Способ оценки тока вызванной поляризации среды в заколонном пространстве обсаженных скважин

Изобретение относится к области исследования обсаженных скважин и предназначено для оценки электрохимической активности среды в заколонном пространстве методом вызванной поляризации (ВП). Технический результат: повышение информативности измерений за счет возможности выделения роста потенциала ВП в заколонном пространстве. Сущность: способ включает измерение потенциалов вызванной поляризации (ВП) после включения поляризующего тока, выделение периода роста потенциала ВП, отражающего поляризационные явления в скважинах, и периода роста потенциала ВП, отражающего поляризационные явления в пласте. Выделение роста потенциала ВП, отражающего поляризационные явления в пласте, производят в период времени более 0,1 с после включения поляризующего тока. 2 ил.

 

Изобретение относится к области исследования обсаженных скважин и предназначено для оценки электрохимической активности среды в заколонном пространстве методом вызванной поляризации (ВП). Может использоваться при эксплуатации скважин подземных хранилищ газа.

Метод вызванной поляризации (ВП) основан на изучении вторичных электрических полей, возникающих в земле под действием электрического тока. Эти поля имеют электрохимическое происхождение, связанное с процессами, происходящими на контакте твердого вещества горных пород с внутри поровой влагой (Дахнов В.Н. Электрические и магнитные методы исследования скважин. - М., Недра, 1967).

Стандартные исследования проводятся в дискретном режиме с помощью специального четырехэлектродного потенциал-зонда A10.04MO.04A25,0B (РД 153-39.0-072-011. Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах. - Москва, 2001, стр.121).

Измеряют разность потенциалов ВП (ΔUвп) через промежуток времени, прошедший после выключения поляризующего тока и разность потенциалов внешнего поляризующего поля (ΔU).

Первичная обработка состоит в расчете значений ΔUвп и расчете вызванной электрохимической активности Ав пород как отношения ΔUвп/ΔU.

Недостаток известного метода состоит в том, что он не позволяет оценить электрохимическую активность окружающих обсаженную стальной колонной пород, что обусловлено образованием двойного электрического слоя, всегда возникающего на контакте сред высокой (в данном случае, обсаженная стальной колонной скважина) и низкой (заколонное пространство) электрической проводимости (Электроразведка: Справочник геофизика. - М.: Недра, 1979, стр.313, а также положит. решение по заявке №2011139572, приоритет 28.09.2011 г.), обусловливающие близкие к 0 значения ΔUвп.

Задачей предложенного изобретения является повышение информативности измерений за счет анализа кривой роста потенциала ВП после включения поляризующего тока.

Поставленная задача решается тем, что в предлагаемом способе оценки тока вызванной поляризации среды в заколонном пространстве обсаженных скважин, после включения поляризующего тока производят измерение потенциалов вызванной поляризации (ВП) и выделяют потенциал ВП, обусловленный влиянием скважины, и потенциал ВП, обусловленный пластом.

Физической основой предлагаемого способа является то обстоятельство, что рост потенциала ВП является отражает последовательность двух процессов ВП, когда сначала происходит перезарядка двойного электрического слоя, а затем - перенапряжение электрохимических реакций и концентрационная поляризация (Электроразведка: Справочник геофизика. - М.: Недра, 1979, стр.335).

Первый процесс отражает поляризационные явления в скважине. Он аппроксимируется переходной характеристикой:

F1(t n ) = U1(t n ) U1 = 1 exp( t n t 0 ) , (1)

где tn - время зарядки, мкс;

t0 - постоянная времени, которая является специфической для контактирующих веществ и составляет сотни - десятки микросекунд;

F1(tn) - экспоненциальная временная функция первого процесса;

U1(tn) - коэффициент поверхностной поляризации первого процесса, зависящий от времени tn, б/р величина;

U1 - характеризует предельное асимптотическое значение коэффициента поверхностной поляризации первого процесса, б/р величина.

Второй процесс отражает поляризационные явления в пласте. Он описывается переходной характеристикой:

F2(t n ) = U2(t n ) U2 = 1 exp ( t n t 0 * π ) *erfc t n t 0 * π , (2)

где erfc - стандартное обозначение дополнительного интеграла вероятностей;

U2 - характеризует предельное асимптотическое значение коэффициента поверхностной поляризации второго процесса, б/р величина;

U2(tn) - коэффициент поверхностной поляризации второго процесса, зависящий от времени tn, б/р величина;

F2(tn) - экспоненциальная временная функция второго процесса;

tn - время зарядки после включения тока, мкс;

t0 - постоянная времени, которая является большей, чем у первого процесса и составляет сотни секунд;

π - постоянное число.

