Комплекс экологического мониторинга водных объектов



Комплекс экологического мониторинга водных объектов
Комплекс экологического мониторинга водных объектов
Комплекс экологического мониторинга водных объектов

 


Владельцы патента RU 2499248:

Пелевин Вадим Вадимович (RU)
Борисов Владимир Михайлович (RU)
Христофоров Олег Борисович (RU)
Баренбойм Григорий Матвеевич (RU)
Абрамов Олег Иванович (RU)
Данилов-Данильян Виктор Иванович (RU)

Изобретение относится к автоматическим средствам измерения показателей качества водных объектов и может быть использовано в системах экологического мониторинга водных объектов. Сущность: комплекс содержит многоволновой лидар, включающий в себя следующие устройства: зондирующий водную поверхность компактный многоволновой импульсно-периодический лазерный излучатель (8), генерирующий излучение, по меньшей мере, в ближнем ИК-и УФ-диапазонах; систему (12) регистрации обратного излучения, в которую входят приемные каналы регистрации обратного излучения на длинах волн лазерного УФ-излучения, комбинационного рассеяния воды, на длинах волн в спектральных диапазонах флуоресценции органических веществ и на длине волны лазерного ИК-излучения; программируемый контроллер (13) с системами сбора, обработки и беспроводной передачи данных в режиме реального времени на удаленные интерфейсы. Многоволновой лидар размещен в водонепроницаемом контейнере (1), который снабжен окном (10), прозрачным для лазерного и обратного излучения, и установлен на компактной плавающей платформе в виде катамарана на металлических понтонах (4). Плавающая платформа выполнена с возможностью крепления ко дну с помощью якорей. Контейнер (1) и плавающая платформа выполнены сводящими к минимуму фоновую засветку приемных каналов и зоны зондирования. Погруженная в воду часть плавающей платформы выполнена проницаемой для водных течений. Кроме того, комплекс содержит автономный погружной модуль (2) с датчиками (3) контроля гидрологических и физико-химических параметров качества воды, выполненный с возможностью крепления ко дну. В состав комплекса также входит удаленная единая для лидара и погружного модуля автоматизированная система (14) сбора и обработки данных о состоянии поверхностных вод. Технический результат: обеспечение непрерывного контроля качества водных сред объектов хозяйственного значения, оперативное и надежное дистанционное распознавание и идентификация различных загрязнений в местах установки комплекса, оперативное предоставление информации о превышении допустимых норм загрязнений. 5 з.п. ф-лы, 2 ил.

 

ОБЛАСТЬ ИЗОБРЕТЕНИЯ

Изобретение относится к автоматическим средствам измерения, а именно к средствам измерения показателей качества водных объектов с применением многоволнового лазерного зондирования и может использоваться в составе систем экологического мониторинга природных сред.

УРОВЕНЬ ТЕХНИКИ

К настоящему времени для диагностики верхних слоев океана предлагаются лидары, размещаемые на самолетах или кораблях, А.Ф. Бункин, Д.В. Власов, Д.М. Миркамилов «Физические основы лазерного аэрозондирования поверхности земли», Фан, 1987 г. Лидары позволяют достаточно быстро и эффективно исследовать большие площади водной поверхности.

Известны флуоресцентные лидары самолетного и корабельного базирования, разработанные эстонской компанией Laser Diagnostic Instruments AS (LDI) [S.Babichenko. Laser Remote Sensing of the European Marine Environment: LIF technology and Applications. In "Remote Sensing of the European Seas", Vittorio Barale and Martin Gade (Editors), Springer, 2008, 189-204]. В качестве лазерного излучателя в лидаре используется эксимерный лазер, генерирующий только УФ-излучение с длиной волны 308 нм. Использование высокой мощности эксимерного лазера позволяет производить зондирование поверхности воды с дистанции ~500 метров.

Однако существуют задачи, в которых необходимо осуществлять непрерывный контроль конкретных локальных участков акваторий. К ним относятся, прежде всего, водохранилища питьевого назначения, особенно места водозабора, акватории портов, рекреационных зон, нефтяных терминалов, места промышленных стоков.

В известном устройстве, С.А. Буриков, Д.В. Климов, П.Н. Литвинов и др. Квантовая электроника, 31 №8, 2001, для мониторинга прибрежных морских акваторий использован лидар берегового базирования. С помощью лидара регистрируются спектры обратного излучения при возбуждении воды излучением с длинами волн 532, 355 и 256 нанометров (2, 3 и 4 гармоники YAG:Nd лазера. Лидар был смонтирован на берегу моря на высоте 10 метров над уровнем моря, угол зондирования изменялся от 78 до 83 градусов. Для детектирования эхо-сигнала применялся оптический многоканальный анализатор (ОМА). Для фокусировки излучения на щель ОМА использовалась линза диаметром 15 см. При снятии спектров проводилось накопление сигнала в течение одной минуты. В дневное время для улучшения отношения «сигнал-шум» ОМА работал в режиме стробирования.

К общему недостатку лидаров берегового базирования относится сложность интерпретации количественных характеристик эхо-сигнала при изменении угла зондирования, появления волн на воде, при изменении естественной освещенности воды в зависимости от времени суток и погоды.

Известен автоматический пост индикации загрязнения водных объектов RU 2154848, МКИ G01V 11/00, 21.04.1999, который содержит снабженный якорем погружной модуль с размещенными в нем датчиками контроля гидрологических и физико-химических параметров качества воды водных объектов, соединительный кабель, устройство внешней связи и источник питания. Пост обеспечивает круглогодичный и всепогодный контроль качества воды.

