Способ открыто-подземной разработки крутых угольных пластов

Изобретение относится к горной промышленности и может быть использовано для разработки мощных крутых и крутонаклонных угольных пластов. Техническим результатом является повышение эффективности открыто-подземной разработки крутых и крутонаклонных угольных пластов. Способ открыто-подземной разработки крутых угольных пластов включает предварительную подготовку фронта очистных работ путем сооружения рабочей площадки по линии простирания пласта на уступе борта разреза с присечкой выходящего пласта, монтаж на рабочей площадке оборудования, в качестве которого используют буровую установку и став водопроводных труб, проведение слабонаклонного вверх квершлага с нижней точки угольного разреза и транспортных штреков по каждому пересекаемому квершлагом пласту в противоположные стороны с небольшим уклоном в сторону квершлага, выемку угля в стороне от рабочей площадки гидромониторной струей. 3 ил.

 

Предлагаемое изобретение относится к горному делу, в частности к открыто-подземной разработке мощных крутых и крутонаклонных угольных пластов с уступа борта угольного разреза средствами гидромеханизации и мобильными средствами механизации, обычно использующимися при ведении подземных горных работ.

Известен способ ведения открытых горных работ, при котором разработка породы, ее транспортирование и укладка в отвал производится путем использования энергии движущейся воды [1]. Недостатком способа является то, что он предусматривает гидромеханизацию разработки вскрышных пород и не касается разработки собственно угольного пласта, т.е. использование средств гидромеханизации только при подготовке угольного пласта к выемке.

Известен также способ открыто-подземной разработки крутопадающих угольных пластов, принятый в качестве прототипа, включающий предварительную подготовку фронта очистных работ, путем сооружения рабочей площадки по линии простирания пласта на уступе борта разреза, связанном с выходом пласта, монтаж на рабочей площадке комплекса глубокой разработки пласта (КГРП), выемку угля в слоях этим комплексом в стороне от рабочей площадки путем проведения диагональных параллельных выработок прямоугольного сечения с управлением горным давлением оставлением соразмерных целиков, как между соседними выработками слоя, так и между слоями, выдачу отбитого угля по выработке на рабочую площадку и погрузку его в транспортное средство или на временный склад [2].

Недостатком способа, снижающим эффективность открыто-подземной разработки крутых и крутонаклонных угольных пластов, являются повышенные потери угля в недрах, связанные:

- со сложностью вписывания выемочного оборудования КГРП в изменяющиеся параметры угольного пласта;

- необходимостью оставления нижней или верхней (в зависимости от физических свойств угля и пород кровли и почвы пласта) пачки вследствие ограниченности вынимаемой мощности выемочной машиной КГРП при разработке мощных пластов;

- необходимостью оставления охранных целиков;

- невозможностью разработки весьма тонких пластов.

Цель изобретения - повышение эффективности открыто-подземной разработки крутых и крутонаклонных угольных пластов за счет комбинирования работ, осуществляемых средствами гидромеханизации и средствами механизации, обычно использующимися при подземной разработке.

Поставленная цель достигается тем, что в способе открыто-подземной разработки крутых угольных пластов, включающем предварительную подготовку фронта очистных работ путем сооружения рабочей площадки по линии простирания пласта на уступе борта разреза, связанном с выходом пласта, монтаж на рабочей площадке оборудования, выемку угля в стороне от рабочей площадки путем проведения параллельных выработок с управлением горным давлением и выдачу отбитого угля на временный склад, предварительная подготовка фронта очистных работ включает проведение слабонаклонного вверх квершлага с нижней точки угольного разреза и транспортных штреков по каждому пласту в противоположные стороны с небольшим уклоном в сторону квершлага, при этом штреки поддерживают рамной крепью с решетчатой затяжкой, рабочую площадку сооружают с присечкой пласта, в качестве оборудования, монтируемого на рабочей площадке, используют буровую установку и став водопроводных труб, параллельные выработки проводят по линии падения пласта до сопряжения со штреком путем бурения и расширения скважин, выемку угля осуществляют гидромонитором из скважины, управление горным давлением осуществляют закладкой выработанного пространства, при этом используют закладочный материал крупнее ячеек решетчатой затяжки, временный склад сооружают на дне разреза, а выдачу отбитого угля на временный склад осуществляют самотечным гидротранспортом по квершлагу.

