будет меньше нагреваться, что позволит увеличить верхний предел измерений, а уменьшение плотности тока в контрольной части кулонометрической ячейки ведет к увеличению срока службы ячейки. Использование предлагаемого способа включения в работу кулонометрической ячейки обеспечивает по сравнению с существующим способом следующие преимущества:

- использование данной кулонометрической ячейки в кулонометрических гигрометрах позволяет расширить верхний диапазон измерений;

- увеличить срок службы кулонометрического гигрометра.

Способ включения в работу кулонометрической ячейки, конструктивно состоящей из двух частей: рабочей и контрольной, расположенных во внутреннем канале стеклянного корпуса, трех проволочных платиновых или родиевых геликоидальных электродов, один из которых является общим, а два других электрода расположены между витками общего с зазором между витками, пленки сорбента, покрывающего электроды и внутренний канал корпуса, и выводов от электродов к наружной поверхности корпуса, отличающийся тем, что, с целью увеличения срока службы кулонометрической ячейки и увеличения верхнего предела диапазона измерений, анализируемый газ подается со стороны контрольной части ячейки, а к электродам кулонометрической ячейки подводится разное постоянное напряжение, причем на контрольную часть подводится меньшее напряжение, чем на рабочую.



 

Похожие патенты:

Изобретение относится к области биофизики и медицинской техники и может быть использовано в медицине и медицинской технике при создании электродных устройств для диагностических и лечебных целей.

Изобретение относится к измерительной технике, в частности к устройствам для измерения удельной электропроводности жидких растворов и расплавов в условиях действия внешних (сторонних) источников тока.

Изобретение относится к медицинской технике и предназначено для измерения электросопротивления кожи при диагностике аллергодерматозов. .

Изобретение относится к физическим методам измерения магнитных характеристик вещества, включая высокие температурные интервалы (до 1600°С). .

Изобретение относится к измерительной технике и обеспечивает измерение плотности тока в любом пространственном положении датчика без его поворота и без подгонки плотности тока.

Изобретение относится к измерительной технике, в частности к устройствам для измерения удельной электропроводности жидких сред в условиях действия сторонних источников тока, в том числе в локальных объемах с низкой плотностью тока.

Изобретение относится к измерительной технике, в частности к устройствам для измерения удельной электропроводности жидких растворов и расплавов в условиях действия внешних (сторонних) источников тока в том числе в локальных объемах растворов и расплавов с высокой вязкостью, а также для измерения плотности тока в локальных объемах вязким растворов и расплавов.

Изобретение относится к измерительной технике, в частности к устройствам для расплавления твердых веществ и последующего измерения удельной электропроводности полученных расплавов. Сущность изобретения: устройство для измерения удельной электропроводности расплавов содержит диэлектрическую трубку с расположенным в ней электродом, регистратор напряжения, первой клеммой подключенный к электроду, последовательно соединенные регистратор тока и переменный резистор, источник питания технологического процесса, используемый в качестве источника питания для измерения, причем электрод, входящий в установку для реализации электрошлакового процесса, выполняют неплавящимся, часть диэлектрической трубки охватывает электрод и может подниматься и опускаться по цилиндрической поверхности электрода с помощью рукоятки, закрепленной хомутом на электроде одновременно с термопарой в чехле, соединенной с потенциометром и рабочим концом врезанной в трубку посередине межэлектродного промежутка, а вторая клемма регистратора напряжения подключена к стальной пластине. Изобретение обеспечивает расширение технологических возможностей, повышение точности и упрощение процедуры измерения удельных электропроводностей. 1 ил.

(57) Изобретение относится к устройству для измерения электрических параметров твердых или жидких геологических образцов, таких как, например, горные породы, предпочтительно из нефтяных или газовых пластов-коллекторов, и насыщающие их текучие среды, содержащему полый корпус, выполненный из первой верхней половины и второй нижней половины, которые коаксиально скользят одна внутри другой, причем в указанном корпусе расположено гнездо для размещения по существу цилиндрического образца, при этом к указанному гнезду обращены две пары электродов, предназначенные для подвода тока в образец и для измерения напряжения на концах указанного образца, и отличающемуся тем, что указанные пары электродов являются парами копланарных электродов, каждая из которых расположена на одном конце указанного гнезда. Изобретение обеспечивает возможность создания устройства для измерения электрических параметров геологических образцов с использованием двух и четырех электродов с их быстрым чередованием и достаточной точностью. 14 з. п. ф-лы, 7 ил.

Изобретение относится к устройствам, обеспечивающим физические исследования материалов методом электропроводности. Датчик содержит два электрода, жестко соединенных между собой через диэлектрическую прокладку. При этом один (первый) электрод выполнен в виде цилиндра радиуса R0 и высоты h0 с N круглыми цилиндрическими сквозными отверстиями радиуса R, оси симметрии отверстий параллельны оси вращения цилиндра. Второй электрод выполнен в виде N круглых цилиндрических штырей радиуса r (r<R) и длины h, жестко закрепленных на цилиндрическом основании радиуса R0 ортогонально торцевой поверхности основания. Диэлектрическая прокладка выполнена в виде цилиндра радиуса R0 и высоты h1 с N цилиндрическими сквозными отверстиями радиуса r, оси симметрии отверстий параллельны оси вращения цилиндра, длина штырей второго электрода не должна превышать суммарной длины цилиндра первого электрода и цилиндра диэлектрической прокладки h≤h0+h1. Штыри второго электрода размещены по одному в отверстиях цилиндра первого электрода и отверстиях цилиндра диэлектрической прокладки так, что ось симметрии каждого отдельного штыря второго электрода и оси симметрии отверстия в цилиндре первого электрода и отверстия в цилиндре диэлектрической прокладки, внутри которых размещен штырь, совпадают. Технический результат заключается в обеспечении измерения удельной электропроводности по постоянному току жидких веществ с низкой удельной электропроводностью, в том числе в вязких растворах и расплавах, а также в повышении точности определения электропроводности. 1 ил.

Гигрометр // 2583872
Изобретение относится к области аналитического приборостроения и может быть использовано в устройстве гигрометров, применяющих кулонометрическую ячейку для измерения объемной доли влаги (ОДВ). Гигрометр содержит блок формирования газового потока и кулонометрическую ячейку. При этом с целью увеличения срока службы гигрометра анализируемый газ может подаваться как со стороны рабочей части, так и со стороны контрольной части кулонометрической ячейки. Техническим результатом является увеличение срока службы гигрометра. 1 ил.
Наверх