Недостатки данной системы, обусловленные отсутствием лидара, состоят в том, что она не «видит» пленки нефтяных или масляных разливов, а при большом разливе быстро замазучивается, кроме этого быстро обрастает органическими отложениями.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Задачей, на решение которой направлено заявляемое изобретение, является непрерывный контроль качества водных сред объектов хозяйственного значения и оперативное с высокой надежностью дистанционное распознавание и идентификация различных загрязнений в местах установки комплекса: на водоемах, водозаборах, очистных станциях, внутренних водных путях, портах и нефтяных терминалах; оперативное предоставление информации о превышении допустимых норм загрязнений для принятия управленческих решений, определения нарушителей экологических норм и правил, экспертного обоснования предъявляемых к ним исков, и т.п.

Данная задача решается за счет того, что комплекс экологического мониторинга водных объектов характеризуется тем, что он содержит многоволновой лидар, включающий в себя зондирующий водную поверхность компактный многоволновой импульсно-периодический лазерный излучатель, генерирующий излучение, по меньшей мере, в ближнем ИК-и УФ-диапазонах, систему регистрации обратного излучения (ОИ), в которую, по меньшей мере, входят приемные каналы регистрации ОИ на длинах волн лазерного УФ-излучения, комбинационного рассеяния (КР) воды, на длинах волн в спектральных диапазонах флуоресценции органических веществ, и на длине волны лазерного ИК-излучения, а также программируемый контроллер с системами сбора, обработки и, предпочтительно беспроводной, передачи данных в режиме реального времени на удаленные интерфейсы, при этом многоволновой лидар размещен в водонепроницаемом контейнере, который, предпочтительно снабжен окном, прозрачным для лазерного УФ-и ИК-излучения, и установлен на компактной плавающей платформе в виде катамарана на металлических понтонах, скрепленных рамой, на которой контейнер закреплен посредством шарнирной опоры, например, карданова подвеса, устраняющей влияние ветрового волнения на положение контейнера с размещенным в нем многоволновым лидаром, с возможностью крепления плавающей платформы ко дну с помощью якорей, причем контейнер и плавающая платформа выполнены сводящими к минимуму фоновую засветку приемных каналов и зоны зондирования, а погруженная в воду часть плавающей платформы выполнена проницаемой для водных течений, кроме этого комплекс содержит автономный погружной модуль с размещенными в нем датчиками контроля гидрологических и физико-химических параметров качества воды, с возможностью крепления погружного модуля ко дну, в состав комплекса также входит удаленная единая для лидара и погружного модуля автоматизированная система сбора и обработки данных о состоянии поверхностных вод.

Система регистрации ОИ может быть выполнена многоканальной, каждый приемный канал которой представляет собой спектро-яркомер, включающий в себя приемный телескоп, определяющий угол зрения приемного канала, интерференционный светофильтр с корректирующими цветными светофильтрами, определяющими спектральный диапазон приема ОИ, и фотоприемник на базе ФЭУ, подключенный к контроллеру, причем датчики предпочтительно размещены вокруг оси лазерного излучателя, который, предпочтительно представляет собой компактный импульсно- периодический Nd:YAG лазер, генерирующий зондирующие импульсы излучения на длине волны одной из гармоник высшего порядка: 266 или 354 или 532 нм и на длине волны 1064 нм основной гармоники.

Система регистрации обратного излучения может быть расположена на расстоянии от водной поверхности, предпочтительно не превышающем 1,5 метра.

Плавающая платформа и погружной модуль могут быть связаны с удаленным источником энергопитания при помощи двух стандартных кабелей-тросов, внутри которых расположены герметизированные провода, по меньшей мере, для электропитания лидара и погружного модуля.

Комплекс экологического мониторинга предпочтительно выполнен в антивандальном исполнении.

В варианте исполнения комплекс экологического мониторинга может быть оснащен мини энергоустановкой, предпочтительно солнечно-аккумуляторной и/или ветровой.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, при использовании предлагаемого устройства, является надежный непрерывный контроль качества вод контактными и дистанционными средствами регистрации гидрологических и физико-химических параметров качества воды, обнаружение и распознавание различных типов загрязнений водной среды в районе размещения комплекса мониторинга, в том числе и за счет следующих технических эффектов:

- надежное круглогодичное количественное измерение широкого набора гидрологических и физико-химических параметров качества воды датчиками погружного модуля комплекса;

- дистанционное определение «невидимых» погружными датчиками разливов нефтепродуктов и масел многоволновым лидаром;

- отсутствие у лидарной части комплекса недостатков, связанных с замазучиванием при большом разливе нефтепродуктов или обрастанием биоорганическими отложениями;

- широкий диапазон измерения лидаром таких параметров, как мутность или прозрачность воды, содержание растворенных органических веществ, в частности растворенных и эмульгированных нефтепродуктов, содержание хлорофилла водорослей и фитопланктона, отсутствие принципиальных ограничений на верхнюю границу измерения лидаром указанных параметров, надежность измерений за счет дублирования лидарных измерений частью системы датчиков погружного модуля;

- при малой мощности излучателя обеспечивается предельная чувствительность лидара к изменяющимся характеристикам водной среды, поскольку лазерный излучатель и система регистрации ОИ расположены предельно близко к зондируемой водной поверхности;

- высокое соотношение сигнала к шуму, поскольку лидар размещен в контейнере на плавающей платформе, сводящими к минимуму фоновую засветку зоны зондирования и приемных каналов системы регистрации ОИ;

- надежное распознавание сигнала отражения ПК излучения от нефтяной пленки и сигналов флуоресценции органических веществ от УФ-излучения за счет одновременного облучения водной поверхности ИК-и УФ-излучением лазера,

- минимизация разброса результатов измерений из-за изменения угла между осью лазерного излучателя и плоскостью водной поверхности благодаря тому, что контейнер, содержащий лазерный излучатель, закреплен посредством шарнирной опоры, устраняющей влияние качки на положение контейнера.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Чертежи в заявке представлены в виде, достаточном для понимания принципов изобретения, и не ограничивают объем настоящего изобретения.

