Газотурбинный двигатель с обратимой электрической машиной



Газотурбинный двигатель с обратимой электрической машиной
Газотурбинный двигатель с обратимой электрической машиной
Газотурбинный двигатель с обратимой электрической машиной
Газотурбинный двигатель с обратимой электрической машиной

 


Владельцы патента RU 2499895:

ТУРБОМЕКА (FR)

Газотурбинный двигатель, в частности, для вертолета, содержит газогенератор и свободную турбину, приводимую во вращение газовым потоком, генерируемым газогенератором; и дополнительно содержит обратимую электрическую машину для соединения с газогенератором. Обратимая электрическая машина выполнена с возможностью приведения во вращение газогенератора во время стадии запуска газотурбинного двигателя, а также выполнена с возможностью ее соединения со свободной турбиной после запуска газотурбинного двигателя для генерирования электроэнергии. Изобретение направлено на улучшение оптимизации нагрузочной линии двигателя при оптимальной степени сжатия компрессора, уменьшение удельного потребления топлива двигателя. 11 з.п. ф-лы, 4 ил.

 

Настоящее изобретение относится к области газовых турбин и, в частности, к газовым турбинам газотурбинных и турбовинтовых двигателей для летательных аппаратов, например, вертолетов, самолетов и для других возможных применений двигателей таких типов.

Более конкретно, настоящее изобретение относится к газотурбинному двигателю, в частности, для вертолета, содержащему газогенератор и свободную турбину, приводимую во вращение газовым потоком, генерируемым газогенератором, и дополнительно содержащему обратимую электрическую машину, предназначенную для соединения с газогенератором; при этом обратимая электрическая машина выполнена с возможностью приведения во вращение газогенератора на стадии запуска газотурбинного двигателя.

Обычно газогенератор содержит, по меньшей мере, компрессор и турбину, которые соединены вместе для вращения. Принцип действия является следующим: свежий воздух, поступающий в газотурбинный двигатель, сжимают посредством вращения компрессора до подачи в камеру сгорания, где воздух смешивают с топливом. Отработанный газ, образующийся в камере сгорания, затем выбрасывается с высокой скоростью.

Этот газ затем расширяется первоначально на турбине газогенератора, и турбина отбирает энергию газа, требующуюся для привода компрессора.

Турбина газогенератора не поглощает всю кинетическую энергию отработанного газа, и остальная кинетическая энергия соответствует энергии газового потока, генерируемого газогенератором.

Этот поток, таким образом, передает кинетическую энергию свободной турбине, при этом газ расширяется второй раз на свободной турбине, которая служит для преобразования кинетической энергии газа в механическую энергию для привода ведомого компонента, например, ротора вертолета.

Во время запуска газотурбинного двигателя необходимо привести во вращение газогенератор; другими словами, необходимо привести во вращение компрессор, соединенный с турбиной. Как упомянуто выше, это является, конкретно, одной из задач обратимой электрической машины (общеизвестного устройства, как такового), которая обычно является электродвигателем, также пригодным для действия в обратном режиме в качестве генератора электроэнергии.

Посредством использования обратимой электрической машины, действующей как двигатель, для сообщения вращения компрессору, можно понуждать воздух к прохождению через компрессор и, таким образом, подавать сжатый воздух в камеру сгорания для инициирования горения.

В результате горения затем образуется газовый поток, с помощью которого обеспечивают возможность приведения во вращение турбины, после чего вращение компрессора обеспечивают непосредственно турбиной, а это означает, что газогенератор действует в автономном режиме, другими словами, это означает, что газотурбинный двигатель фактически запущен.

Известно, что летательный аппарат, в котором установлены такие газотурбинные двигатели, содержит электрическое оборудование, которое требуется питать электроэнергией.

Например, в вертолете необходимо обеспечивать электроэнергией электрическое оборудование, которым он оснащен, например: электрическую систему управления, системы отопления и кондиционирования воздуха, механическую лебедку.

До сих пор во время полета обратимую электрическую машину использовали для питания электроэнергией электрического оборудования. С этой целью (и как описано в документе EP 1712761) электрическую машину используют как генератор электроэнергии, и ее приводят во вращение посредством газогенератора, при этом вращательную кинетическую энергию отбирают от газогенератора и преобразуют в электрическую энергию посредством указанной машины.

Однако в вертолете отбор кинетической энергии от газогенератора приводит к появлению некоторых недостатков.

Во время полета варьирование количества механической энергии, отбираемой от газогенератора электрической машиной, приводит к увеличению смещения нагрузочной линии двигателя в области компрессора.

Это смещение соответствует минимальному пределу нагнетания, который требуется обеспечивать, последствиями чего, таким образом, является:

- ухудшение оптимизации нагрузочной линии двигателя, из-за препятствования работе компрессора при оптимальной степени сжатия; и

- ухудшение, таким образом, стабилизированного функционирования с ударом по удельному потреблению топлива.

