Способ торцового фрезерования плоских поверхностей

Изобретение относится к машиностроению и может быть использовано при фрезеровании плоских поверхностей. Способ включает использование торцовой фрезы, которую доводят до касания с торцем обрабатываемой поверхности. Фрезе сообщают главное вращательное движение и криволинейное врезание в заготовку с двумя движениями подачи Sx и Sy, лежащими в плоскости фрезерования из условия направления вектора подачи Sy в тело заготовки нормально к ее торцу, а вектора подачи Sx - под углом 90° к вектору подачи Sy в направлении, обратном направлению главного вращательного движения ωv. Криволинейное врезание фрезы в заготовку осуществляют при согласовании подач Sx и Sy с обеспечением траектории врезания фрезы в виде четверти эллипса, большая ось которого равна диаметру фрезы, а меньшая определена из приведенной зависимости. Повышается стойкость фрезы. 3 ил.

 

Изобретение относится к области машиностроения и может быть использовано при фрезеровании плоских поверхностей.

Наиболее близким аналогом является способ фрезерования плоских поверхностей с криволинейной траекторией врезания торцовой фрезы [1]. Данный способ фрезерования осуществляется на двух координатном фрезерном станке с ЧПУ. Фрезу подводят к торцу обработанной поверхности, а движения подач Sx и Sy осуществляют вдоль осей ОХ и OY соответственно и нелинейно согласуют во времени, таким образом, чтобы траектория движения фрезы при врезании в заготовку представляла собой дугу окружности с радиусом, равным радиусу фрезы. При этом на выходе зуба из зоны обработки толщина срезаемого слоя равна нулю в результате чего снижается негативное влияние ударных изгибающих напряжений возникающих при выходе зуба из зоны фрезерования, что снижает трещинообразование на передней поверхности в непосредственной близости от главной режущей кромки и повышает стойкость инструмента в 4-6 раз.

Недостатком этого способа является отсутствие срезаемого слоя на выходе режущих зубьев из зоны обработки, что приводит к перенаклепу материала и повышенному износу зубьев по задней поверхности в зоне выхода зуба из зоны обработки. С одной стороны, толщина срезаемого слоя должна быть минимальной, чтобы исключить ударную изгибающую нагрузку на режущую кромку, возникающую на выходе зуба из зоны резания, при этом она не должна быть равна нулю, т.к. при толщинах, сопоставимых с величиной радиуса округления режущего клина, стружка не срезается, а обрабатываемый материал механически упрочняется из-за многократной деформации.

Предлагаемым изобретением решается задача повышения стойкости режущих зубьев за счет минимизации толщины срезаемого слоя.

Для решения поставленной задачи подачи Sx и Sy согласуют таким образом, что траектория врезания фрезы представляет собой четверть эллипса, большая ось которого равна диаметру фрезы D, а меньшая определяется по формуле:

d = 2 R ( S z 2 a м и н / sin ϕ ) S z ,

где R - радиус фрезы;

Sz - результирующая подача на зуб;

aмин - минимальная толщина срезаемого слоя;

φ - главный угол в плане.

На фиг.1. изображена схема процесса торцового фрезерования поверхности при врезании и обводе углов, на фиг.2. - схема последовательных положений траекторий режущего зуба на выходе из зоны резания, на фиг.3 - увеличенное изображение зоны I (выхода режущего зуба из зоны обработки) изображенной на фиг.2.

Обработку производят на двух координатных фрезерных станках с ЧПУ. Инструменту сообщают главное движение ωv, доводят до касания с заготовкой в точке, расположенной на торце обработанной поверхности и удаленной от края заготовки на расстояние d/2+0,2D, точка 1 (фиг.1). Затем инструменту задают два движения подачи Sx и Sy лежащих в плоскости фрезерования. Вектор подачи Sy направлен в тело заготовки нормально к ее торцу, а вектор подачи Sx повернут на 90° относительно вектора Sy в направлении обратном направлению главного вращательного движения ωv. Подачи Sx и Sy согласуют таким образом, что траектория врезания фрезы представляет собой четверть эллипса, большая ось которого равна диаметру фрезы D, а меньшая определяется по формуле:

d = 2 R ( S z 2 a м и н / sin ϕ ) S z ,

где R - радиус фрезы;

Sz - результирующая подача на зуб;

а мин - минимальная толщина срезаемого слоя;

φ - главный угол в плане.