На чертежах совпадающие элементы устройства имеют одинаковые номера позиций.

На фиг.1. схематично показан комплекс экологического мониторинга водных объектов.

На фиг.2а показана схема компоновки системы регистрации ОИ в варианте ее реализации в виде многоканального спектро-яркомера (вид сверху) и на фиг.2b - устройство отдельного приемного канала - спектро-яркомера.

ПРИМЕРЫ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Комплекс экологического мониторинга водных объектов содержит водонепроницаемый контейнер 1 с размещенным в нем многоволновым лидаром, погружной модуль 2 с датчиками 3 контроля гидрологических и физико-химических параметров качества воды, металлические понтоны 4 компактной плавающей платформы типа катамаран, скрепленных рамой 5, на которой контейнер 1 закреплен посредством шарнирной опоры 6, например, карданова подвеса, устраняющей влияние ветрового волнения на положение контейнера 1 с размещенным в нем многоволновым лидаром, с возможностью крепления плавающей платформы ко дну с помощью якорей, причем погруженная в воду часть плавающей платформы выполнена проницаемой для водных течений. Комплекс также содержит кабель-тросы 7, 7' для энергоснабжения лидара и погружного модуля. Многоволновой лидар включает в себя компактный многоволновой импульсно-периодический лазерный излучатель 8, генерирующий излучение, по меньшей мере, в ближнем ИК-и УФ-диапазонах, зондирующий водную поверхность лучом 9, через окно 10 контейнера 1, прозрачное для лазерного луча 9 и обратного излучения 11, и систему регистрации 12 ОИ. В ее состав, по меньшей мере, входят приемные каналы регистрации ОИ на длинах волн лазерного УФ-излучения, комбинационного рассеяния (КР) воды, на длинах волн в спектральных диапазонах флуоресценции органических веществ, и на длине волны лазерного ИК-излучения. Система регистрации 12 ОИ состоит из многоканального либо гиперспектрального оптического детектора УФ-и видимого диапазонов 12' и одноканального детектора 12'' для регистрации излучения на длине волны лазерного ИК-излучения. Многоволновой лидар также содержит программируемый контроллер 13 с системами сбора, обработки и, предпочтительно беспроводной передачи данных в режиме реального времени на удаленные интерфейсы. В состав комплекса также входит удаленная единая для лидара и погружного модуля автоматизированная система сбора и обработки данных о состоянии поверхностных вод 14. Контейнер 1 и плавающая платформа выполнены сводящими к минимуму фоновую засветку зоны зондирования и приемных каналов системы регистрации 12 ОИ. Для этого плавающая платформа предпочтительно имеет палубу с отверстием для лазерного луча 9 и ОИ 11, а контейнер 1, за исключением окна 10, выполнен светонепроницаемым. У комплекса в антивандальном исполнении, фиг.1, конструкция предпочтительно выполнена из металла, имеются антивандальные элементы, а в контейнере 1 размещен датчик и/или система сигнализации несанкционированного доступа.

В варианте реализации устройства система регистрации 12 ОИ выполнена многоканальной (фиг.2a), каждый приемный канал которой представляет собой яркомер 12' (фиг.2b), включающий в себя приемный телескоп 16, определяющий угол зрения приемного канала и состоящий из объектива с полевой диафрагмой и окуляра, и фотоприемник 17 на базе ФЭУ, подключенный к контроллеру 13. При этом каждый яркомер 12' системы регистрации 12 ОИ снабжен интерференционным светофильтром в комплекте с корректирующими цветными светофильтрами 18, определяющими спектральный диапазон приема ОИ. Поперечный размер яркомера, определяемый диаметром объектива, не превышает 50 мм. Яркомеры 12', отличающиеся набором светофильтров предпочтительно размещены вокруг луча 9 лазерного излучателя 8, который, предпочтительно представляет собой компактный импульсно-периодический Nd:YAG лазер, генерирующий зондирующие импульсы излучения на длине волны одной из гармоник высшего порядка: 266 или 354 или 532 нм и на длине волны 1064 нм основной гармоники.

Комплекс экологического мониторинга водных объектов функционирует следующим образом. До начала работы комплекс, содержащий многоволновой лидар, размещенный в водонепроницаемом контейнере 1, и погружной модуль 2 с датчиками 3 контроля гидрологических и физико-химических параметров качества воды, установленных на компактной плавающей платформе в виде катамарана на металлических понтонах 4, скрепленных рамой 5, на которой контейнер 1 закреплен посредством шарнирной опоры 6, например, карданова подвеса, перемещают в район проведения мониторинга. В варианте функционирования комплекса в стационарном режиме плавающую платформу и погружной модуль крепят ко дну якорями. Комплекс начинает непрерывную работу при подаче через кабель-тросы 7, 7' электропитания от берегового источника энергоснабжения на блоки питания элементов комплекса.

