Способ изготовления таблеток ядерного топлива

Изобретение относится к ядерной технике, а именно к технологии изготовления таблеток ядерного топлива из порошков на основе оксидов ядерных делящихся материалов, в частности к изготовлению таблеток с минимальными припусками на шлифование или в размер. Способ изготовления таблеток ядерного топлива включает подготовку исходного порошка, прессование порошка в конической матрице и спекание полученной таблетки. Прессование порошка осуществляют методом одностороннего сжатия в направлении раскрытия угла матрицы. При этом используют матрицу с величиной угла конусности, выбранной из условия обеспечения равенства диаметров по торцам таблетки после ее спекания с учетом диаметральной усадки торцов таблетки при спекании из-за потерь давления по высоте сырой таблетки в процессе прессования под воздействием сил трения. Технический результат - повышение коэффициента использования дорогостоящего материала, повышение качества топливных таблеток и увеличение ресурса работы пресс-инструмента. 1 ил., 3 табл.

 

Изобретение относится к ядерной технике, а именно к технологии изготовления таблеток ядерного топлива из порошков на базе оксидов ядерных делящихся материалов, в частности, к изготовлению таблеток с минимальными припусками па шлифование или в размер.

Процессы таблетирования порошков из окислов заключаются в подготовке порошков путем их уплотнения различными способами, гранулирования на ситах, прессовании, в подавляющем большинстве способом двустороннего сжатия, спекании до требуемой плотности и шлифовании в размер.

В процессе двустороннего сжатия навески пресспорошка в матрице наблюдается падение давления по направлению от торцев к середине вследствие возникновения сил трения, в результате чего плотность сырой таблетки снижается от торцев к середине. Вследствие этого усадка таблетки при спекании увеличивается к середине таблетки, что приводит к искажению ее формы. Спеченная таблетка имеет форму двух усеченных конусов, соединенных в середине торцами с меньшим диаметром. В зависимости от свойств пресспорошка, качества прессинструмента и геометрических параметров таблетки, разница между диаметрами торцов и середины таблетки может достигать 0,1 мм и более. Поэтому спеченные таблетки подвергают бесцентровому шлифованию для получения требуемого размера. Двустороннее сжатие навески порошка и возникающее при этом трение на границе порошок-матрица приводят к концентрации напряжений в областях, прилегающих к ребрам обоих торцев. Неудивительно, что в этих областях сосредоточена основная масса дефектов внешнего вида: трещины, сколы, выкрашивания и др. Кроме того, искажение формы таблетки при спекании нередко сопровождается возникновением поперечных трещин. Провал средней части образующей заставляет осуществлять при шлифовании съем материала до 4% масс, основная часть которого размещается в зоне повышенных концентраций напряжений, что приводит к дополнительному сколообразованию по кромкам.

Известно много попыток уменьшения бокового трения путем применения жидких или сухих смазок поверхности прессинструмента. Так в 80 годы испытывался роторный пресс К-225, конструкция которого предусматривала предварительное прессование материала, из полистироловых шариков, покрытых смазывающим материалом солей стеариновой кислоты. Предполагалось, что после выпресовки полистироловой таблетки часть сухой смазки останется на поверхности пуансонов и матрицы, осуществляя процесс смазки в момент прессования основного материала.

Примерно в то же время специалистами ГДР был спроектирован и испытан пресс PAX GR-100 -S, оснащенный форсунками для распыления жидкой смазки в объеме рабочей полости матрицы перед засыпкой основного материала. Сотрудниками Свердловск НИИХИММаша изготовлен и испытан однопозиционный пресс для «сухого» прессования, в котором смазка прессинструмента осуществлялась войлочным пыжом, который находился в ванночке со спиртоолеиновой смесью и периодически (перед засыпкой основного материала) проталкивался через матрицу. Известны случаи введения жидких и сухих смазок непосредственно в пресспорошок: спирто и керосиноолеиновая смесь, стеараты цинка и алюминия и др.

Все известные способы использования жидких и сухих смазок при двустороннем статическом прессовании таблеток ядерного топлива наряду с положительными моментами (некоторое снижение сил трения), обладают и серьезными недостатками. Так все химические элементы перечисленных смазок должны быть удалены из таблеток в процессе спекания, что ухудшает условия протекания диффузионных процессов спекания и усадки таблеток. Неравномерное распределение смазок по объему таблетки искажает ее м и кроструктуру.