На Фиг. 1 представлены типичные примеры переходных характеристик 1-го и 2-го процессов ВП.

На Фиг. 2 дано сопоставление коэффициентов ηw на моделях скважин открытого ствола и обсаженных стальной колонной.

На фиг. 1 первый процесс отражает поляризационные явления в скважине. Он аппроксимируется экспоненциальной переходной характеристикой - F1(tn) (1).

Второй процесс отражает поляризационные явления в пласте. Он описывается переходной характеристикой F2(tn) - (2).

Как видно из приведенных результатов на фиг.1, при tn более 0,1 с возрастание потенциала ВП будет обусловлено 2-м процессом, 1-й процесс будет обуславливать фон, что делает возможным простую оценку потенциала ВП в заколонном пространстве.

При осуществлении практической реализации способа с помощью стандартного зонда ВП (РД 153-39.0-072-011. Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах. - Москва, 2001, стр.121) после включения поляризующего тока производят измерение потенциала ВП (t) в скважине в интервале времени (0-100) с, с шагом квантования по времени 0,02 с, и рассчитываются значения

ВП пл (t) = ВП(t) ВП(0 ,1) (3)

где ВП (0,1) - значение потенциала ВП при t=0,1 с,

ВП (t) - значения потенциала ВП в моменты времени >0,1 с.

Кривая ВПпл(1) характеризует рост потенциала в заколонном пространстве после учета влияния обсаженной скважины.

Параметром, определяемым электрохимичской активностью пласта, в предлагаемом способе служит величина ηw=x/x0, где x0 - значение ВП (0,1), x - сумма значений ВПпл(t) для t>0,1 с.

Пример практической реализации вышеуказанного способа показан на фиг. 2, на которой приведено сопоставление коэффициентов ηw, полученные при измерениях на насыпных моделях скважин открытого ствола и обсаженной стальной колонной. Измерения на моделях скважин открытого ствола проводились четырехэлектродным потенциал-зондом A10.04M0.04A25.0B при продолжительности зарядки 1 мин, паузы 5 сек, измерения 1 мин. Как видно из приведенных результатов, между коэффициентами ηw, полученными на моделях скважины открытого ствола и обсаженной, наблюдается высокая сходимость.

1. Дахнов В.Н. Электрические и магнитные методы исследования скважин. - М.: Недра, 1967.

2. Электроразведка. Справочник геофизика. - М.: Недра, 1979.

3. РД 153-39.0-072-011. Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах. Москва - 2001.

Способ оценки тока вызванной поляризации среды в заколонном пространстве обсаженных скважин, включающий измерение потенциалов вызванной поляризации (ВП) после включения поляризующего тока, выделение периода роста потенциала ВП, отражающего поляризационные явления в скважинах, и периода роста потенциала ВП, отражающего поляризационные явления в пласте, отличающийся тем, что выделение роста потенциала ВП, отражающего поляризационные явления в пласте, производят в период времени более 0,1 с после включения поляризующего тока, и выделяют кривую роста потенциала ВП в заколонном пространстве путем выделения ее на фоне роста потенциала ВП, отражающего поляризационные явления в скважине.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано при электрическом каротаже скважин. .

Изобретение относится к области изготовления, градуировки и обслуживания приборов и устройств для геофизических измерений и может быть использовано в оборудовании для каротажа, содержащем систему охлаждения с использованием криогенных жидкостей.

Изобретение относится к обработке изображения или каротажной информации, а более конкретно, к обработке изображения или результатов исследований в скважине на основе объема исследования.

Изобретение относится к области измерительной техники и может быть использовано для проведения каротажа на рудных скважинах. .

Изобретение относится к области исследований нефтяных скважин, а именно к акустическим измерениям, проводимым для определения формы и размеров области заводнения нефтяного пласта в окрестностях скважины.

Изобретение относится к геофизическим исследованиям электрических параметров пород в нефтегазовых скважинах. .

Изобретение относится к области геофизических исследований в скважинах, а именно к приборам электрического каротажа в процессе бурения. .

Изобретение относится к беспроводной связи посредством радиосигналов, предназначенной для использования при анализе геологических формаций. .

Изобретение относится к кабелям для геофизических исследований. .

Изобретение относится к области электротехники, в частности к скважинным телеметрическим системам для передачи сигналов между наземным устройством и скважинным прибором, размещенным в стволе скважины.