Задачей настоящего изобретения является создание газотурбинного двигателя, в частности, для вертолета, который лишен упомянутых выше недостатков.

Эта задача решается согласно изобретению благодаря тому, что для генерирования электроэнергии разработана обратимая электрическая машина, которая может быть также соединена со свободной турбиной после запуска газотурбинного двигателя.

Другими словами, во время полета вращение обратимой электрической машины, действующей как генератор электроэнергии, предпочтительно осуществляют посредством свободной турбины, таким образом, что кинетическую энергию, для преобразования ее в электрическую энергию, предпочтительно отбирают от свободной турбины.

Было отмечено, что отбор определенного количества кинетической энергии от свободной турбины оказывал значительно меньшее влияние на эффективность работы газотурбинного двигателя, чем отбор такого же количества кинетической энергии от газогенератора. Это происходит из-за особой формы термодинамического цикла такого газотурбинного двигателя.

В результате этого с помощью газотурбинного двигателя согласно изобретению можно предпочтительно обеспечивать подачу электроэнергии без чрезмерного снижения эффективности двигателя.

Кроме того, во время полета пилотирование вертолета, оснащенного газотурбинным двигателем согласно изобретению, подвержено значительно меньшему пагубному воздействию, поскольку сохраняется способность газогенератора к ускорению.

Кроме того, согласно изобретению одну и ту же обратимую электрическую машину используют для запуска газогенератора и для питания электроэнергией.

Обратимую электрическую машину предпочтительно соединять с валом газогенератора посредством первого выводимого из действия соединительного средства; при этом обратимую электрическую машину соединяют с валом свободной турбины посредством второго выводимого из действия соединительного средства; причем первое и второе соединительные средства выполнены таким образом, чтобы их невозможно было ввести в действие одновременно.

Термин «выводимое из действия соединительное средство» используется для определения того, что соединительное средство может быть во введенном в действие состоянии, при котором компоненты, присоединенные к соединительному средству, соединены вместе; или оно может быть в выведенном из действия состоянии, при котором компоненты разъединены; и должно быть понятно, что термин «компонент» охватывает электрическую машину, газогенератор и свободную турбину.

Согласно изобретению, когда первое соединительное средство вводят в действие, второе соединительное средство выводят из действия, т.е. обратимую электрическую машину соединяют с газогенератором в то время, когда она отсоединена от свободной турбины, и наоборот, когда второе соединительное средство вводят в действие, первое соединительное средство выводят из действия, т.е. электрическую машину соединяют со свободной турбиной в то время, когда она отсоединена от газогенератора.

Можно также, не выходя за пределы объема изобретения, обеспечить промежуточное состояние, при котором первое и второе соединительные средства выведены из действия одновременно.

Согласно изобретению обратимая электрическая машина действует как электродвигатель, когда первое соединительное средство введено в действие таким образом, чтобы вращательное движение сообщалось газогенератору во время запуска газотурбинного двигателя.

Соответственно обратимая электрическая машина действует как генератор электроэнергии, когда второе соединительное средство введено в действие таким образом, чтобы вырабатывалась электроэнергия посредством отбора кинетической энергии от свободной турбины, а это имеет место после запуска газотурбинного двигателя, т.е. по существу во время полета.

Так как первое и второе соединительные средства не могут быть введены в действие одновременно, то не существует опасности возникновения пагубной ситуации, при которой газогенератор будет приводиться от свободной турбины.

Первое и/или второе соединительные средства предпочтительно содержат муфты свободного хода.

Преимущество использования муфт свободного хода заключается в том, что не требуется контроль с использованием электронных или механических средств, осуществляемый внешним оператором.

Такая муфта свободного хода обычно содержит ступицу и периферийное кольцо, установленное с возможностью вращения на ступице. Посредством ступицы можно приводить во вращение периферийное кольцо, но не наоборот. Таким образом, посредством ступицы можно приводить во вращение кольцо только тогда, когда ступица вращается в предварительно определенном направлении, называемом «направлением сопряжения». В другом случае, ступица и периферийное кольцо вращаются свободно друг относительно друга.

В частности, выводимое из действия соединительное средство вводят в действие тогда, когда посредством ступицы муфты свободного хода приводят во вращение периферическое кольцо, и наоборот, выводимое из действия соединительное средство выводят из действия тогда, когда периферийное кольцо не приводят во вращение посредством ступицы муфты свободного хода.

Первое соединительное средство предпочтительно содержит первую муфту свободного хода; а второе соединительное средство предпочтительно содержит вторую муфту свободного хода; причем первая и вторая муфты свободного хода предпочтительно установлены друг напротив друга.