Жидкие смазки при смазывании стенок матрицы сорбируются гигроскопичным пресспорошком, что снижает их эффективность. А увеличение их количества и введение непосредственно в порошок замедляют диффузионные процессы и снижают плотность таблеток. Сухие смазки работают еще и как порообразователи. Продукты разложения стеарата цинка конденсируются на холодных элементах печи, образуя массивные наросты. Это ухудшает термические характеристики печей и уменьшает ресурс их работы.

Известен способ изготовления таблеток ядерного топлива, когда при подготовке исходного порошка U02 к прессованию, который может содержать и другие добавки, в качестве сухой смазки добавляют 0,1-0,4% масс стеарата алюминия и тщательно перемешивают, полученную смесь таблетируют и направляют в печи спекания, причем содержащийся в таблетках алюминий способствует ускорению диффузионных процессов (см. заявку ЕПВ №0395979, G21C 3/62, 1990 г.).

Недостатком известного способа изготовления ядерного топлива является необходимость шлифования таблеток ядерного топлива после их спекания (съем материала при шлифовании составляет около 2%), а также наличие высоких остаточных, избыточных напряжений в области кромок, приводящих к образованию трещин, сколов и выкрашиваний.

Наиболее близким к предлагаемому способу является способ изготовления таблеток ядерного топлива, включающий подготовку порошка к прессованию, прессование и спекание, причем прессование осуществляются в конической матрице, угол конусности которой составляет 6-15 градусов (см. патент РФ №2199161, опубл. 20.02.2003 г.).

Недостатком известного способа является использование жидких и сухих смазок при прессовании таблеток ядерного топлива, а также необходимость шлифования таблеток, после спекания.

Задачей изобретения является повышение коэффициента использования дорогостоящего материала, повышение качества топливных таблеток и увеличение ресурса работы пресссинструмента.

Технический результат предлагаемого изобретения заключается в обеспечении возможности изготовления таблеток ядерного топлива цилиндрической формы с минимальным припуском на шлифование, или исключающего шлифование полностью.

Технический результат достигается тем, что в способе изготовления таблеток ядерного топлива, включающем подготовку исходного порошка, прессование порошка в конической матрице и спекание полученной таблетки, согласно изобретению прессование порошка осуществляют методом одностороннего сжатия в направлении раскрытия угла матрицы, при этом используют матрицу с величиной угла конусности, выбранной из условия обеспечения равенства диаметров по торцам таблетки после ее спекания с учетом диаметральной усадки торцов таблетки при спекании, возникающей по причине потерь давления по высоте сырой таблетки в процессе прессования под воздействием сил трения.

Сущность изобретения поясняется рисунками, где:

- на фиг.1 представлены топливные таблетки, изготовленные с углом раскрытия матрицы 20 минут;

- на фиг.2 представлены топливные таблетки, изготовленные с углом раскрытия матрицы 90 минут.

Способ изготовления таблеток ядерного топлива осуществляется следующим образом.

Тангенс угла раскрытия матрицы определяют по формуле:

t g α = d H [ 1 ( 1 Y в ) ( 1 + U в ) 1 ( 1 Y н ) ( 1 + U н ) ] ,

где α - угол раскрытия матрицы;

d - регламентированный диаметр спеченной таблетки;

Н - высота сырой таблетки;

Yв, Yн - диаметральная усадка подвижного (при прессовании) и неподвижного торцов сырой таблетки соответственно;

Uв, Uн - относительное упругое расширение подвижного (при прессовании) и неподвижного торцов сырой таблетки соответственно.

Рассчитанные значения углов конусности матрицы обычно лежат в интервале 20-90 минут.

Значения высоты сырой таблетки, усадки и упругого расширения подвижного торца берут из результатов тестирования порошков, оттуда же берут параметры усадки и расширения неподвижного торца.

Рассчитав величину угла, подбирают матрицу с наиболее близким к расчетному значением. Проводят технологическое опробование и, сделав при необходимости корректировки, проводят прессование согласно изменению методом одностороннего сжатия с получением сырой таблетки с конусной боковой поверхностью. После прессования полученную таблетку спекают.

Наибольший выигрыш предложенный метод обеспечит в технологии «сухого» прессования.

Настоящее изобретение продемонстрировано нижеприведенными примерами, подтверждающие возможность его реализации.

Пример 1

Угол раскрытия матрицы, который составил 45 минут, определили по вышеприведенной формуле, учитывая уровень спекаемости порошков диоксида урана, получаемых методом сухой конверсии. На основе полученных данных изготовили прессинструмент. С использованием технологии «мокрого» прессования приготовили пресспорошок и отпрессовали сырые таблетки с разными значениями давления прессования. Спекали таблетки в чистом водороде при температуре 1730°С в течение 6 часов.