Изобретение относится к области геофизики и может быть использовано для определения насыщения флюидом порового пространства пород исследуемых пластов. Способ определения насыщения водой в подземном пласте включает в себя определение глубины проникновения в пласт на основании множества измерений, выполняемых в стволе скважины, пробуренном сквозь пласт. Измерения имеют различные глубины исследования в пласте. Углерод и кислород в пласте измеряют в по существу том же продольном положении, как положение определения глубины проникновения. Измеренные углерод, кислород и глубину проникновения используют для определения насыщения водой в по существу не затронутой проникновением фильтрата части пласта. Технический результат: повышение точности данных относительно насыщения пластовых пород флюидами. 2 н. и 17 з.п. ф-лы, 4 ил.

Изобретение относится к области геофизических исследований скважин, а именно к приборам для измерений геофизических и технологических параметров в процессе бурения. Техническим результатом является повышение информативности измерений и точности геонавигации в процессе бурения за счет расположения зонда для измерения удельного электрического сопротивления на максимально близком расстоянии к долоту в наддолотном модуле (НДМ). Устройство по изобретению содержит забойную телеметрическую систему (ЗТС), включающую бурильную колонну, корпус, блок питания, измерительные модули, приемо-передающий модуль, электрический разделитель, выполненный в виде отдельного переводника. НДМ установлен непосредственно над долотом. При этом долото состоит из корпуса с центральным промывочным отверстием, на котором размещен центральный электрод. В свою очередь центральный электрод расположен между изоляторами и электрически изолирован от корпуса, в котором расположены электрические схемы, измерительные датчики, источник питания и передающее устройство. При этом НДМ снабжен зондом измерения удельного электрического сопротивления пласта, включающим измеритель тока, соединенный с низом бурильной колонны и центральным электродом указанного модуля, и измеритель разности потенциалов между низом бурильной колонны и центральным электродом указанного модуля. Кроме того, выходы измерителя тока и указанного измерителя разности потенциалов соединены с выходным узлом передающего устройства НДМ. 4 ил.

Изобретение относится к области геофизики и может быть использовано при изучении электрических свойств горных пород. Заявлен способ измерения удельной электропроводности и электрической макроанизотропии горных пород, включающий электромагнитное возбуждение тока, текущего вдоль проводящей поверхности металлического корпуса каротажного прибора, тороидальной катушкой. При этом измеряется реальная и мнимая составляющие тока, стекающего с различных участков поверхности корпуса каротажного прибора. Измерение осуществляют при помощи заданного числа соосно расположенных тороидальных катушек, крайние из которых являются генераторными и включены в электрическую цепь синфазно и противофазно, а остальные приемными. Электромагнитное возбуждение тока осуществляют в широком диапазоне частот, при этом на каждой частоте измеряют реальные и мнимые составляющие сосной каротажному прибору компоненты плотности поверхностного тока и электродвижущей силы несколькими зондами различной длины. По данным измерений определяют пространственное распределение вертикальной и горизонтальной удельной электропроводности среды и коэффициент электрической макроанизотропии. Технический результат - повышение точности разведочных данных. 6 з.п.ф-лы, 4 ил.

Устройство для измерения удельной электропроводности и электрической макроанизотропии горных пород относится к области геофизических исследований в нефтегазовых скважинах и может быть использовано для изучения электрических свойств горных пород (коллекторов), окружающих скважину, зондами (скважинными излучателями) методом электромагнитного каротажа. Устройство для измерения удельной электропроводности и электрической макроанизотропии горных пород, содержит корпус, тороидальные генераторные и тороидальные приемные катушки. Корпус выполнен немагнитным, генераторные и приемные катушки установлены внутри корпуса на немагнитном стрежне. Генераторные катушки расположены на противоположных концах стержня, с возможностью синфазного, противофазного и компенсационного включения. Между генераторными катушками расположено заданное число приемных катушек на известном расстоянии друг от друга, при этом приемные катушки для измерения плотности тока выполнены на ферромагнитном сердечнике, а приемные катушки для измерения наведенной ЭДС выполнены на диэлектрическом сердечнике. Технический результат - повышение точности данных зондирования. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области геофизики и может быть использовано при каротажных работах. Сущность: устройство содержит следующие элементы: датчики (1-3) геоакустических сигналов, первый коммутатор (4), первый усилитель (5), блок фильтров (6), блок выпрямителей (7), второй коммутатор (8), аналого-цифровой преобразователь (9), блок (10) передачи цифрового сигнала, датчик (11) магнитной восприимчивости, измерительная схема (12) магнитометра, аналоговые запоминающие устройства (13, 14), вычитающий усилитель (15), генератор (16) прямоугольного напряжения, ферритовая антенна (17), третий коммутатор (18), три конденсатора (19), второй усилитель (20), смеситель (21), фильтр нижних частот (22), переключаемый генератор (23), выпрямитель (24), блок (25) управления, блок (26) питания. Технический результат: повышение информативности исследований. 1 ил.