Предлагаемое изобретение поясняется схемами. На фиг.1 показана схема подготовки и отработки приконтурных запасов с борта разреза; на фиг.2 - вид по стрелке А на фиг.1; на фиг.3 - разрез Б-Б на фиг.1.

При достижении угольным разрезом глубины разработки, обусловленной экономически оправданным коэффициентом вскрыши, в границах горного отвода остаются запасы за контуром разреза (в приконтурной зоне), которые открытыми горными работами не могут быть извлечены и списываются как нецелесообразные к отработке. При строительстве разреза открытыми горными работами вскрывается не один, а свита угольных пластов различной мощности, и обычно самый продуктивный пласт является самым нижним. В связи с этим угольные пласты, залегающие в рабочем борту разреза, и составляют запасы приконтурной зоны.

Предлагаемый способ может быть реализован следующим образом. При приближении горных работ к границе горного отвода по глубине, когда выемку угля ведут из самого нижнего и, возможно, самого мощного пласта 1 свиты приступают к вскрытию и подготовке запасов, сосредоточенных в угольных пластах 2, 3 данной свиты, залегающих в рабочем борту разреза. Для этого примерно в средней части разреза по линии простирания с его дна проводят квершлаг 4, вскрывающий все угольные пласты свиты, имеющиеся в приконтурной зоне разреза, и деля таким образом пространство разреза на два крыла. Квершлаг 4 проводят средствами механизации, использующимися при проведении подземных горных выработок, под небольшим углом к горизонту вверх для организации гарантированного самотечного гидротранспорта отбитого угля в виде пульпы. Затем таким же образом проводят штреки 5, 6 в обоих крыльях, по каждому из пересеченных пластов. При этом штреки 5, 6 крепят рамной крепью с решетчатой затяжкой.

После доработки запасов угля на дне разреза и вывода средств механизации за его пределы приступают к выемке запасов в приконтурной зоне. Для этого, начиная с верхнего пласта 3 свиты и дальней границы крыла разреза, с уступа 7 рабочего борта бурят скважину 8 у почвы пласта до штрека 5. Скважину 8 расширяют и в ней монтируют став труб 9 с гидромонитором 10. При подаче воды высокого давления производят гидроотбойку угля и формирование камеры 11. При этом отбитый гидравлической струей уголь поступает через решетчатую затяжку крепи в штрек 5 и далее самотеком по квершлагу 4 в виде пульпы поступает в выработанное пространство разреза и скапливается на его дне, формируя тем самым временный склад 12.

Во время гидроотбойки угля в камере 11 осуществляют бурение и расширение следующей скважины, которую намечают в камере 13, ближе к квершлагу 4. При этом между камерами 11 и 13 оставляют временный целик 14, ширину которого принимают не меньше ширины камер 11 и 13.

После отработки камеры 11 став труб 9 и гидромонитор 10 монтируют в скважине камеры 13 и начинают гидроотбойку угля в этой камере в том же порядке, а в камере 11 производят закладочные работы. При этом автосамосвалами подвозят сухой закладочный материал с крупностью кусков более ширины ячейки решетчатой затяжки крепи штрека 5, например вскрышные породы, и размещают его в выработанном пространстве камеры 11, заполняя ее доверху. Затем закладочный материал в камере 11 заливают твердеющей смесью.

Вынув уголь в камере 13, очистные работы переносят в камеру 15, оставляя целик 16 и т.д. до квершлага 4. Затем приступают к бурению и расширению скважины в камере, планируемой в пределах целика 14, и т.д. После выемки угля в верхнем пласте в одном крыле очистные работы переносят в другое крыло, затем в аналогичном порядке на другой пласт, например 2, и далее в том же порядке.

За счет комбинирования работ, осуществляемых средствами гидромеханизации и средствами механизации, обычно использующимися при подземной разработке, появилась возможность извлекать уголь из пластов, залегающих в приконтурной зоне разреза, вплоть до пластов, обычно не извлекаемых при открытой разработке вследствие малой мощности. При этом достигается наиболее полное извлечение запасов. Более того, выемка угля с использованием средств гидромеханизации является безлюдной, что повышает безопасность ведения очистных работ. Все перечисленное повышает не только эффективность открыто-подземной разработки крутых и крутонаклонных угольных пластов, что является целью изобретения, но и позволяет осваивать угольное месторождение комплексно (извлекать маломощные пласты, использовать выработанное пространство разреза под временный угольный склад, а пространство отработанных камер для размещения вскрышных пород).