Таблица 1
Давление прессования, т/см2 1,5 2,3
Плотность, г/см3 5,60 5,61
Диаметр сырой табл. мм (D) D(О) D(H)* D(О) D(H)
11.30 11.43 11.31 11.44
Плотность спеченная, г/см3 10.72 10.75
Диаметр спеченной табл. мм (D) D(О) D(H/2) D(H) D(О) D(H/2) D(H)
9.11 9.09 9.09 9.11 9.10 9.09
Н* - высота таблетки

В данном примере все изготовленные спеченные таблетки характеризуются значениями диаметра в интервале Dmax-Dmin=0.02 мм. Некоторые режимы и параметры сырых и спеченных таблеток представлены в таблице 1.

В большинстве спецификаций на таблетки ядерного топлива требования по диаметру ограничиваются интервалом±0,015 мм. Таким образом, в приведенном примере получены таблетки, не требующие шлифования.

Пример 2

Таблетирование пресспорошка, приготовленного «мокрым» способом из порошка, полученного по схеме АДУ, осуществили при конусности матрицы 38 минут. При том же режиме спекания, что и в примере 1 получили таблетки, параметры которых представлены в таблице 2.

Таблица 2
Давление прессования, т/см 1,5 2,3
Плотность, г/см3 5,78 5,80
Диаметр сырой табл. мм (D) D(О) D(H)* D(О) D(H)
11.30 11.42 11.32 11.45
Плотность спеченная, г/см3 10.70 10.74
Диаметр спеченной табл. мм (D) D(О) D(H/2) D(H) D(О) D(H/2) D(H)
9.12 9.10 9.11 9.12 9.13 9.13

В таблице 3 представлены результаты таблетирования пресспорошка, приготовленного для «сухого» прессования и обладающего повышенными насыпными характеристиками. Использовалась матрица с конусностью 55 минут.

По внешнему виду таблетки всех трех вариантов отличались меньшим количеством повреждений, чем таблетки, изготовленные из того же пресспорошка методом двустороннего прессования.

Приведенные примеры показывают потенциальную возможность заявляемого способа получать таблетки в размер при использовании как «мокрого», так и «сухого» способов приготовления пресспорошка.

Таблица 3
Давление прессования, т/см2 1,5 2,3
Плотность, г/см3 6,2 6,4
Диаметр сырой табл. мм (d) D(О) D(H)* D(О) D(H)
11.28 11.40 11.30 11.43
Плотность спеченная, г/см 10.55 10.57
Диаметр спеченной табл. мм (D) D(О) D(H/2) D(H) D(О) D(H/2) D(H)
9.48 9.48 9.47 9.48 9.49 9.50

Таким образом, изменением конструкции прессинструмента и циклограммы прессования достигается наивысший эффект по снижению бокового трения независимо от наличия или отсутствия «сухих» или жидких смазок. Наибольший эффект предложенный способ дает в технологии «сухого» прессования.

Способ изготовления таблеток ядерного топлива, включающий подготовку исходного порошка, прессование порошка в конической матрице и спекание полученной таблетки, отличающийся тем, что прессование порошка осуществляют методом одностороннего сжатия в направлении раскрытия угла матрицы, при этом используют матрицу с величиной угла конусности, выбранной из условия обеспечения равенства диаметров по торцам таблетки после ее спекания с учетом диаметральной усадки торцов таблетки при спекании.



 

Похожие патенты:
Изобретение относится к области ядерной энергетики, в частности к способам получения смешанного уран-плутониевого ядерного топлива на базе диоксидов UO2 и PuO2, получившего название МОХ (Mixed-Oxide) топлива.

Изобретение относится к атомной энергетике и может быть использовано в ядерных реакторах. .

Изобретение относится к ядерной энергетике, в частности к способу снаряжения фольгой оболочки тепловыделяющего элемента и устройству для его осуществления, и может быть использовано в процессе изготовления твэлов.

Изобретение относится к конструкциям ядерных реакторов. .

Изобретение относится к ядерной энергетике и может быть использовано для изготовления твэлов преимущественно для ядерных водо-водяных энергетических реакторов (ВВЭР).

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющей сборки (ТВС) ядерного реактора типа ВВЭР (ВВЭР-440, ВВЭР-1000 и т.п.). .

