Импульсный невзрывной сейсмоисточник для водной среды



Импульсный невзрывной сейсмоисточник для водной среды
Импульсный невзрывной сейсмоисточник для водной среды
Импульсный невзрывной сейсмоисточник для водной среды

 


Владельцы патента RU 2498352:

Ивашин Виктор Васильевич (RU)
Иванников Николай Александрович (RU)
Пестряков Александр Евгеньевич (RU)
Узбеков Камиль Харрясович (RU)

Изобретение относится к области геофизики и может быть использовано при сейсморазведочных работах на акватории. Заявлен импульсный сейсмоисточник для водной среды, содержащий герметичный корпус, днище которого выполнено в виде эластичной мембраны, и помещенный внутри корпуса индукционно-динамический двигатель. Сейсмическая волна создается в результате прогиба мембраны якорем двигателя. При этом корпус индуктора двигателя имеет возможность перемещаться внутри корпуса сейсмоисточника. Технический результат: уменьшение создаваемых сейсмоисточником волн-помех и, как следствие, повышение его сейсмической эффективности. 3 ил.

 

Изобретение относится к источникам сейсмических волн и предназначено для проведения сейсморазведочных работ на покрытых водой территориях: реках, озерах, шельфах морей и т.д.

Известно принятое за аналог устройство, которое может быть использовано для возбуждения сейсмических волн при инженерно-геологических исследованиях морского дна (Патент СССР №1817707 A3 опубл. 23.05.93. Бюл. №19). Устройство содержит герметичный корпус, днище которого выполнено в виде мембраны. В корпусе расположена дисковая катушка индукционно-динамического двигателя (ИДД). Катушка ИДД имеет жесткую связь с корпусом. Мембрана выполнена из электропроводного материала и является якорем ИДД.

При подаче в катушку импульса тока в результате разряда на нее заряженного конденсатора системы питания двигателя между катушкой и якорем-мембраной создается расталкивающая их импульсная сила. Под действием этой силы мембрана прогибается в направлении водной среды и создает в ней объемное возмущение, что сопровождается созданием в воде полезной сейсмической волны. Одновременно с этим под действием силы катушка с корпусом сейсмоисточника смещается в противоположном направлении, что приводит к созданию сейсмической волны-помехи и снижает эффективность работы сейсмоисточника. Кроме этого, на упругий прогиб мембраны якоря двигателя затрачивается значительная часть механической энергии двигателя, которая запасается в мембране и затем высвобождается в виде колебаний мембраны, создающих дополнительные волны-помехи, что снижает эффективность сейсмоисточника.

Наиболее близким по совокупности признаков заявляемому изобретению является принятый за прототип источник для генерации акустического сигнала в морской сейсморазведке (Патент US 6,771,565 B2 Aug. 3, 2004).

Сейсмоисточник для морской сейсморазведки содержит корпус с днищем в виде эластичной мембраны. Внутри корпуса находится дисковая катушка индукционно-динамического двигателя. Катушка жестко соединена с корпусом сейсмоисточника. Якорь ИДД в виде пластины из проводящего материала прилегает одной стороной к катушке, а другой к мембране.

Поскольку катушка жестко соединена с корпусом, то развиваемая двигателем сила, как и в аналоге, приводит к импульсному смещению корпуса в воде и созданию сейсмической волны-помехи, что снижает сейсмическую эффективность сейсмоисточника.

Задачей, на решение которой направлено изобретение, является повышение сейсмической эффективности сейсмоисточника.

Техническим результатом является уменьшение силы, действующей на корпус сейсмоисточника при работе двигателя, уменьшение перемещения корпуса в воде и уменьшение создаваемых за счет этого сейсмических волн-помех.

Упомянутая задача достигается тем, что предложенное техническое решение содержит герметичный корпус сейсмоисточника с днищем из эластичного материала. Внутри корпуса помещен индукционно-динамический двигатель, корпус индуктора которого с расположенной на его обращенной к мембране стороне дисковой катушкой возбуждения выполнен из неэлектропроводного материала, а якорь двигателя в виде пластины из материала высокой электропроводности, например меди, прилегает к плоской поверхности катушки. На нижней части корпуса по периметру его внутренней поверхности выполнены опорные консоли, снизу к которым прилегает якорь двигателя, а корпус индуктора оперт на консоли сверху с возможностью его возвратно-поступательного перемещения вдоль внутренней поверхности корпуса сейсмоисточника.

Полученный технический результат достигается за счет того, что под действием создаваемой индукционно-динамическим двигателем силы корпус индуктора с обмоткой возбуждения имеет возможность свободно перемещаться внутри корпуса сейсмоисточника в поле силы тяжести. При этом развиваемое двигателем усилие не передается на корпус сейсмоисточника, который остается практически неподвижным и, следовательно, не создает волн-помех, снижающих эффективность работы сейсмоисточника.