Под термином «установлены друг напротив друга» понимают, что посредством первой муфты свободного хода можно передавать вращательный крутящий момент, поступающий от электрической машины, тогда как посредством второй муфты свободного хода можно передавать вращательный крутящий момент, сообщаемый электрической машине.

Первое и/или второе соединительные средства предпочтительно дополнительно содержат понижающие передачи.

Под термином «понижающая передача» понимают одну или большее число ступеней понижающей передачи, например, содержащей зубчатые передачи. Такие понижающие передачи общеизвестны.

Так как газогенератор и свободная турбина обычно вращаются существенно быстрее, чем обратимая электрическая машина, то понижающая передача служит для согласования скорости вращения обратимой электрической машины со скоростями вращения газогенератора и свободной турбины.

Первое соединительное средство предпочтительно содержит первую понижающую передачу, имеющую первый понижающий коэффициент, тогда как второе соединительное средство предпочтительно содержит вторую понижающую передачу, имеющую второй понижающий коэффициент, и отношение первого и второго понижающих коэффициентов предпочтительно меньше первой предельной величины.

Эту первую предельную величину предпочтительно выбирают таким образом, чтобы первая и вторая муфты свободного хода не сопрягались одновременно.

Первая предельная величина предпочтительно пропорциональна отношению номинальной скорости газогенератора, деленной на номинальную скорость свободной турбины. Коэффициент пропорциональности предпочтительно определенно меньше 1.

В другом варианте осуществления изобретения обратимая электрическая машина также выполнена с возможностью соединения с газогенератором для генерирования электроэнергии.

Обратимая электрическая машина предпочтительно выполнена с возможностью соединения с газогенератором после запуска газотурбинного двигателя, и когда свободная турбина вращается с низкой скоростью или фактически заблокирована, обратимую электрическую машину, действующую как генератор электроэнергии, предпочтительно можно затем использовать для подачи электроэнергии благодаря отбору кинетической энергии от газогенератора.

Обратимая электрическая машина предпочтительно выполнена с возможностью соединения с валом газогенератора с помощью третьего выводимого из действия соединительного средства, причем первое, второе и третье соединительные средства предпочтительно выполнены таким образом, чтобы только одно из них можно было вводить в действие за один раз.

Другими словами, при введении в действие третьего соединительного средства первое и второе соединительные средства выводят из действия, т.е. обратимую электрическую машину соединяют с газогенератором только посредством третьего соединительного средства, и отсоединяют от свободной турбины.

Третье соединительное средство отличается от первого соединительного средства.

Третье соединительное средство предпочтительно содержит третью муфту свободного хода.

Первая и третья муфты свободного хода предпочтительно установлены друг напротив друга.

В результате, первая и третья муфты свободного хода не могут быть сопряжены одновременно.

Третье соединительное средство предпочтительно, но не обязательно, дополнительно содержит средство, составляющее кулачковую муфту.

В этом случае кулачковая муфта служит для введения в действие или для выведения из действия третьего соединительного средства, тогда как посредством третьей муфты свободного хода способствуют сцеплению муфты и расцеплению муфты, поскольку эти действия осуществляют при нулевом крутящем моменте.

В другом варианте осуществления третье соединительное средство содержит гидравлический соединитель, заменяющий кулачковую муфту и третью муфту свободного хода.

Если газотурбинный двигатель согласно изобретению содержит три муфты свободного хода, то третье соединительное средство также предпочтительно содержит третью понижающую передачу, имеющую третий понижающий коэффициент, а отношение второго и третьего понижающих коэффициентов больше второй предельной величины.

Эту вторую предельную величину выбирают таким образом, чтобы, во время полета, от газогенератора не передавалось вращательное движение к обратимой электрической машине, действующей как генератор электроэнергии.

Эта вторая предельная величина предпочтительно пропорциональна отношению номинальной скорости газогенератора, деленной на номинальную скорость свободной турбины.

Коэффициент пропорциональности предпочтительно определенно больше 1.

Изобретение может быть лучше понятно, и его преимущества станут более очевидными, после прочтения последующего описания вариантов осуществления, приведенных в виде не ограничивающих объем изобретения примеров. В описании сделаны ссылки на прилагаемые чертежи, на которых:

Фиг. 1 - вид в разрезе газотурбинного двигателя согласно изобретению;

Фиг. 2 - блок-схема первого варианта осуществления изобретения, согласно которой газотурбинный двигатель содержит первое и второе соединительные средства;

Фиг. 3 - блок-схема второго варианта осуществления изобретения, согласно которой газотурбинный двигатель содержит первое, второе и третье соединительные средства; и

Фиг. 4 - блок-схема видоизмененного второго варианта осуществления изобретения, показанного на фиг. 3, согласно которой соединительное средство также содержит кулачковую муфту.