Входящий в состав многоволнового лидара импульсно-периодический лазерный излучатель 8, генерирующий излучение, по меньшей мере, в ближнем ИК-и УФ-диапазонах, периодически производит оптическое зондирование поверхности воды достаточно мощными импульсами лазерного излучения на двух длинах волн спектра: ближнего ИК-и, предпочтительно УФ-диапазонов. Зондирование производится направленным по вертикали вниз лучом 9 многоволнового лазерного излучателя через прозрачное для лазерного УФ-и ИК-излучения окно 10 контейнера 1. Для внутренних водоемов лазерное УФ-излучение проходит в толщу воды обычно на несколько сантиметров, а ИК-излучение - не более чем на несколько миллиметров. Вошедшее в воду лазерное УФ-излучение вызывает обратное излучение (ОИ) 11 во-первых, на длине волны лазерного УФ-излучения - обратное рассеяние, во-вторых, в стоксовой, более длинноволновой, области спектра. Спектр ОИ в стоксовой области определяется флуоресценцией растворенных, взвешенных органических примесей, пленок в зондируемой толще воды и на поверхности, и комбинационным рассеянием (КР). Спектр КР воды представляет узкую линию, жестко смещенную в стоксову область от длины волны зондирования на 3440 обр.см. Флуоресцентное излучение проявляется в спектральном диапазоне от длины волны зондирующего лазерного УФ-излучения до 700 нм. Зондирующее ИК-излучение вызывает сигнал обратного излучения на длине волны лазерного ИК-излучения, величина которого сильно зависит от наличия на воде пленок нефтепродуктов и масел из-за различия коэффициентов отражения света для нефтепродуктов и воды. Входящая в состав лидара система регистрации 12 ОИ в составе с контроллером - 13 и системами сбора, обработки и передачи данных регистрирует аналоговые сигналы приемных каналов системы регистрации 12, проводит их первичную обработку, отцифровывая данные спектрального сигнала ОИ воды, и в режиме реального времени с помощью системы передачи данных, например в виде модема с антенной, передает их на интерфейс удаленной от плавающей платформы автоматизированной системы 14 сбора и обработки данных о состоянии поверхностных вод, включающей приемный модем, высокоинтеллектуальный контроллером и/или персональный компьютер (ПК). Данные спектра лазерно-индуцированного ОИ воды запоминаются и анализируются с помощью системы 14 сбора и обработки данных. Детализация измеряемого спектрального сигнала определяется количеством приемных каналов системы регистрации 12 ОИ. По меньшей мере, ОИ регистрируется на длинах волн лазерного УФ-излучения, комбинационного рассеяния (КР) воды, на длинах волн в спектральных диапазонах флуоресценции органических веществ, и на длине волны лазерного ИК-излучения. В зависимости от типа системы регистрации 12 ОИ, количество приемных каналов может быть от минимум четырех до нескольких сотен Систему регистрации излучения с большим, в несколько сотен количеством спектральных каналов, обычно называют гиперспектральной. Такая система регистрации ОИ применяется в варианте флуоресцентных лидаров судового и авиационного базирования и может быть использована в предложенном устройстве, как составная часть системы регистрации ОИ. Следует отметить, что одна гиперспектральная система регистрации ОИ может регистрировать излучение УФ и видимого диапазона, а для измерения сигнала ОИ на длине волны лазерного ИК излучения необходим отдельный приемный канал. Поэтому система регистрации 12 ОИ состоит из многоканального или гиперспектрального оптического детектора - УФ и видимого диапазонов 12' и одноканального детектора 12'' излучения на длине волны лазерного ИК излучения. С помощью системы сбора и обработки данных 14 производится нормировка спектра ОИ реперным сигналом, в качестве которого может быть использован сигнал КР воды, зависящий только от прозрачности воды на длине волны УФ-излучения лазера и энергии лазера. Полученный при однократном зондировании нормированный спектр ОИ воды не зависит от дистанции, волнения, угла зондирования и флуктуации мощности лазера. В соответствии с разработанной методикой по измеренным данным рассчитывается концентрация в воде органических веществ, в частности нефтепродуктов, и определяется наличие или отсутствие пленки масел и нефтепродуктов на поверхности воды. Выполнение контейнера, в котором содержится лидарное оборудование водонепроницаемым обеспечивает работоспособность плавучего комплекса мониторинга водных объектов, в частности, за счет использования окна 10, которое с одной стороны- прозрачно для лазерного и обратного излучения, с другой - герметично отделяет внутреннее пространство контейнера с лидаром от проникновения влаги с водной поверхности. Закрепление контейнера 1 на раме 5 плавающей платформы посредством шарнирнирной опоры 6 типа карданова подвеса обеспечивает вертикальное зондирования при небольшой качке катамарана, минимизируя влияние ветровых волнений на условия лидарных измерений. Контейнер, за исключением окна, и плавающая платформа выполнены из светонепроницаемых материалов конструктивно сводящими к минимуму фоновую засветку приемных каналов системы регистрации 12 ОИ и зоны зондирования. Для этого плавающая платформа предпочтительно имеет затеняющую зону зондирования небольшую светонепроницаемую палубу с отверстием для зондирующего луча 9, которая также может использоваться для обслуживания комплекса. Это обеспечивает режим зондирования без фоновых засветок, что существенно увеличивает отношение сигнал/шум, повышает точность измерений и позволяет уменьшить габариты системы регистрации 12 ОИ. Выполнение погруженной в воду части плавающей платформы проницаемой для водных течений, в частности, за счет ее выполнения в виде параллельных течению понтонов 4 катамарана обеспечивает обновление воды в зоне зондирования и, в случае нефтяных разливов, беспрепятственный доступ в зону зондирования пленок нефтепродуктов.