Изобретение поясняется чертежами:

Фиг.1. - конструктивное решение выполнения сейсмоисточника,

Фиг.2. - графики изменения тока в катушке возбуждения, создаваемой двигателем силы и перемещения корпуса индуктора и якоря с мембраной,

Фиг.3. - конструктивное решение выполнения сейсмоисточника с комбинированным якорем.

Сейсмоисточник (фиг.1) состоит из герметичного корпуса 1, днище которого выполнено в виде мембраны 2 из эластичного материала, например полиуретана. Мембрана герметично соединяется с нижней частью корпуса. Корпус индуктора 3 двигателя выполнен из немагнитного неэлектропроводного материала, например, текстолита или пластика, и опирается на опорные консоли 4 в нижней части корпуса 1 сейсмоисточника, расположенные по периметру его внутренней поверхности. В круговом пазу на обращенной к мембране 2 поверхности корпуса индуктора 3 помещена катушка 5 обмотки возбуждения индукционно-динамического двигателя. Якорь 6 двигателя выполнен в виде пластины из материала с высокой электропроводностью, например из меди, прилегает к обмотке 5 и к опорным консолям 4 снизу. На корпусе 3 помещена пригрузочная масса 7 со стойками 8. На пластину 6 якоря оперт корпус 9 одностороннего демпфера, шток которого 10 оперт на закрепленную на стойках 8 перекладину 11. На пригрузе 7 помещен контейнер 12 системы питания, содержащий емкостной накопитель с зарядным устройством и силовые полупроводниковые приборы для возможности подачи импульса тока в обмотку возбуждения через ее выводы 13. На корпусе 1 установлен проходной изолятор 14 для подвода электропитания к контейнеру 12 через гибкий кабель 15. Корпус снабжен крышкой 16. Поджатие якоря 6 к консолям 4 на корпусе обеспечивается пружинами 17. Пружины 17 закреплены на шпильках 18, пропущенными через опорные консоли 4.

Сейсмоисточник работает следующим образом. От системы питания двигателя сейсмоисточника по катушке 5 (фиг.1) пропускается импульс тока 19 (фиг.2) и вокруг катушки создается магнитный поток. Электропроводная пластина 6 якоря за счет наведения в ней вихревого тока оказывает экранирующее воздействие и между катушкой 5 пластиной 6 якоря создается сила 20:

где i1 - ток в катушке, a L(x) - эквивалентное значение ее индуктивности.

х - расстояние между катушкой и электропроводной пластиной якоря.

Под действием силы 21 якорь вместе с мембраной 2 отталкивается от катушки 5, мембрана прогибается в направлении водной среды, что приводит к созданию в водной среде объемного возмущения, характеризуемого площадью воздействия якоря 6 на мембрану и ее смещением 21. Скорость создаваемого в воде объемного возмущения определяет интенсивность создаваемой сейсмической волны.

После окончания действия силы (момент t1) мембрана с якорем к моменту t2 возвращается в исходное положение, при котором якорь 6 опирается на опорные консоли 4 корпуса и удерживается в этом положении с помощью усилия пружин 17 на шпильках 18.

Под действием силы 20 корпус индуктора 3 с катушкой 5 и пригруз 7 с контейнером 12 в течении времени t1 ускоряются и затем перемещаются (поз.22 на фиг.2) вверх относительно корпуса 1 в поле силы тяжести на некоторую высоту H, зависящую от их массы и полученной за время ускорения скорости. Перемещение их из верхнего положения в исходное тормозится с помощью демпфера, шток 10 которого оперт на перекладину 11, закрепленную на стойках 8 пригруза 7. Торможение демпфером приводит к уменьшению скорости воздействия корпуса 3 индуктора с консолями 4 в момент t4 его возврата в исходное положение на консоли 4, что снижает интенсивность создаваемых при этом помех.

Возможность перемещения корпуса 3 индуктора относительно корпуса 1 сейсмоисточника обеспечивается с помощью радиального зазора между внешним диаметром корпуса индуктора 3 с пригрузом 7 и внутренним диаметром корпуса 1. Для дополнительного уменьшения сил трения, возникающих при перемещении корпуса 3 относительно корпуса 1 сейсмоисточника, на внутренней поверхности корпуса 1 могут быть помещены направляющие в виде пластин из материала с низким коэффициентом трения.

Якорь 6 двигателя должен иметь толщину не менее глубины проникновения в него магнитного поля при работе двигателя.

При импульсе тока 19 длительностью t≈(1…2)·10-3 с глубина проникновения магнитного поля в пластину якоря Δ≈(4…8)·10-3 м. Выполнение якоря в виде медной пластины такой толщины не обеспечивает ему достаточной конструктивной жесткости, необходимой для надежной работы двигателя.