На фиг. 1 представлена схема газотурбинного двигателя 10, представляющего первый вариант осуществления изобретения, предназначенного, в частности, для вращения ротора вертолета (не показан); причем газотурбинный двигатель 10 содержит газогенератор 12 и свободную турбину 14, выполненную с возможностью ее привода во вращение потоком газа, генерируемого газогенератором 12.

Свободная турбина 14 установлена на валу 16, посредством которого передают вращательное движение к ведомому компоненту, например, главному ротору вертолета.

Газотурбинный двигатель, показанный на фиг. 1, является двигателем такого типа, в котором отбор энергии производят спереди и передают ее посредством соосного вала. Вполне возможно, не выходя за пределы объема настоящего изобретения, чтобы свободная турбина газотурбинного двигателя была такого типа, у которой отбор энергии производят спереди и передают ее посредством внешнего вала, или чтобы фактически свободная турбина газотурбинного двигателя была такого типа, у которой отбор энергии производят сзади.

Газогенератор содержит вращаемый вал 18, на котором установлены компрессор 20 и турбина 22, вместе с камерой 24 сгорания, расположенной в осевом направлении между компрессором 20 и турбиной, если смотреть на газогенератор 12 в осевом направлении вращаемого вала 18.

Газотурбинный двигатель 10 представляет собой корпус 26, снабженный впуском 28 для воздуха, через который свежий воздух поступает в газогенератор 12.

После поступления свежего воздуха в оболочку газогенератора 12, его сжимают посредством компрессора 20, которым подают его во вход камеры 24 сгорания, в которой его смешивают с топливом.

В результате горения, происходящего в камере 24 сгорания, отработанный газ понуждают к выходу с высокой скоростью к турбине 22, и под его воздействием осуществляют привод вала 18 газогенератора 12 и, следовательно, привод компрессора 20.

Скорость вращения вала 18 газогенератора 12 определяется расходом топлива, проникающего в камеру 24 сгорания.

Несмотря на то, что на турбине 22 отбирают кинетическую энергию, газовый поток, выходящий из газогенератора, обладает значительной кинетической энергией.

Как должно быть понятно при рассмотрении фиг. 1, газовый поток F направляют к свободной турбине 14, таким образом понуждая газ к расширению на свободной турбине 14 и, таким образом, проводя его к колесу турбины и приводя во вращение вал 16.

Газотурбинный двигатель 10 также содержит обратимую электрическую машину 30, представленную конкретно электродвигателем, пригодным для обратимого действия в качестве генератора электроэнергии.

Обратимую электрическую машину 30 механически соединяют с валом 18 газогенератора 12 посредством первого выводимого из действия соединительного средства 32.

Более точно (и как показано на фиг. 2) первое выводимое из действия соединительное средство 32 содержит первую муфту 34 свободного хода и предпочтительно первую понижающую передачу 36, имеющую первый понижающий коэффициент K1, расположенную между валом 18 и первой муфтой 34 свободного хода.

Первая муфта свободного хода установлена таким образом, что вращение вала 38 обратимой электрической машины 30 может передаваться в виде вращательного движения валу 18 газогенератора 12, когда обратимая электрическая машина 30 действует как электродвигатель (первое соединительное средство введено в действие), и наоборот, вращение вала 18 газогенератора 12 не может передаваться в виде вращательного движения валу 38 обратимой электрической машины 30 (первое соединительное средство выведено из действия).

Другими словами, посредством первой муфты 34 свободного хода можно передавать вращательный крутящий момент только от обратимой электрической машины 30 к газогенератору 12, но не в противоположном направлении.

Таким образом, вращение вала 38 обратимой электрической машины 30 пригодно для сообщения вращательного движения валу 18 газогенератора 12 для его запуска. Как только газогенератор 12 запущен, обратимой электрической машиной 30 больше не приводят во вращение газогенератор 12.

Первый понижающий коэффициент K1 предпочтительно выбирают таким образом, чтобы скорость обратимой электрической машины 30 была согласована с диапазоном скоростей, требуемым для запуска двигателя.

Согласно изобретению обратимая электрическая машина 30 также выполнена с возможностью соединения ее со свободной турбиной 14, предпочтительно посредством второго соединительного средства 40, таким образом, чтобы при действии в качестве генератора электроэнергии указанная обратимая электрическая машина была пригодна для введения во вращение посредством свободной турбины 14 для подачи электроэнергии.

Как показано на фиг. 2, второе соединительное средство 40 содержит вторую муфту 42 свободного хода, аналогичную первой муфте 34 свободного хода, и она присоединена к валу 38 обратимой электрической машины 30.

Второе соединительное средство 40 также имеет вторую понижающую передачу 44, расположенную между второй муфтой 42 свободного хода и валом 16 свободной турбины.

Вторая понижающая передача 44 имеет второй понижающий коэффициент K2, выбираемый таким образом, чтобы скорость обратимой электрической машины 30 была приспособлена к диапазону скоростей, требуемых для обеспечения возможности подачи электроэнергии.