Одновременно установленными на погружном модуле 2 датчиками 3 производится регистрация гидрологических и физико-химических параметров качества воды, в число которых входят, по меньшей мере, мутность, содержание нефтепродуктов в растворенном и эмульгированном состоянии, и содержание хлорофилла водорослей. Другими измеряемыми параметрами предпочтительно являются: содержание растворенного кислорода, азота аммонийного, нитратов, нитритов, Рн, Eh, глубина, скорость течения, температура, удельная электрическая проводимость, радиоактивность. Электропитание погружного модуля осуществляется посредством кабель-троса 7' от берегового источника энергоснабжения. С помощью контроллера 13', снабженного функцией оповещения о превышении допустимых уровней загрязнений, сигналы датчиков 3 оцифровываются и после первичной обработки, предпочтительно по беспроводной системы связи передаются на единую систему сбора и обработки данных 14 комплекса Система сбора и обработки данных 14 постоянно регистрирует и запоминает данные о характеристиках вод, а также сигнализирует о превышении допустимых уровней загрязнений в местах установки комплекса: на водоемах, водозаборах, очистных станциях, внутренних водных путях, портах и нефтяных терминалах, предоставляя информацию для принятия управленческих решений в соответствии с экологической обстановкой, обоснования исков к нарушителям экологических норм и правил, и т.п.

В ледовый период функционирует только погружной модуль комплекса, заглубленный под уровень льда, а плавающий модуль комплекса до наступления безледного периода в данной точке мониторинга не функционирует.

В режиме проведения площадных измерений на водохранилищах погружной модуль 2 закрепляется на понтонах 4, и комплекс транспортируется за судном на плавающей платформе.

В варианте выполнения комплекса зондирование производится излучением компактного импульсно-периодического Nd:YAG лазера, генерирующего импульсы излучения на длине волны одной из гармоник высшего порядка: 266 или 354 или 532 нм и на длине волны 1064 нм основной гармоники. Это позволяет использовать в качестве многоволнового импульсно-периодического лазерного излучателя доступный и надежный малогабаритный серийно производимый твердотельный лазер. При выполнения системы регистрации 12 ОИ в виде многоканального спектро-яркомера (фиг.2) регистрация спектра ОИ осуществляется оптимально малым количеством приемных каналов, компактно расположенных вокруг оси лазера (фиг.2a). Регистрация спектра лазерно-индуцированного обратного излучения осуществляется системой регистрации 12 ОИ с 8-9-ю приемными каналами на следующих длинах волн. 1-й канал - основная гармоника лазера λmax=1.06 мкм используется для обнаружения антропогенных пленок по изменению коэффициента отражения поверхности, при наличии пленок. 2-й канал измеряет сигнал обратного рассеяния УФ-излучения на длине волны 3 гармоники λmax=354 нм или на длине волны 4 гармоники λmax=266 нм. Используется для измерения мутности/концентрации взвеси, может примеряться как нормирующий канал, при отсутствии ярко выраженного сигнала КР. Выбор основной зондирующей длины волны, который определяет спектр флуоресценции, зависит от типа вод и спектров антропогенных загрязнений, характерных для изучаемого региона. 3-й канал измеряет сигнал КР на длине волны зависящей от выбранной основной длины волны зондирования (354 нм, 266 нм, 530 нм). 4, 5, 6, 7, 8-й каналы служат для измерения интенсивности флуоресценции в заранее выбранных интервалах спектра, включая полосу пигментов фитопланктона. На основании имеющегося опыта, спектры лазерно-индуцированной флуоресценции «чистых» внутренних вод мало отличаются по форме и интенсивности. Поэтому для их анализа и обнаружения антропогенных загрязнений достаточно указанного количества приемных каналов: 4-х-5ти. Следует отметить, что для яркомера, измеряющего отраженный сигнал на длине волны самой мощной гармоники 1,06 мкм диаметр приемного объектива может быть меньше остальных, способствуя компактности спектро-яркомера.

Расположение системы регистрации ОИ на расстоянии от водной поверхности, предпочтительно не превышающем 1,5 метра, обеспечивает малые габариты лидара и при малой мощности излучателя высокую чувствительность лидара к изменению характеристик водной среды, поскольку лазерный излучатель и система регистрации ОИ расположены предельно близко к зондируемой водной поверхности.

Оснащение комплекса мини энергоустановкой, предпочтительно солнечно-аккумуляторной и/или ветровой, обусловливает возможность его автономного использования на больших, десятки километров, удаленностях от берега.

Таким образом, выполнение комплекса экологического мониторинга водных объектов в заявленном виде позволяет автоматически получать и обрабатывать широкий набор данных о качестве поверхностных вод по физическим, химическим, физико-химическим и гидрологическим показателям качестве вод для последующей оценки и прогноза изменения их состояния, с высокой надежностью распознавать и идентифицировать, в том числе неконтактными методами, различные загрязнения и оповещать персонал контролируемых водных объектов для принятия ими оперативных решений.

1. Комплекс экологического мониторинга водных объектов, характеризующийся тем, что он содержит многоволновой лидар, включающий в себя зондирующий водную поверхность компактный многоволновой импульсно-периодический лазерный излучатель, генерирующий излучение, по меньшей мере, в ближнем ИК- и УФ-диапазонах, систему регистрации обратного излучения (ОИ), в которую, по меньшей мере, входят приемные каналы регистрации ОИ на длинах волн лазерного УФ-излучения, комбинационного рассеяния воды, на длинах волн в спектральных диапазонах флуоресценции органических веществ и на длине волны лазерного ИК-излучения, а также программируемый контроллер с системами сбора, обработки и предпочтительно беспроводной передачи данных в режиме реального времени на удаленные интерфейсы, при этом многоволновой лидар размещен в водонепроницаемом контейнере, который предпочтительно снабжен окном, прозрачным для лазерного и обратного излучения, и установлен на компактной плавающей платформе в виде катамарана на металлических понтонах, скрепленных рамой, на которой контейнер закреплен посредством шарнирной опоры, например, карданова подвеса, устраняющей влияние ветрового волнения на положение контейнера с размещенным в нем многоволновым лидаром, с возможностью крепления плавающей платформы ко дну с помощью якорей, причем контейнер и плавающая платформа выполнены сводящими к минимуму фоновую засветку приемных каналов и зоны зондирования, а погруженная в воду часть плавающей платформы выполнена проницаемой для водных течений, кроме этого, комплекс содержит автономный погружной модуль с датчиками контроля гидрологических и физико-химических параметров качества воды, с возможностью крепления погружного модуля ко дну, в состав комплекса также входит удаленная единая для лидара и погружного модуля автоматизированная система сбора и обработки данных о состоянии поверхностных вод.