Нелинейно-согласованные движения подачи прекращают при достижении центром фрезы точки 2 находящейся на пересечении торцовой и обработанной поверхностей, и расположенной на расстоянии 0,2D от края заготовки (это положение фрезы представлено пунктирной линией). Затем инструменту сообщается прямолинейное движение подачи, вектор которого направлен в тело заготовки, нормально к малой полуоси эллипса предыдущего криволинейного участка траектории, а величина подачи равна результирующей подаче на зуб Sz. После достижения центром фрезы точки 3, расположенной на расстоянии d/2+0,2D от противоположного края заготовки, ей снова сообщают два движения подачи Sx и Sy, лежащих в плоскости фрезерования и согласованных таким образом, что траектория врезания фрезы представляет собой описанную выше четверть эллипса, но повернутую на 90° относительно ее первоначального положения в направлении главного движения ωv. Фрезерование продолжают подобным образом до окончательной обработки всей поверхности.

Предложенный способ обработки позволяет повысить стойкость инструмента за счет снижения износа по задней поверхности при движении фрезы по криволинейному участку траектории. Это связано с тем, что на выходе зуба из заготовки толщина срезаемого слоя минимизирована, но отлична от нуля, что предотвращает перенаклеп обрабатываемого материала и создает более плавный выход зуба из заготовки.

Минимальная толщина срезаемого слоя, определяется по формуле [2]:

a м и н = 0,35 0,55 ( α + γ ) ( м к м ) . 2

где γ и α - передний и задний углы зуба фрезы соответственно.

На фиг.2 представлены три произвольных, последовательных, положения круговой траектории зуба фрезы радиусом R с центрами O1, O2, О3, расположенными на криволинейном участке траектории. На фиг.3 представлена увеличенная зона выхода режущих зубьев в трех последовательных положениях (1, 2, 3) траектории зуба фрезы, соответствующих положениям центра в точках O13 на фиг.2, и проекции толщин срезаемых слоев a 1/sinφ; a 2/sinφ на обработанную поверхность, где а 1, а 2 - толщины срезаемых слоев на выходе зуба из зоны обработки. Для обеспечения условий резания а 1a 2=(1,2…1,5)a мин.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Руководство по металлообработке. АВ Sandvik Coromant 2008.09 [Текст] / АВ Sandvik Coromant, 2008. - 32 с.: ил.

2. Сахаров Г.Н. Металлорежущие инструменты: Учебник для вузов по специальностям «Технология машиностроения», «Металлорежущие станки и инструменты» [Текст] / Г.Н. Сахаров, О.Б. Арбузов, Ю.Л. Боровой и др. - М.: Машиностроение, 1989. - 328 с.: ил.

Способ торцового фрезерования плоских поверхностей, включающий использование торцовой фрезы, которую доводят до касания с торцем обрабатываемой поверхности и сообщают ей главное вращательное движение и криволинейное врезание в заготовку с двумя движениями подачи Sx и Sy, лежащими в плоскости фрезерования из условия направления вектора подачи Sy в тело заготовки нормально к ее торцу, а вектора подачи Sx - под углом 90° к вектору подачи Sy в направлении, обратном направлению главного вращательного движения ωv, отличающийся тем, что криволинейное врезание фрезы в заготовку осуществляют при согласовании подач Sx и Sy с обеспечением траектории врезания фрезы в виде четверти эллипса, большая ось которого равна диаметру фрезы, а меньшая определена по формуле:
d = 2 R ( S z 2 a м и н / sin φ ) S z ,
где R - радиус фрезы;
Sz - результирующая подача на зуб фрезы;
aмин - минимальная толщина срезаемого слоя;
φ - главный угол фрезы в плане.



 

Похожие патенты:

Изобретение относится к обрабатывающей головке для металлообрабатывающих машин, предпочтительно зуборезных или зубошлифовальных станков согласно ограничительной части пункта 1 формулы изобретения.

Изобретение относится к машиностроениию и может быть использовано для обработки сложнопрофильных деталей с выпуклой поверхностью, например рабочих поверхностей штампов.

Изобретение относится к машиностроению и может быть использовано для устранения локальных неровностей продольного и поперечного профиля рельса. .

Изобретение относится к машиностроению и может быть использовано при изготовлении деталей посредством фрезерного инструмента. .

Изобретение относится к оборудованию для обработки профилей и может быть использовано для устранения локальных неровностей продольного и поперечного профиля рельса, в том числе в зоне сварных стыков рельсовых плетей методом профильного фрезерования.

Изобретение относится к станкостроению и может быть использовано при изготовлении фрезерованием корпусных деталей малой жесткости вафельной конструкции, например топливных баков с ячеистым фоном.

Изобретение относится к машиностроению и может быть использовано при механической обработке деталей из труднообрабатываемых сплавов на фрезерных станках. .

Изобретение относится к строительной промышленности и может быть использовано для обработки плоских поверхностей плитных материалов при калибровке их по толщине.

Изобретение относится к области машиностроения, а именно к обработке деталей на фрезерных станках. .

Изобретение относится к способам и устройствам для механической обработки иглофрезерованием с целью удаления с поверхности металлов шлака, продуктов коррозии, прокатной окалины, заусенцев, для резания металлов и предназначено для механизации снятия заусенцев, округления кромок и обработки плоскостей на фрезерных, многопозиционных и многооперационных станках.