Вторая муфта 42 свободного хода установлена таким образом, чтобы посредством нее можно было передавать вращательный крутящий момент только от вала 16 свободной турбины 14 к валу 38 электрической машины 30.

Другими словами, посредством второй муфты свободного хода обратимую электрическую машину 30 можно приводить от свободной турбины 14 (второе соединительное средство введено в действие), но нельзя приводить свободную турбину (второе соединительное средство выведено из действия).

Когда посредством свободной турбины 14 приводят во вращение обратимую электрическую машину 30, машина действует как генератор электроэнергии и создает электроэнергию.

Как показано на фиг. 2, первая и вторая муфты свободного хода установлены друг напротив друга.

Более конкретно, они представляют противоположные направления сопряжения.

Таким образом, когда посредством обратимой электрической машины, действующей как двигатель, приводят во вращение вал 18 газогенератора (первая муфта свободного хода сопряжена, т.е. первое соединительное средство введено в действие), вторая муфта свободного хода не передает вращательный крутящий момент от обратимой электрической машины к валу 16 свободной турбины 14 (второе соединительное средство выведено из действия).

И наоборот, когда посредством вала 16 свободной турбины 14 приводят во вращение вал 38 обратимой электрической машины 30, действующей как генератор электроэнергии (вторая муфта свободного хода сопряжена, т.е. второе соединительное средство введено в действие), то первая муфта свободного хода не передает вращательный крутящий момент от вала 38 обратимой электрической машины к валу 18 газогенератора (первое соединительное средство выведено из действия).

Как показано на фиг. 2, первая и вторая муфты свободного хода присоединены к валу 38 обратимой электрической машины 30.

Для исключения передачи вращательного движения от свободной турбины 14 к валу 18 газогенератора 12 необходимо, чтобы первая муфта свободного хода не была сопряжена.

Для достижения этого понижающие коэффициенты K1 и K2 первой и второй понижающих передач можно (необязательно) выбирать следующим образом, например:

K1 K2 < λ min * | 100%NG | | 100%NTL |

где 100%NG - номинальная скорость вращения вала 18 газогенератора 12; 100%NTL номинальная скорость вращения вала 16 свободной турбины 14; и λmin - коэффициент пропорциональности, предпочтительно равный наименьшей величине отношения:

NG(t) NTL(t) t

Другими словами, отношение первого и второго понижающих коэффициентов K1 и K2 меньше первой предельной величины L1 где:

L1 = λ min * | 100%NG | | 100%NTL |

Было установлено, что при такой первой предельной величине L1 первое и второе соединительные средства никогда не будут введены в действие одновременно во время действия газотурбинного двигателя.

Далее со ссылкой на фиг. 3 описан второй вариант осуществления изобретения.

Газотурбинный двигатель во втором варианте осуществления изобретения отличается от первого варианта осуществления, представленного на фиг. 2, тем, что обратимая электрическая машина 30 также выполнена с возможностью соединения с валом 18 газогенератора конкретно посредством третьего выводимого из действия соединительного средства 50, пригодного для передачи вращательного крутящего момента между валом 18 газогенератора 12 и валом 38 обратимой электрической машины 30, действующей как генератор электроэнергии таким образом, чтобы она генерировала электроэнергию предпочтительно тогда, когда свободная турбина вращается не достаточно быстро для того, чтобы обратимая электрическая машина 30 могла генерировать электроэнергию.

Например, предпринимаются меры для того, чтобы третье соединительное средство 50 было введено в действие, когда свободная турбина 14 заблокирована или вращается с низкой скоростью, в частности, когда вертолет находится на земле.

При таких обстоятельствах газогенератор 12 используют для привода электрической машины 30 для выработки электроэнергии. Следует отметить, что упомянутая выше проблема пилотирования вертолета не возникает при этих обстоятельствах, так как вертолет находится на земле.

Первое, второе и третье соединительные средства предпочтительно выполнены таким образом, чтобы только одно из них можно было ввести в действие за один раз.

В частности, когда третье соединительное средство 50 вводят в действие, т.е. когда посредством газогенератора приводят во вращение обратимую электрическую машину таким образом, чтобы она действовала как генератор электроэнергии, первое и второе соединительные средства 32 и 40 выводят из действия.

Как показано на фиг. 3, третье соединительное средство 50 содержит третью муфту 52 свободного хода, предпочтительно аналогичную первой муфте 34 свободного хода, и третью понижающую передачу 54, имеющую третий понижающий коэффициент K3, расположенную между третьей муфтой 52 свободного хода и валом 18 газогенератора 12.

В частности, принцип действия третьего соединительного средства 50 аналогичен принципу действия первого и второго соединительных средств.