В связи с этим якорь 6 (фиг.3) может быть выполнен в виде электропроводной пластины 6 толщиной примерно равной глубине проникновения магнитного поля Δ≈(4…8)·10-3 м, закрепленной на подложке 23 из материала с низким значением плотности, например из прочного пластика. Возможно выполнение подложки из прочного алюминиевого сплава.

Корпус источника с целью уменьшения его веса (фиг.3) также может быть выполнен из прочного пластика.

Контейнер 12 с системой питания двигателя, может быть закреплен на нижней поверхности крышки 16 сейсмоисточника или на внутренней поверхности корпуса, что снижает передаваемые на контейнер ускорения и повышает надежность работы элементов системы питания.

Предлагаемое техническое решение позволяет создавать водные сейсмоисточники массой 30-40 кг с развиваемым усилием 5-6 кН, погружаемые вводу на несколько метров.

Импульсный невзрывной сейсмоисточник для водной среды, содержащий герметичный корпус с днищем в виде мембраны из эластичного материала, внутри корпуса помещены индукционно-динамический двигатель, корпус индуктора которого с расположенной на его обращенной к мембране стороне дисковой катушкой возбуждения выполнен из неэлектропроводного материала, а якорь двигателя в виде пластины из материала высокой электропроводности, например меди, прилегает к плоской поверхности катушки, отличающийся тем, что на нижней части корпуса по периметру его внутренней поверхности выполнены опорные консоли, якорь двигателя прилегает к консолям снизу, а корпус индуктора оперт на консоли сверху и выполнен с возможностью его возвратно-поступательного перемещения вдоль внутренней поверхности корпуса сейсмоисточника.



 

Похожие патенты:

Изобретение относится к гидроакустической технике и касается создания устройств постановки и выборки гибких протяженных буксируемых антенн на подводных лодках и надводных кораблях.

Настоящее предлагаемое изобретение относится к области исследования океана и может быть использовано для комплексного измерения гидрофизических параметров в океанологии, гидрофизике и гидрографии.

Изобретение относится к области геофизики и может быть использовано при разведочных работах на акватории водного пространства, покрытого льдом. .

Изобретение относится к области морской геофизической разведки и может быть использовано для исследования морских акваторий, лежащих под сплошными паковыми льдами для поиска полезных ископаемых в морском дне.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ в водной среде. .

Изобретение относится к комплексам для осуществления морской геофизической разведки. .

Изобретение относится к области измерительной техники и может быть использовано для измерения и регистрации морского волнения методом импульсной эхолокации узконаправленным лучом в направлении от дна к поверхности воды.

Изобретение относится к области морской сейсморазведки и может быть использовано для буксировки сейсмооборудования на акваториях с ледовым покрытием. .
Изобретение относится к геофизике и может быть использовано для контроля сейсмических процессов в процессе поиска и разведки нефтяных и газовых подводных месторождений.

Изобретение относится к морской сейсморазведке, более конкретно к подводным кабелям, имеющим множество датчиков, таких как гидрофоны, сейсмоприемники и акселерометры.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ в водной среде. .

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. .

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. .

Изобретение относится к испытательной технике и может быть использовано при испытании объектов машиностроения, стройиндустрии, бытовой техники и других изделий на вибропрочность и виброустойчивость.

Изобретение относится к области геофизики и может быть использовано при проведении сейсморазведочных работ. .

Изобретение относится к области сейсморазведки, а именно к невзрывным источникам сейсмических волн (сейсмоисточникам), создающим сейсмические волны механическим импульсным воздействием на поверхность грунта посредством плиты-излучателя.

Изобретение относится к области сейсморазведки, а именно к невзрывным сейсмоисточникам, создающим сейсмические волны механическим импульсным воздействием на поверхность грунта.

Изобретение относится к области геофизики и может быть использовано для создания как продольных, так и поперечных сейсмических волн. .

Изобретение относится к области средств геофизической разведки полезных ископаемых, преимущественно на нефть и газ. .

Изобретение относится к геофизической технике для генерирования виброимпульсного сигнала и используется для динамического нагружения грунта. .

Изобретение относится к области геофизики и может быть использовано для проведения сейсморазведочных работ. Сейсмоисточник содержит жесткое основание с полостями на его поверхности, опертый на основание пригруз и индукционно-динамический двигатель, катушка возбуждения которого помещена на нижней поверхности пригруза и прилегает к закрепленной на основании пластине якоря, выполненной из электропроводного материала. В пластине якоря выполнены отверстия, соединяющие полости с зазором между основанием и пригрузом, что обеспечивает уменьшение разрежения воздуха в зазоре между якорем и катушкой возбуждения двигателя, увеличение и повышение механического воздействия основанием сейсмоисточника на грунт. Технический результат - повышение эффективности сейсмоисточника. 4 ил.
Наверх