Способ включает использование рабочих параметров процесса резания и геометрических параметров инструмента. Для повышения точности определения параметра шероховатости предварительно осуществляют пробный проход сборным многолезвийным твердосплавным инструментом по детали, измеряют термоЭДС каждой режущей кромки, вычисляют среднеарифметическое значение термоЭДС сборного многолезвийного твердосплавного инструмента, а параметр шероховатости Ra определяют с использованием вычисленного среднеарифметического значения термоЭДС, геометрических параметров сборного многолезвийного твердосплавного инструмента и обрабатываемой детали по приведенной формуле. 7 табл.

Изобретение относится к машиностроению и может быть использовано при обработке глубоких отверстий в трубных заготовках. Обработку осуществляют устройством, содержащим борштангу с режущим инструментом, расположенную на эксцентричных подшипниках в пиноли с режущими и дорнующими зубьями, которую базируют перед подачей рабочей среды в исходном положении во входном люнете. Обрабатываемую заготовку зажимают между внутренними торцами входного и выходного люнетов соосно с ними. Перед началом обработки на внутренних торцах люнетов выполняют центрирующие фаски, а на торцах трубной заготовки выполняют ответные фаски, которые совмещают и уплотняют. На внешних торцах входного и выходного люнетов устанавливают заглушки для создания единой герметичной полости. Рабочую среду подают через дроссели во время прямого рабочего хода во входной люнет, совмещая вращательное и поступательное движение борштанги с ее планетарным движением вокруг оси пиноли. Во время обратного рабочего хода рабочую среду подают в выходной люнет. Повышается точность и качество обработанной поверхности, надежность процесса обработки за счет улучшения стружкоотвода. 1 з.п. ф-лы, 2 ил.

Изобретение относится к машиностроению и может быть использовано для чистовой обработки резанием поверхности катания головки рельса. Устройство содержит раму, установленную с возможностью перемещения вдоль головки рельса, и обрабатывающие инструменты, установленные с обеих сторон рамы с возможностью вращения в противоположных направлениях и фронтального подвода к поверхности катания головки рельса. Обрабатывающие инструменты выполнены в виде двух торцовых фрез, соединенных посредством распределительной коробки с общим приводом вращения, и установлены из условия расположения их осей вращения в одной плоскости с обеспечением перекрытия областей резания друг друга поперек продольного направления головки рельса. Обеспечивается высокая скорость обработки, снижается нагрев головки рельса. 4 з.п. ф-лы, 8 ил.

Изобретение относится к технологии машиностроения и может быть использовано при финишной обработке поверхностей прецизионных деталей. Способ включает предварительную обработку заготовки с обеспечением макрогеометрии ее поверхности и последующее формирование на ней маслоудерживающего рельефа, который формируют на станке с ЧПУ путем нанесения сферической фрезой взаимно перпендикулярных канавок с параметрами, обеспечивающими получение толщины смазочной пленки не менее 5 мкм, приходящейся на единицу площади обрабатываемой поверхности. Обеспечивается получение оптимальной равномерной маслоудерживающей поверхности на всей плоскости детали.

Группа изобретений относится к машиностроению и может быть использована при изготовлении анодных пластин для электролиза на специальном оборудовании. Установка для обработки анодных пластин включает поперечный транспортер, устройство выравнивания плоскостности и измерения толщины пластины, устройство фрезеровки нижней стороны ушка пластины, расположенное по одну сторону поперечного транспортера по ходу после устройства выравнивания плоскостности и измерения толщины, и устройство фрезеровки боковой стороны ушка, расположенное по другую сторону поперечного транспортера по ходу после устройства выравнивания плоскостности и измерения толщины. Обработка анодных пластин с использованием заявленного способа установки для его осуществления повышает качество обработки. Увеличивается коэффициент использования материала и энергоэффективность изготовления анодных пластин. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к машиностроению и может быть использовано для фрезерования выемки в заготовке материала для получения детали. Выемка в детали имеет в угловой области сходящиеся под углом участки краевых кромок. При ее фрезеровании фреза образует огибающую поверхность, в частности цилиндрическую поверхность, с боковой поверхностью и торцевой поверхностью. Угловая область сначала выполняется с первой ориентацией фрезы, соответствующей продольной оси выемки, с использованием участка фрезы, создающего боковую поверхность. Также возможно образование остроконечных углов во второй ориентации фрезы с использованием участка фрезы, создающего торцевую поверхность огибающей поверхности, между сходящимися участками краевых кромок создается угловое образование, соответствующее переходу торцевой поверхности в боковую поверхность. При необходимости образуют скос, направленный на участке краевой кромки поперек его продольного направления. Обеспечивается получение детали с выемкой. 3 н. и 7 з.п. ф-лы, 19 ил.
Наверх