Изобретение относится к области атомного машиностроения, к оборудованию для демонтажа радиоактивных объектов в виде труб. .
Изобретение относится к атомной промышленности, в частности к изготовлению таблетированного топлива из диоксида урана для тепловыделяющих элементов (твэлов) ядерных реакторов. Способ изготовления таблетированного топлива для тепловыделяющих элементов включает приготовление легирующей композиции, содержащей 5…10% Al(ОН)3+30…40% Gd(OH)3, остальное UO2, смешение порошка диоксида урана с пластификатором и легирующей композиции в количествах, обеспечивающих в конечной смеси (пресс-порошке) содержание Al(ОН)3 и Gd(OH)3 соответственно от 0,5 до 2,0 мас.% и от 3,0 до 8,0 мас.%, прессование таблеток из полученного пресс-порошка и их спекание. Технический результат - получение таблетированного топлива с размером зерна диоксида урана 30-50 мкм и с долей открытых пор менее 0,3%. 2 н.п. ф-лы.

Изобретение относится к способу приготовления оксалатов актиноидов. Способ включает осаждение одного актиноида или соосаждение большего числа актиноидов в форме частиц оксалата в псевдоожиженном слое приведением в контакт водного раствора, содержащего актиноид или актиноиды, с водным раствором щавелевой кислоты или соли щавелевой кислоты и сбор частиц оксалата. Изобретение обеспечивает получение оксалатов актиноидов в форме порошков с высокими гранулометрическими и морфологическими характеристиками. 2 н. и 14 з. п. ф-лы, 9 ил., 2 пр.

Изобретение относится к атомной технике. Направляющий канал тепловыделяющей сборки ядерного реактора с выгорающим поглотителем размещен в ячейках дистанционирующих решеток. По меньшей мере, на части поверхности направляющего канала нанесен слой выгорающего поглотителя, содержащего изотоп бора-10, в количестве, выгорающем не более чем за один цикл облучения тепловыделяющей сборки. В частном случае реализации устройства изотоп бора-10 входит в состав материала, из которого изготовлен направляющий канал. Технический результат состоит в повышении мощности реакторной установки. 1 з.п. ф-лы, 2 ил.

Изобретение относится к атомной энергетике, а именно к конструктивным элементам тепловыделяющих сборок (ТВС) ядерных реакторов типа ВВЭР. Дистанционирующая решетка (ДР) содержит группы взаимно пересекающихся параллельных пластин, расположенных в один ярус и образующих шестиугольные ячейки для размещения твэлов, расположенные по правильной треугольной сетке, и треугольные ячейки, расположенные между шестиугольными. Шестиугольные ячейки имеют три стороны одной длины и расположенные между ними три стороны другой длины, причем более длинные стороны предназначены для контакта с оболочками твэлов. При этом шаг решетки выбран с обеспечением возможности установки в шестиугольных ячейках твэлов одного диаметра, а в треугольных ячейках - твэлов другого диаметра. ДР по второму варианту содержит группы взаимно пересекающихся параллельных пластин, расположенных в один ярус и образующих ячейки для размещения твэлов, расположенные по правильной треугольной сетке, при этом ячейки имеют форму правильных треугольников. Технический результат - повышение надежности и равномерности контакта твэлов со стенками ячеек за счет обеспечения контакта в трех точках. 2 н. и 2 з.п. ф-лы, 11 ил.

Изобретение относится к области ядерной техники и может быть использовано при создании тепловыделяющих элементов (твэлов) для атомных реакторов на тепловых и быстрых нейтронах. Технический результат - повышенный теплосъем в твэле ядерного реактора, что позволяет существенно повысить эксплуатационные характеристики твэлов ядерных реакторов. Твэл ядерного реактора, содержащий герметичную оболочку с размещенным в ней топливным сердечником и свободные объемы, дополнительно содержит рабочую жидкость с точками плавления и кипения, соответствующими диапазону рабочих температур на периферии у оболочки и в центре топливного сердечника, а топливный сердечник содержит ядерное топливо капиллярной структуры с сообщающейся пористостью. 6 з.п. ф-лы, 3 ил.

Изобретение относится к изготовлению тепловыделяющих элементов ядерного реактора. Устройство снаряжения фольгой оболочек твэлов содержит фольгу, валики прокатки фольги, пуансон, штангу с цилиндром, диаметр которого равен диаметру таблетки делящегося материала, губки, охватывающие цилиндр перед заслонкой. Заслонка выполнена подпружиненной в направляющих из двух отрезков труб с ограничивающими щелями ее перемещения, причем направляющие установлены у торца оболочки твэла, размещенной в ложементе. На плоскости заслонки выполнены выступы, формирующие радиальную отбортовку фольги у торца цилиндра. Технический результат - повышение качества радиальной отбортовки на фольге. 7 з.п. ф-лы, 1 ил.