Источники информации

1. Бокий Б.В. Горное дело. М.: Углетехиздат, 1953, с.560-563 (аналог).

2. Нецветаев А.Г., Репин Л.Н., Соколовский А.В. Технология добычи угля с применением комплексов глубокой разработки пластов / Уголь, ноябрь, 2004, с.41-43 (прототип).

Способ открыто-подземной разработки крутых угольных пластов, включающий предварительную подготовку фронта очистных работ путем сооружения рабочей площадки по линии простирания пласта на уступе борта разреза, связанном с выходом пласта, монтаж на рабочей площадке оборудования, выемку угля в стороне от рабочей площадки путем проведения параллельных выработок с управлением горным давлением и выдачу отбитого угля на временный склад, отличающийся тем, что предварительная подготовка фронта очистных работ включает проведение слабонаклонного вверх квершлага с нижней точки угольного разреза и транспортных штреков по каждому пласту в противоположные стороны с небольшим уклоном в сторону квершлага, при этом штреки поддерживают рамной крепью с решетчатой затяжкой, рабочую площадку сооружают с присечкой пласта в качестве оборудования, монтируемого на рабочей площадке, используют буровую установку и став водопроводных труб, параллельные выработки проводят по линии падения пласта до сопряжения со штреком путем бурения и расширения скважин, выемку угля осуществляют гидромонитором из скважины, управление горным давлением осуществляют закладкой выработанного пространства, при этом используют закладочный материал крупнее ячеек решетчатой затяжки, временный склад сооружают на дне разреза, а выдачу отбитого угля на временный склад осуществляют самотечным гидротранспортом по квершлагу.



 

Похожие патенты:

Изобретение относится к скважинному инструменту для проведения геолого-технических мероприятий (ГТМ) таких как, например: установка или извлечение пробки, открытие/закрытие клапана, резка труб, выполнение работ по очистке скважины.

Изобретение относится к горной промышленности, а именно к нефтегазодобывающей, и может быть использовано в составе скважинного оборудования для очистки скважинной жидкости от механических примесей в скважинах ступенчатой формы.

Изобретение относится к нефтедобывающей промышленности, а именно к эксплуатации электроцентробежных насосов для подъема жидкости из скважин. .

Изобретение относится к нефтяной промышленности и может найти применение при защите от сероводородной коррозии резервуаров системы сбора и подготовки продукции скважин.

Изобретение относится к лебедкам для ремонта нефтяных скважин. .

Изобретение относится к области электротехники, в частности к скважинным телеметрическим системам для передачи сигналов между наземным устройством и скважинным прибором, размещенным в стволе скважины.

Изобретение относится к электротехнике и может быть использовано в электрических машинах для питания скважинной аппаратуры. .

Модульный узел (21) содержит верхний модуль (23), нижний модуль (25) и дроссельный мостовой модуль (27). Верхний модуль (23) фонтанной арматуры содержит трубную головку (41) фонтанной арматуры. Нижний модуль (25) фонтанной арматуры содержит систему (51) наведения и присоединяет трубопроводы к внутрипромысловой инфраструктуре (57). Дроссельный мостовой модуль (27) содержит дроссель и измерительный мост и обеспечивает соединение трех указанных модулей. Перед доставкой к буровой установке (31) части модульного узла (21) фонтанной арматуры могут быть соединены вместе и испытаны на суше. После доставки на буровую установку (31) их по отдельности поднимают с баржи (29) на буровую установку с помощью крана (33). После того как компоненты фонтанной арматуры окажутся на буровой установке (31), модульную фонтанную арматуру (21) снова собирают, а затем устанавливают на морском дне (35) с помощью лебедки (37). Модульный узел (21) фонтанной арматуры обеспечивает уменьшение веса груза в процессе транспортировки составных частей фонтанной арматуры от баржи к эксплуатационной буровой установке. 11 з.п. ф-лы, 13 ил.