Для обеспечения этого во время полета, газогенератор 12 не должен сообщать вращательное движение обратимой электрической машине 30, действующей как генератор электроэнергии, при этом целесообразно выбирать понижающие коэффициенты K2 и K3 следующим образом, в дополнение к упомянутому выше условию, касающемуся понижающих коэффициентов K1 и K2:

K3 K2 > β max * | 100%NG | | 100%NTL |

где βmax, - коэффициент пропорциональности, предпочтительно равный наибольшей величине отношения:

NG(t) NTL(t) t

Другими словами, отношение третьего и второго понижающих коэффициентов K3 и K2 больше второй предельной величины L2 где:

L2 = β max * | 100%NG | | 100%NTL |

Было установлено, что при такой второй предельной величине L2 посредством газогенератора никогда невозможно будет приводить во вращение обратимую электрическую машину во время полета вертолета.

В видоизмененном втором варианте осуществления изобретения, как показано на фиг. 4, третье соединительное средство 50 также содержит кулачковую муфту 60, которая предпочтительно расположена между третьей муфтой 52 свободного хода и второй понижающей передачей 54.

Более точно, кулачковая муфта 60 содержит первую часть 62, прикрепленную к периферическому кольцу третьей муфты 52 свободного хода, и вторую часть 64, прикрепленную к третьей понижающей передаче 54.

Посредством кулачковой муфты 60 обеспечивают возможность выведения из действия третьего соединительного средства, несмотря на активизированное состояние другого соединительного средства и несмотря на соответствующие скорости вращения газогенератора 12, свободной турбины 14 и обратимой электрической машины 30.

Одним преимуществом кулачковой муфты 60 является то, что с ее помощью можно обеспечить условия, при которых третье соединительное средство фактически выводится из действия во время полета. При таких обстоятельствах нет необходимости в точном определении второй предельной величины L2.

Кроме того, благодаря наличию третьей муфты 52 свободного хода сцепление муфты и расцепление муфты могут быть легко осуществлены, так как первая часть 62 кулачковой муфты, прикрепленная к муфте 52 свободного хода, не противостоит крутящему моменту, противостоящему второй части 64 кулачковой муфты 60. Сцепление муфты и расцепление муфты, таким образом, осуществляют при нулевом крутящем моменте.

В другом варианте, менее благоприятном, можно исключить третью муфту 54 свободного хода посредством использования других систем: предпочтительно - гидравлического соединителя или муфты, или любой другой системы, пригодной для этой цели.

1. Газотурбинный двигатель, в частности, для вертолета, содержащий газогенератор и свободную турбину, приводимую во вращение газовым потоком, генерируемым газогенератором; и дополнительно содержащий обратимую электрическую машину для соединения с газогенератором, причем обратимая электрическая машина выполнена с возможностью приведения во вращение газогенератора во время стадии запуска газотурбинного двигателя, а также выполнена с возможностью ее соединения со свободной турбиной после запуска газотурбинного двигателя для генерирования электроэнергии.

2. Газотурбинный двигатель по п.1, в котором обратимая электрическая машина соединена с валом газогенератора посредством первого выводимого из действия соединительного средства и соединена с валом свободной турбины посредством второго выводимого из действия соединительного средства; причем первое и второе соединительные средства выполнены таким образом, чтобы их невозможно было ввести в действие одновременно.

3. Газотурбинный двигатель по п.2, в котором первое и/или второе соединительные средства содержат муфты свободного хода.

4. Газотурбинный двигатель по п.3, в котором первое соединительное средство содержит первую муфту свободного хода, а второе соединительное средство содержит вторую муфту свободного хода, причем первая и вторая муфты свободного хода установлены друг против друга.

5. Газотурбинный двигатель по п.3, в котором первое и/или второе соединительные средства дополнительно содержат понижающие передачи.

6. Газотурбинный двигатель по п.5, в котором первое соединительное средство содержит первую понижающую передачу, имеющую первый понижающий коэффициент, а второе соединительное средство содержит вторую понижающую передачу, имеющую второй понижающий коэффициент, причем отношение первого и второго понижающих коэффициентов меньше первой предельной величины.

7. Газотурбинный двигатель по п.1, в котором обратимая электрическая машина выполнена с возможностью соединения с газогенератором для генерирования электроэнергии.

8. Газотурбинный двигатель по п.2, в котором обратимая электрическая машина выполнена с возможностью соединения с валом газогенератора посредством третьего выводимого из действия соединительного средства, причем первое, второе и третье соединительные средства выполнены таким образом, что только одно из этих соединительных средств приводится в действие за один раз.

9. Газотурбинный двигатель по п.8, в котором третье соединительное средство содержит третью муфту свободного хода.

10. Газотурбинный двигатель по п.3, в котором первая и третья муфты свободного хода установлены друг напротив друга.