Изобретение относится к области геофизических исследований в скважинах и может быть использовано для измерения электрических характеристик горных пород, находящихся вокруг скважин, бурящихся на нефть и газ. Технический результат: расширение информации о неоднородной проводимости породы, возможность оперативно перестраивать рабочие частоты излучаемого сигнала, снижение паразитных потерь мощности электромагнитного сигнала в генераторной части устройства, понижение дрейфа рабочих параметров и упрощение калибровки устройства при изменении внешних условий (температура и давление среды). Сущность: устройство по первому варианту включает корпус, блок управления, источник питания, передатчик с передающей антенной внутри корпуса, совокупность приемников с приемными антеннами внутри корпуса устройства. Передатчик генерирует трапециевидный сигнал, получаемый при управлении коммутирующими ключами, соединенными по мостовой схеме. Согласно другому варианту трапециевидный сигнал получают при управлении коммутирующими ключами, соединенными по полумостовой схеме. Передатчиком генерируется периодический трапециевидный сигнал. Перестраиваемую рабочую частоту генератора определяют как первую гармонику периодического трапециевидного сигнала. 2 н. и 16 з.п. ф-лы, 4 ил.

Настоящее изобретение относится к области геофизики и может быть использовано для определения объема интервала формации, окружающей ствол скважины, подлежащего исследованию. Для реализации заявленного изобретения используется каротажный прибор, который может устанавливаться на каротажном кабеле, бурильной колонне или на сигналопроводящей бурильной трубе. При использовании каротажного прибора определяется свойство подземной формации. Свойство подземной формации может включать: напряжение, объемное удельное сопротивление, горизонтальное удельное сопротивление, вертикальное удельное сопротивление, пористость, проницаемость, насыщенность флюидом, время ЯМР-релаксации, размер скважины, состав флюида скважины, параметр ИПБ или параметр КВБ. Максимальная глубина исследования в подземной формации устанавливается используя характеристики модели и уровень шума, а объем интервала устанавливается используя установленную максимальную глубину исследования. Максимальная глубина исследования и объем интервала могут устанавливаться даже без определения граничных слоев. Технический результат - повышение точности получаемых данных. 3 н. и 17 з.п. ф-лы, 9 ил.

Изобретение относится к области геофизики и может быть использовано для получения информации о подземной формации. В некоторых вариантах осуществления способ получения информации о по меньшей мере одной переменной, существующей при целевом местоположении в стволе подземной скважины и/или окружающей подземной формации, включает в себя этапы, на которых доставляют множество генерирующих сигнал устройств в целевое местоположение(я), излучают по меньшей мере один детектируемый сигнал из целевого местоположения и принимают по меньшей мере один такой сигнал. Информация о переменной(ых) извлечена из по меньшей мере некоторых из принятых сигналов. Технический результат - повышение точности скважинных данных. 4 н. и 9 з.п. ф-лы, 6 ил.

Изобретение относится к области геофизики и может быть использовано при проведении межскважинной томографии. Представлены способ и система для компенсации неточностей в межскважинной томографии. Способ включает в себя получение данных с по меньшей мере двух приемников в ответ на передачи от по меньшей мере двух передатчиков. Затем по меньшей мере одно компенсированное значение образуют на основании откликов приемников на действия передатчиков. Выполняют инверсию на основании по меньшей мере частично образованного компенсированного значения. Этим способом исключают неточности, которые в процессе инверсии могут вызываться вариациями усиления, и фазы датчиков. Технический результат - получение более качественных изображений, которые могут лучше способствовать определению формы и границ коллектора. 2 н. и 14 з.п. ф-лы, 12 ил.

Изобретение относится к области геофизики и может быть использовано в процессе проведения скважинных электромагнитных исследований. Предложена скважинная телеметрическая система и способ, в которых электроизоляционный материал расположен выше и/или ниже запускающего электрический ток устройства или приемника вдоль скважинной колонны для расширения диапазона телеметрической системы, увеличения скорости телеметрии и/или понижения скважинных требований электропитания. Технический результат - предотвращение цепей короткого замыкания через буровой раствор и в обсадной трубе или непосредственно в обсадной трубе. 3 н. и 12 з.п. ф-лы, 5 ил., 1 табл.
Наверх