2. Комплекс экологического мониторинга по п.1, отличающийся тем, что многоволновой импульсно-периодический лазерный излучатель представляет собой компактный импульсно-периодический Nd:YAG лазер, генерирующий зондирующие импульсы излучения на длине волны одной из гармоник высшего порядка: 266 или 354 или 532 нм и на длине волны 1064 нм основной гармоники, а система регистрации ОИ выполнена в виде многоканального спектрояркомера, каждый приемный канал которого представляет собой яркомер, включающий в себя приемный телескоп, определяющий угол зрения приемного канала, и фотоприемник на базе ФЭУ, подключенный к контроллеру, кроме этого, оснащенный интерференционным светофильтром с корректирующими цветными светофильтрами, определяющими спектральный диапазон приема ОИ, причем яркомеры предпочтительно размещены вокруг оси лазерного излучателя.

3. Комплекс экологического мониторинга по любому из пп.1 и 2, отличающийся тем, что система регистрации ОИ расположена на расстоянии от водной поверхности, предпочтительно не превышающем 1,5 м.

4. Комплекс экологического мониторинга по любому из пп.1 и 2, отличающийся тем, что плавающая платформа и погружной модуль связаны с удаленным источником энергопитания при помощи двух стандартных кабелей-тросов, внутри которых расположены герметизированные провода, по меньшей мере, для электропитания лидара и погружного модуля.

5. Комплекс экологического мониторинга по любому из пп.1 и 2, отличающийся тем, что он предпочтительно выполнен в антивандальном исполнении.

6. Комплекс экологического мониторинга по любому из пп.1 и 2, отличающийся тем, что он оснащен миниэнергоустановкой, предпочтительно солнечно-аккумуляторной и/или ветровой.



 

Похожие патенты:

Способ и устройство предназначены для контроля интенсивности электронного луча при проведении исследований образцов. Способ контроля интенсивности электронного луча, образующего плазму при своем распространении, при котором обнаруживают и анализируют электронное излучение или электромагнитное излучение, создаваемое непосредственно или косвенно электронным лучом, при этом для измерительной регистрации электронного или электромагнитного излучения, создаваемого непосредственно или косвенно электронным лучом, предусмотрен детектор, который направляют через стенку прозрачного или просвечивающего упаковочного материала на плазму.

Изобретение относится к области управления процессами превращения, в которых конверсия исходного сырья в продукт происходит вдоль фронта реакции, идущего от поверхности кристаллов, и/или зерен, и/или фаз, и/или пор внутрь исходного вещества, причем в исходном веществе выделяется, и/или внедряется, и/или перемещается один или несколько химических элементов, и конверсия исходных веществ происходит вдоль распространяющегося фронта реакции.
Изобретение относится к диагностированию дизельных двигателей автотранспортных и военных машин, в частности к способам определения дымности отработанных газов дизельных двигателей с применением компьютера.

Изобретение относится к медицинской технике, а именно к диагностическим системам и способам визуализации с помощью оптической когерентной томографии. .
Изобретение относится к области материаловедения и может быть использовано при оценке влияния структуры титановых сплавов на аналитический сигнал при проведении оптического эмиссионного спектрального анализа элементного состава.
Изобретение относится к области медицины, а именно к лабораторной диагностике, пульмонологии и педиатрии. .

Изобретение относится к области определения физико-химических свойств. .

Изобретение относится к оптоакустическим способам и средствам для мониторинга и оценки ткани. .

Изобретение относится к способам контроля анизотропии углового распределения волокон в плоских волокнистых материалах и связанных с этим распределением технологических параметров и может быть использовано при решении вопросов повышения качества таких материалов и контроля качества работы производящего оборудования.

Изобретение относится к области контроля и анализа с помощью оптических средств мазутов, используемых в котельных установках, и остаточных топлив, используемых в судовых дизелях.

Изобретение относится к аппаратным методам исследования объектов, невидимых невооруженным глазом, выполняемых на основе исследования световых волн, взаимодействующих с микрообъектами. На исследуемом объекте выбирают область сканирования, внутри которой формируют область со стандартными однородными оптическими свойствами, многократно сканируют точки выбранной области сканирования лазерным лучом, каждый раз перемещая начало сканирования на расстояние не более требуемой разрешающей способности, с одновременной регистрацией и сохранением информации об оптических характеристиках увеличенного изображения точек области сканирования и координатах точек области сканирования. Восстанавливают изображение исследуемого объекта на основе использования информации об оптических характеристиках точек области со стандартными однородными оптическими свойствами и информации об оптических свойствах других точек области сканирования. Перемещение начала сканирования осуществляют на расстояние от 0,5 нм до 1000 нм. Изобретение обеспечивает повышение разрешающей способности - возможности исследования объектов с разрешением от 1 нм и более. 1 з.п. ф-лы, 6 ил.