11. Газотурбинный двигатель по п.8, в котором третье соединительное средство дополнительно содержит средство, составляющее кулачковую муфту.

12. Газотурбинный двигатель по любому из пп.6 или 8-11, в котором обратимая электрическая машина выполнена с возможностью соединения с валом газогенератора посредством третьего выводимого из действия соединительного средства; и первое, второе и третье соединительные средства выполнены таким образом, что только одно из указанных соединительных средств приводится в действие за один раз; причем третье соединительное средство также содержит третью понижающую передачу, имеющую третий понижающий коэффициент; и отношение второго и третьего понижающих коэффициентов больше второй предельной величины.



 

Похожие патенты:

Изобретение относится к энергетическому машиностроению и может быть использовано в конструкции газотурбинных установок для привода электрогенераторов. .

Изобретение относится к энергомашиностроению, в частности к генераторам электрической энергии с газотурбинным приводом. .

Изобретение относится к турбинной установке, в частности к турбореактивному двигателю, включающему в себя встроенный генератор электрического тока, расположенный соосно с турбинной установкой.

Турбогенератор без выходного вала содержит турбину, закрепленную на валу генератора, размещенного в едином с турбиной герметичном корпусе, имеющем входной и выходной фланцы для подключения к газораспределительной станции. В качестве турбины использована турбина вихревая. Вал генератора установлен с возможностью вращательного и осевого перемещения относительно корпуса. В корпусе установлен узел регулирования гидравлического сопротивления, который закреплен на внутренней части крышки корпуса с возможностью осевого перемещения вала генератора. Узел регулирования гидравлического сопротивления соединен с помощью патрубка с входной полостью корпуса. Достигается повышение надежности работы генератора за счет снижения числа оборотов, возможность автоматического регулирования гидравлического сопротивления установки вследствие потери энергии газового потока за счет изменения гидравлического сопротивления оказываемого турбиной а, следовательно, и регулирование количества вырабатываемой энергии. 4 ил.

Изобретение относится к энергомашиностроению и может быть использовано в автономных энергоустановках с высокоскоростными генераторами в летательных и космических аппаратах. Роторная система магнитоэлектрической машины содержит корпус турбинного блока, турбину на валу, установленном в подшипниках, корпус генератора, ротор. Ротор состоит из равномерно размещенных постоянных магнитов, намагниченных в радиальном направлении с чередующейся полярностью. Турбина и ротор установлены на едином пустотелом валу, с возможностью прокачки хладагента через его полость насосом, установленным со стороны турбины. На конце пустотелого вала выполнены спиралевидные канавки. Пустотелый вал с ротором образуют цилиндр постоянного сечения, на внешней поверхности которого установлена бандажная оболочка из высокопрочного немагнитного материала. Подшипники могут быть выполнены в виде бесконтактных газовых опор, электромагнитных подшипников или гибридных магнитных подшипников. Достигается минимизация нагрева постоянных магнитов и теплопередачи между валом турбины и валом генератора, а также повышение жесткости и механической прочности системы, благодаря выполнению вала генератора и вала турбины в виде одного цельного полого вала с возможностью прокачки хладагента через его полость и выполнению на конце ротора спиралевидных канавок. 3 з.п. ф-лы, 3 ил.

Паротурбинный агрегат с электрогенератором содержит парообразующее устройство и турбину. В парообразующем устройстве - энергоаккумуляторе (1) размещен кольцеобразный нагревательный элемент (3) с поплавком (4) в виде кольца, удерживающим этот элемент на поверхности воды. Сам нагревательный элемент (3) состоит из металлической трубки (12) с отверстиями, внутрь которой помещен металлический стержень (13). Стержень и трубка разделены между собой диэлектриком (14) и соединены, через конденсатор (15), с электрической сетью. Нагревательный элемент связан с поплавком гибкими тросами (23). В нижней части паротурбинного агрегата размещены жаровые трубы с горелкой (5) и вытяжной трубой в виде спирали, а в верхней части агрегата находится турбина (2) с поворотным клапаном (6) и механизмом поворота (7). Турбина выполнена в виде двух усеченных конусов, верхнего (8) и нижнего (9), между которыми, от малого до большого диаметров, расположены по спирали каналы (10). При увеличении диаметра конуса происходит увеличение ширины канала. Емкость энергоаккумулятора (1) с турбиной (2) помещены в пароотводяшую камеру (11). Техническим результатом является резкое уменьшение его поперечных и продольных размеров, что позволяет значительно экономить средства на установке и эксплуатации за счет сокращения площади в машинном зале. 7 ил.