Изобретение относится к ядерному реактору на быстрых нейтронах. Совокупность активной зоны, отражателя и бланкета представляет собой двухфазную металлическую систему: Pb-Pu-U, или Pb-U-Th, или Pb-Pu-U-Th. Это позволяет достичь высоких степеней выгорания топлива, находящегося преимущественно в твердой фазе, за счет ликвидации радиационных повреждений путем периодического расплавления и последующего формирования активной зоны из расплава. Изобретение позволяет исключить из активной зоны реактора, подвергающейся интенсивному нейтронному облучению, конструктивные узлы, оставив только теплообменник первого контура, который представляет собой статическое оборудование, при этом механически нагруженные элементы теплообменника находятся вне зоны облучения. Будучи сменным узлом, теплообменник не лимитирует срок службы ядерного реактора в целом. При этом изобретение позволяет создать самоуправляющуюся активную зону, в которой тепловыделение цепной реакции деления будет балансировать теплосъем в теплообменнике первого контура вследствие естественного физического механизма. Одновременно обеспечивается быстродействующая защита от разгона на мгновенных нейтронах. 4 н. и 7 з.п. ф-лы, 1 ил.

Группа изобретений относится к вентилируемым тепловыделяющим элементам ядерного реактора. Способ предусматривает использование тепловыделяющей сборки с кожухом, выполненным с возможностью вмещения пористой массы ядерного топлива с летучим продуктом ядерного деления. Способ включает использование подузла управления текучей средой, который соединен с кожухом и выполнен с возможностью управления удалением по меньшей мере части летучих продуктов ядерного деления из пористой массы ядерного топлива. Кроме того, с помощью подузла управления текучей средой осуществляют циркуляцию отводящей тепло текучей среды через пористую массу ядерного топлива для удаления тепла, произведенного массой ядерного топлива. Технический результат - возможность управляемого удаления летучих продуктов ядерного деления и тепла, высвобождаемых волной горения в ядерном реакторе деления на бегущей волне. 2 н. и 13 з.п. ф-лы, 213 ил.

Изобретение относится к атомной энергетике, а именно к элементам тепловыделяющих сборок (ТВС), используемых, преимущественно, для реакторов РБМК-1000, а также ВВЭР-440 и ВВЭР-1000. Конструкция крепления твэлов в несущей концевой (опорной) решетке (HP) имеет цилиндрическую часть из циркониевого сплава Э110. Фиксация твэла в HP производится путем замятия полого конца наконечника одновременно в трех или более местах по периметру на определенную величину, при этом описанный диаметр наконечника увеличивается до величины, необходимой для удержания твэла в HP. Поверхность посадочного отверстия HP выполнена ступенчатой с длиной ступени большего диаметра, равной 0…0,5 толщины несущей решетки, причем поверхность с большим диаметром может быть конической, а в торце наконечника твэла выполнено отверстие, соосное с его наружной поверхностью, глубиной не более толщины несущей решетки. При этом в 3…4 местах эта часть наконечника одинаково деформирована таким образом, что наружная поверхность наконечника выходит за пределы меньшего диаметра посадочного отверстия. Технический результат - высокая надежность фиксации наконечника твэла в HP за счет отсутствия зазоров в осевом и радиальном направлениях и исключения вращения твэла вокруг продольной оси. 8 ил.

Изобретение относится к тепловыделяющим сборкам ядерного реактора на бегущей волне. Тепловыделяющая сборка ядерного реактора деления выполнена с возможностью управляемого удаления летучих продуктов ядерного деления и тепла, высвобождаемого волной горения в ядерном реакторе. Тепловыделяющая сборка содержит кожух, выполненный с возможностью вмещения пористой массы ядерного топлива с летучим продуктом ядерного деления. Подузел управления текучей средой соединен с кожухом и выполнен с возможностью управления удалением по меньшей мере части летучих продуктов ядерного деления из пористой массы ядерного топлива. Кроме того, подузел управления текучей средой выполнен с возможностью циркуляции отводящей тепло текучей среды через пористую массу ядерного топлива для удаления тепла, произведенного массой ядерного топлива. Технический результат - обеспечение глубокого выгорания топлива и длительной кампании. 35 з.п. ф-лы, 213 ил.
Наверх