Изобретение относится к трубопроводному транспорту и может быть использовано для контроля движения очистных, диагностических и иных объектов в трубопроводах в потоке перекачиваемого продукта, например скребков, разделителей и т.д. Устройство содержит последовательно соединенные приемный преобразователь создаваемых объектом акустических колебаний в электрический сигнал и блок анализа. Приемный преобразователь выполнен в виде когерентного рефлектометра, содержащего оптический источник, волоконно-оптический кабель, предназначенный для установки вдоль трубопровода в качестве распределенного датчика акустических колебаний, и приемник рассеянного излучения. Волоконно-оптический кабель выполнен из комбинации последовательно соединенных отрезков оптических волокон, расположенных таким образом, что коэффициент рэлеевского рассеяния каждого последующего отрезка, начиная от оптического источника, больше коэффициента рэлеевского рассеяния предыдущего отрезка. Техническим результатом является увеличение дальности и повышение точности обнаружения и регистрации положения контролируемого объекта в трубопроводе. 2 з.п. ф-лы, 1 ил.

Изобретение относится к медицине, а именно к способам и системам для получения изображения в видимой и инфракрасной областях спектра. Способ заключается в непрерывном освещении наблюдаемой области синим/зеленым светом, а также красным светом и светом ближней ИК-области спектра. При освещении красный свет и/или свет ближней ИК-области спектра периодически включают и выключают. Синий отраженный свет и зеленый отраженный свет, а также суммарный красный отраженный свет и люминесцентное излучение направляют на формирователи сигналов изображения. Формирователи сигналов выполнены с возможностью раздельного измерения отраженного синего света, отраженного зеленого света и суммарного отраженного красного света и люминесцентного излучения в ближней ИК-области спектра. Красный свет и/или свет ближней ИК-области спектра периодически включают и выключают синхронно с получением изображения красного цвета и изображения ближней ИК-области спектра. Определяют по отдельности спектральную составляющую отраженного красного света и спектральную составляющую люминесцентного излучения в ближней ИК-области спектра на основе сигналов изображения суммарного отраженного красного света и люминесцентного излучения в ближней ИК-области спектра. Выводят на экран полноцветное изображение наблюдаемой области на основе синего отраженного света, зеленого отраженного света и отдельно определенной спектральной составляющей красного света, а также изображение в ближней ИК-области спектра на основе спектральной составляющей люминесцентного излучения в ближней ИК-области спектра. Система содержит источник света, видеокамеру с формирователями сигнала, контроллер и дисплей. Использование изобретения позволяет улучшить разрешение полученного изображения в видимой и инфракрасной областях спектра и уменьшить количество артефактов, обусловленных движением. 2 н.п.ф-лы, 23 з.п.ф-лы, 6 ил.

Изобретение относится к устройству для анализа люминесцирующих биологических микрочипов, содержащему держатель образца, средство освещения. Устройство включает в себя лазерные источники возбуждения люминесцентного излучения и волоконно-оптическую систему распределения излучения лазеров, устройство фиксации изображения образца, фильтр для выделения света люминесценции образца и оптическую систему для проецирования люминесцентного изображения образца на устройство фиксации изображения. Устройство характеризуется тем, что средство освещения содержит кольцевую опору, в которой по ее окружности расположены концы волокон волоконно-оптической системы распределения излучения лазеров, при этом волоконно-оптическая система включает в себя несколько пучков оптических волокон, так что каждому лазеру соответствует один пучок волокон, причем каждый пучок со стороны, обращенной в сторону образца, когда он установлен в держатель, разделен на отдельные волокна, а концы волокон от разных лазеров расположены по окружности кольцевой опоры с чередованием и ориентированы в сторону анализируемого образца, когда он установлен в держатель, под острым углом к оси этой кольцевой опоры. Настоящее устройство позволяет увеличить равномерность освещенности разных участков биочипа при его освещении различными лазерами за счет возможности освещения образца возбуждающим светом с разных сторон при использовании индивидуальных лазеров или любой комбинации лазеров. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области бесконтактного исследования поверхности металлов оптическими методами, а именно к способу измерения длины распространения поверхностных плазмонов, направляемых этой поверхностью. Способ включает измерение интенсивности излучения вдоль трека плазмонов и расчет значения длины распространения по результатам измерений. При этом проводят измерение интенсивности объемного излучения, порожденного плазмонами на естественных неоднородностях поверхности, представляющих собой статистически равномерно распределенные вариации оптических постоянных и шероховатости. Измерения осуществляют за пределами поля плазмонов. Технический результат заключается в повышении точности измерений. 1 ил.

Газоанализатор относится к измерительному оборудованию, а именно к оптическим инфракрасным газоанализаторам, и может быть использован для непрерывного контроля довзрывоопасных концентраций паров углеводородов, продуктов нефтепереработки и т.д. В газоанализаторе крепление и герметизация защитного кожуха в корпусе газоанализатора осуществлены компрессионным способом с помощью накидной гайки и уплотнительного резинового кольца А, позиционирование защитного кожуха с вентиляционными отверстиями с закрепленным оптическим измерительным преобразователем со встроенной флэш-памятью при установке в гнезда разъема осуществлено совмещением направляющего штыря на плате разъема и паза во втулке с пазом, запрессованной в защитный кожух с вентиляционными отверстиями. Оптический измерительный преобразователь со встроенной флэш-памятью крепится внутри втулки с пазом с помощью пружинного фиксатора и герметизируется уплотнительным резиновым кольцом Б. Крепление и герметизация каркаса фильтра осуществлены с помощью уплотнительного резинового кольца В с возможностью быстрого извлечения каркаса фильтра. В каркасе фильтра находится объемный фильтр из скрученной стальной проволоки, расположенный перед гидрофобным мембранным фильтром. Корпус газоанализатора, накидная гайка и втулка с пазом изготовлены из пластика с низкой теплоемкостью, а защитный кожух с вентиляционными отверстиями, каркас фильтра и объемный фильтр из скрученной стальной проволоки изготовлены из металла с высокой теплоемкостью. Технический результат - создание газоанализатора быстроразборной конструкции, с повышением устойчивости его работы в неблагоприятных внешних условиях, предусматривающей возможность быстрого извлечения оптического измерительного преобразователя из корпуса газоанализатора для периодической поверки, ремонта или замены, а также, при необходимости, извлечения и очистки фильтра на месте эксплуатации. 1 ил.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств. Способ касается определения дротаверина гидрохлорида путем спектрофотометрирования определяемого вещества и стандартного образца сравнения, причем в качестве растворителя для приготовления определяемого раствора используют 0,1 М раствор хлористоводородной кислоты, концентрация испытуемого раствора составляет 0,000017 г/мл, в качестве образца сравнения используют калия дихромат, в формулу расчета результатов вводят значение коэффициента пересчета 0,434 и проводят расчет по формуле. Способ позволяет повысить воспроизводимость результатов определения, уменьшить стоимость, трудоемкость, погрешность анализа, унифицировать методику анализа. 4 пр.