Изобретение относится к энергетическому машиностроению, в частности, турбодетандерная генераторная установка относится к генераторам электрической энергии с газотурбинным приводом и применяется в области газоснабжения для утилизации энергии потока сжатого природного газа. Назначением предлагаемой турбодетандерной генераторной установки (ТДУ), которая представляет собой электрогенератор (ЭГ) с турбодетандерным приводом (ТД), является выработка электрической энергии на основе преобразования потенциальной энергии природного газа в трубопроводе. Причем ТДУ используют на объектах газопотребления, например, на газорегуляторных пунктах (ГРП) и газораспределительных станциях (ГРС), где давление в трубопроводе на входе составляет 0,3-1,2 МПа. Полученная с помощью ТДУ электрическая мощность может использоваться для собственных нужд потребителя. Потребителем таких ГРП могут быть, например, котельные. Таким образом, ТДУ может быть использована в качестве автономного источника энергии малой мощности. Система отбора энергии потока ПГ из газопровода для ТДУ применяется в области газоснабжения для утилизации энергии потока сжатого природного газа, а также для утилизации вырабатываемого генератором тепла. Назначением этой системы является ее использование на объектах газопотребления, например, на газорегуляторных пунктах (ГРП) и газораспределительных станциях (ГРС). Кроме того, возможна установка такой системы с ТДУ методом врезки как в уже существующие магистрали и их запорную арматуру, внутри уже построенного и эксплуатирующегося ГРП (ГРС), так и установка ТДУ на этапе проектирования и строительства ГРП (ГРС) и ее монтажа. 2 н. и 18 з.п. ф-лы, 9 ил.

Энергетическая установка содержит турбодетандер, содержащий расширительную секцию, насосную секцию и двигательно-генераторную секцию, которые механически соединены с помощью вала. Расширительная секция проточно сообщается с выпускной стороной теплообменника и выполнена с возможностью приема парообразного потока текучей среды, вращения вала и создания расширенного парообразного потока текучей среды. Насосная секция проточно сообщается с выпускной стороной конденсатора и выполнена с возможностью приема жидкого потока текучей среды, повышения его давления и обеспечения циркуляции текучей среды в указанной энергетической установке. Двигательно-генераторная секция выполнена с возможностью вывода электрического тока. Часть потока жидкости под повышенным давлением, циркуляция которого поддерживается насосной секцией, перекачивается к теплообменнику, а другая часть использована для охлаждения двигательно-генераторной секции. Достигается уменьшение размера опорной поверхности и снижение затрат. 3 н. и 7 з.п. ф-лы, 8 ил.

Изобретение относится к области энергетического машиностроения и может быть использовано в автономных энергетических установках малой электрической мощности (до 100 кВт). Высокооборотный турбогенератор с паровым приводом малой мощности состоит из проточной части, включающей рабочее колесо турбины с установленными на нем лопатками, соплового аппарата турбины, электрогенератора. Турбогенератор содержит спаренный подшипник турбины, установленный в корпусе неподвижно, и подшипник электрогенератора, установленный в корпусе подвижно. Турбогенератор содержит комбинированную систему охлаждения, состоящую из рубашки жидкостного охлаждения статора, выполненной в виде спиральных каналов, и воздушной системы охлаждения статора и ротора электрогенератора. Достигается снижение сил трения в подшипниках вала турбогенератора на начальном этапе запуска, фиксация в обе стороны осевого смещения вала турбогенератора, повышение эффективности охлаждения, повышение надежности работы подшипников, повышение КПД турбогенератора и надежности электрогенератора. 3 з.п. ф-лы, 8 ил.

Изобретение относится к линейным ускорителям и может найти применение в качестве ускорителя элементарных микрочастиц, например молекул или атомов, лишенных заряда. Технический результат состоит в повышении концентрации микрочастиц на выходе, снижении расхода исследуемых образцов и, как следствие, повышении к.п.д. Ротор 1 установлен с возможностью вращения коаксиально с минимальным зазором внутри статора 2 и имеет вал 7 с повышенным диаметром, выступающий с одной стороны и снабженный односторонними подшипниками 8 и 9. Статор 2 расположен внутри неподвижной станины 10. Между станиной и статором с двух сторон установлены подшипники 11 и 12. Подшипниковые щиты 13 и 14 вставлены внутрь статора 2. Через ступицы 15 и 16 эти щиты сочленены с валом ротора 7 через подшипники соответственно 17 и 18. Щиты содержат окна, допускающие свободный проход испытательных образцов к зазору 19 между статором и ротором. Статор 2 механически сочленен с внешним приводом с помощью конической передачи 20 с валом 21 для внешнего привода. Вал 7 ротора 1 также сочленен с внешним приводом с помощью конической передачи 22 с валом 23 для привода. Приводы статора и ротора должны вращать соответственно статор и ротор в разные стороны и с одинаковой скоростью. Для вращения статора и ротора может быть применен один общий привод, передающий движение на оба вала с помощью редукторной коробки передач. 2 з.п. ф-лы, 7 ил.
Наверх