Группа изобретений относится к скважинному инструменту, к скважинной системе, к способу перемещения такого инструмента и к применению такого инструмента для направления устройства в боковой отвод скважины. Технический результат заключается в надежном направлении устройства в боковой отвод скважины и в возможности прохождения кабелей через скважинный инструмент. Скважинный инструмент содержит корпус, подсоединенный к источнику энергии и содержащий направляющий носик для направления инструмента в боковой отвод ствола скважины и соединение для обеспечения вращения и поворота направляющего носика, причем инструмент содержит второе средство, содержащее подвижную в осевом направлении втулку, концентрически расположенную в корпусе инструмента вокруг оси корпуса инструмента, причем подвижная в осевом направлении втулка содержит оконечную поверхность, обращенную к соединению, при этом указанная оконечная поверхность втулки наклонена и образует угол с линией, перпендикулярной центральной оси корпуса инструмента, при этом подвижная в осевом направлении втулка выполнена с возможностью перемещения вдоль оси инструмента для закрепления направляющего носика в положении, в котором носик наклонен относительно оси инструмента, причем скважинный инструмент дополнительно содержит приводной блок, такой как шаговый двигатель, для вращения подвижной в осевом направлении втулки. Соединение скважинного инструмента содержит первую часть и вторую часть, при этом первая часть содержит выемку, зацепляющуюся со шпонкой во второй части. 5 н. и 12 з.п. ф-лы, 12 ил.

Настоящее изобретение относится к вариантам системы, которые можно использовать для обеспечения возвращения и/или замены оборудования подводной добычи и/или переработки, применяемого в подводной добыче нефти и газа. Технический результат заключается в упрощении конструкции и предотвращении остановки потока во время выхода из строя оборудования. Система содержит подводное оборудование, выполненное с возможностью содержать в себе первую текучую среду при эксплуатации в подводной морской среде и гидроаккумулятор, сообщающийся текучей средой с подводным оборудованием. Причем гидроаккумулятор содержит первую регулируемую камеру и вторую регулируемую камеру аккумулятора, а также барьер давления. Барьер давления гидроаккумулятора выполнен с возможностью перемещения в ответ на изменение давления на подводном оборудовании при подъеме подводного оборудования из подводной морской среды. Первая регулируемая камера аккумулятора выполнена с возможностью приема части первой текучей среды. Также аккумулятор может содержать первый подвижный поршень, установленный между первой регулируемой камерой аккумулятора и второй регулируемой камерой аккумулятора. Первый подвижный поршень выполнен с возможностью перемещения в ответ на изменение давления на подводном оборудовании при подъеме подводного оборудования из подводной морской среды. Аккумулятор может содержать первый клапан, установленный сообщающимся текучей средой по меньшей мере с одной из первой и второй регулируемых камер аккумулятора. Также гидроаккумулятор может содержать клапан, через который подается среда для защиты оборудования. 3 н. и 25 з.п. ф-лы, 10 ил.

Группа изобретений относится к трубным заанкеривающим системам, способу заанкеривания трубного элемента. Техническим результатом является повышение эффективности заанкеривания трубных изделий. Трубная заанкеривающая система содержит элемент в форме усеченного конуса, имеющий первый участок в форме усеченного конуса и второй участок в форме усеченного конуса, причем первый участок в форме усеченного конуса сужается в направлении, противоположном направлению, в котором сужается второй участок в форме усеченного конуса, трубные клинья, в рабочем состоянии связанные с первым участком в форме усеченного конуса, радиально расширяющиеся в ответ на продольное перемещение первого участка в форме усеченного конуса относительно трубных клиньев, уплотнение, в рабочем состоянии связанное со вторым участком в форме усеченного конуса, радиально расширяющееся в ответ на продольное перемещение второго участка в форме усеченного конуса относительно уплотнения, и гнездо с поверхностью, выполненной с возможностью герметичного соединения с пробкой, спускающейся на нее. 3 н. и 15 з.п. ф-лы, 6 ил.

Группа изобретений относится к области эксплуатации газонефтяных скважин. Технический результат – повышение износостойкости муфтового соединения, а также снижение образование коррозии, эрозии и других отложений в скважинных условиях. Муфтовое устройство с покрытием включает одно или более чем одно цилиндрическое тело, одну или более чем одну муфту, расположенную вблизи внешнего диаметра или внутреннего диаметра одного или более чем одного цилиндрического тела, и покрытие по меньшей мере на части внутренней поверхности муфты, внешней поверхности муфты или на сочетании поверхностей одной или более чем одной муфты. Покрытие выбрано из композита на основе фуллерена, алмазоподобного углерода (АПУ) и их сочетаний. Коэффициент трения покрытия меньше или равен 0,15, и покрытие обеспечивает твердость по Виккерсу более 1000. Предложен также способ применения указанного муфтового устройства. 4 н. и 158 з.п. ф-лы, 4 пр., 89 ил.