Изобретение относится к области автоматизации в машиностроении и предназначено для контроля положения и идентификации изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий. Технический результат - расширение функциональных возможностей с повышением надежности работы адаптивного датчика и улучшение его эксплуатационных характеристик. Адаптивный датчик включает чувствительный элемент, образованный расположенными вдоль прямой линии индуктивным чувствительным элементом, емкостным чувствительным элементом, установленным внутри центрального сквозного отверстия индуктивного чувствительного элемента, и двумя инфракрасными фотоприемниками, логический элемент ИЛИ-НЕ, первый и второй блоки индикации, первый и второй диоды, точка соединения выводов катодов которых и второго входа логического элемента ИЛИ-НЕ является первым выходом адаптивного датчика, счетный триггер, прямой и инверсный выходы которого являются соответственно -вторым и третьим выходами адаптивного датчика. При перемещении в одном или другом противоположном направлении нагретых металлических или ненагретых металлических изделий относительно чувствительного элемента адаптивного датчика на его первом выходе отрабатываются потенциальные информационные сигналы напряжения с уровнем логической "1", несущие информацию о контроле положения нагретых металлических или ненагретых металлических изделий, на втором и третьем выходах соответственно двухразрядные двоичные цифровые коды 10 и 01 идентификации этих изделий. Визуальные сигналы контроля положения и идентификации этих изделий снимаются с соответствующих блоков индикации. Адаптивный датчик обеспечивает автоматический контроль изделий без механического контакта с ними и автоматическую адаптацию его к конкретному виду контролируемого изделия. 2 ил.

Изобретение относится к области автоматизации в машиностроении и предназначено для контроля положения и идентификации изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий. Технический результат - расширение функциональных возможностей. Адаптивный датчик идентификации и контроля положения четырех видов изделий содержит чувствительную поверхность, бесконтактный датчик идентификации четырех (нагретого металлического, нагретого неметаллического, ненагретого неметаллического, ненагретого металлического) видов изделий, логический элемент ИЛИ-НЕ, восемь логических элементов И, блок установки в исходное состояние, двоичный счетчик электрических импульсов, первый, второй, третий и четвертый блоки индикации, тактовый генератор с их соответствующими электрическими связями. Точка соединения выходов седьмого, шестого, пятого, логических элементов И и второго входа логического элемента ИЛИ-НЕ является первым выходом адаптивного датчика. Выходы третьего, второго, первого логических элементов И и третий выход двоичного счетчика электрических импульсов являются соответственно вторым, третьим, четвертым и пятым выходами адаптивного датчика. При перемещении относительно чувствительной поверхности одного или другого, или третьего, или четвертого вида изделия на первом выходе отрабатываются потенциальные информационные сигналы контроля положения этих изделий с уровнями логической ″1″. При этом на втором, третьем, четвертом и пятом выходах формируется четырехразрядный двоичный цифровой код, значения 1000, 0100 0010 и 0001 которого являются кодами идентификации соответственно одного или другого, или третьего, или четвертого вида контролируемого изделия. Информационные сигналы об идентификации одного, другого, третьего, четвертого видов контролируемых изделий в виде визуальных сигналов снимаются соответственно с первого, второго, третьего, четвертого блоков индикации. Адаптивный датчик обеспечивает автоматический контроль изделий без механического контакта с ними и автоматическую адаптацию его к конкретному виду контролируемого изделия. 1 ил.

Изобретение относится к области автоматизации в машиностроении и предназначено для контроля положения и идентификации изделий с учетом их вида материала и термического состояния в автоматизированных высокопроизводительных производствах по сборке изделий, а также для решения общих задач автоматизации различных производственных процессов. Технический результат - расширение функциональных возможностей и улучшение эксплуатационных характеристик. Адаптивный датчик идентификации и контроля положения изделий содержит чувствительную поверхность, датчик контроля двух видов изделий, первую, вторую и третью выходные клеммы, логический элемент ИЛИ-НЕ, два логических элемента И, счетный триггер, первый и второй блоки индикации, генератор электрических колебаний с их соответствующими электрическими связями. При перемещении относительно чувствительной поверхности одного (например, нагретого металлического) или другого (например, ненагретого неметаллического) вида изделия на первой выходной клемме отрабатываются потенциальные сигналы контроля положения этих изделий с уровнями логической "1". При этом на втором и третьем выходах формируется двухразрядный двоичный цифровой код, значения 10 и 01 которого являются кодами идентификации соответственно одного или другого вида контролируемого изделия. Информационные сигналы об идентификации одного и другого видов контролируемых изделий в виде визуальных сигналов снимаются соответственно с первого и второго блоков индикации. Адаптивный датчик обеспечивает автоматический контроль одного или другого вида изделия без механического контакта с ними и автоматическую адаптацию его к конкретному виду контролируемого изделия. 11 з.п. ф-лы, 2 ил., 1 табл.
Наверх