Изобретение относится к способу управления добычей углеводородов при осуществлении наблюдения за коллектором с использованием данных о скученных изотопах, данных об инертных газах или сочетания данных о скученных изотопах и инертных газах. Техническим результатом является повышение эффективности мониторинга. Способ содержит получение пробы из одного из числа одного или нескольких подземных регионов, интерпретацию пробы для определения сигнатуры инертного газа и сигнатуры скученного изотопа углеводорода для полученных проб, образование характерного признака представляющего интерес региона, имеющего сигнатуру инертного газа и сигнатуры скученного изотопа углеводорода для полученных проб, добычу флюидов из одного из числа одного или нескольких подземных регионов, при этом добываемые флюиды содержат углеводороды, и осуществление наблюдения за коллектором относительно флюидов, добываемых из одного из числа одного или нескольких подземных регионов. 18 з.п. ф-лы, 5 ил.

Изобретение относится к средствам автоматизации и может быть применено для перекачки нефти из нескольких трубопроводов в общую магистраль, по которой смесь нефтей транспортируется к потребителю. Система содержит по крайней мере два нефтепровода, предназначенные для транспортировки потоков нефти, и нефтепровод, предназначенный для смешанного потока, блок измерения показателей качества смешанного потока, блок измерения параметра потока высокосернистой нефти, измеритель расхода потока высокосернистой нефти и измеритель расхода смешанного потока, вычислительное устройство для учета количества высокосернистой нефти и общего количества смешанного потока, устройство регулирования потока. При этом выходы блока измерения параметра потока высокосернистой нефти, блока измерения показателей качества смешанного потока, измерителя расхода потока высокосернистой нефти и измерителя расхода смешанного потока взаимосвязаны с соответствующими информационными входами блока управления, управляющий выход которого взаимосвязан с устройством регулирования потока. К линии высокосернистой нефти (ВСН), подающей поток к приемной линии подпорной насосной, перед устройством регулирования потока врезается отвод-коллектор с установленным регулятором давления, предназначенный для поддержания на линии высокосернистой нефти давления не более заданного значения при регулировании расхода подкачки высокосернистой нефти на смешение и позволяющий сбросить часть потока нефти в резервуар при срабатывании регулятора давления. При этом в блоке управления введена функция контроля максимального значения давления на линии высокосернистой нефти, при достижении заданного значения давления настройки подается управляющий сигнал на приоткрытие заслонки регулятора давления, при этом часть потока сбрасывается в резервуар, и при снижении давления заслонка прикрывается или полностью закрывается. Для учета количества сбрасываемой высокосернистой нефти в резервуар при срабатывании регулятора давления устанавливается измеритель расхода на линии сброса высокосернистой нефти. Вычислительное устройство блока управления дополнительно ведет учет объема сбрасываемой нефти в резервуар при срабатывании регулятора давления от давления настройки по заданному максимальному значению на линии высокосернистой нефти. Дополнительно в операторную поступает от блока управления звуковая и световая сигнализация при срабатывании регулятора давления и сброса части потока высокосернистой нефти в резервуар. Технический результат заключается в обеспечении поддержания заданных показателей качества компаундированной нефти. 5 з.п. ф-лы, 2 ил.

Предложен способ и устройство для зарядки конденсатора большой емкости, способного сохранять энергию, применяемого, например, для приведения в действие электромагнитов в скважинных инструментах. Электрический генератор, который могут приводить в действие течением бурового раствора, вырабатывает выпрямленное напряжение, пропорциональное частоте его вращения. Выпрямленное напряжение подают на несимметричный преобразователь постоянного напряжения на катушках индуктивности, который, в свою очередь, заряжает конденсатор большой емкости, когда напряжение на конденсаторе большой емкости падает до значения, которое находится между предварительно заданными верхним и нижним значениями. При разряде конденсатора большой емкости, например вследствие приведения в действие электромагнитных клапанов для создания импульсов давления бурового раствора, логическая схема управления также инициирует прекращение зарядки преобразователем конденсатора большой емкости в целях повышения эффективности и производительности схемы. Аккумуляторная батарея также может обеспечивать зарядку конденсатора большой емкости через ограничитель тока, а схема отключения предотвращает зарядку аккумуляторной батареей конденсатора большой емкости, когда генератор заряжает конденсатор большой емкости через преобразователь. 4 н. и 27 з.п. ф-лы, 7 ил.
Наверх