Способ проверки электрического и информационного обмена ракеты

Изобретение относится к области ракетостроения, в частности к аппаратуре предстартового контроля. Способ используют для проведения проверки ракеты на контрольно-испытательной станции или на технической позиции для оперативного контроля штатной ракеты и ее модификаций, а также ее составных частей, в частности головки самонаведения и инерциальной системы управления, без разборки ракеты. Способ позволяет проверять работу ракеты в режимах предстартовой подготовки и пуска, автономного полета и производить расширенный контроль составных частей ракеты, в частности контроль головки самонаведения и инерциальной системы управления, самоконтроль проверочного устройства. Способ позволяет контролировать информационный обмен ракеты с аппаратурой носителя в момент подготовки и пуска, осуществлять расширенный контроль составных частей ракеты, а также имитацию автономного полета и имитацию фоно-целевой обстановки. Способ может быть использован для проверки ракеты, имеющей два интерфейса цифрового обмена. Повышается надежность работы и достоверность контроля. 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к информационно-измерительным системам и предназначено для проведения наземных проверок ракеты при помощи контрольно-проверочного устройства.

Известен способ наземных проверок бортовых систем беспилотного летательного аппарата (БПЛА), при котором проверяемую ракету соединяют с проверочным комплексом, имитирующим аппаратуру носителя, подают на ракету питание от первичных источников комплекса, управляют процессом контроля с помощью пульта, отображают процесс контроля и его промежуточные и окончательные результаты (RU, патент №2205441, дата приоритета 13.12. 2001 г.). Проверочный комплекс включает в себя устройства коммутации, контроля системы управления, контроля электрооборудования, самоконтроля, гарантированного электропитания, а также пульт управления и имитатор цели. Недостатками данного способа являются недостаточная глубина контроля, сложность проверочного комплекса и ограниченные функциональные возможности, в частности, невозможность проверки информационного обмена БПЛА с разными типами носителей, имеющими разные интерфейсы цифрового обмена.

Известен способ контроля объектов (RU, патент №2248028, дата приоритета 18.08.2003 г.), при котором задают программу контроля, подают необходимые данные через блок сопряжения на блок источников питания и блок тестовых воздействий, формируют необходимые напряжения питания и тестовые воздействия, подают их на объект контроля, передают контролируемые сигналы с объекта контроля на блок оценки программ контроля параметра, производят оценку: ГОДЕН - НЕ ГОДЕН и по результатам контроля всех параметров дают обобщенную оценку состояния объекта контроля в целом. Недостатками данного способа являются недостаточная глубина контроля, сложность применяемого устройства, а также ограниченные функциональные возможности из-за невозможности проверки информационного обмена ракеты с разными типами носителей, имеющими разные интерфейсы цифрового обмена.

Известен способ контроля работоспособности БПЛА, размещенного на пилотируемом летательном аппарате (ЕР №1923658, дата приоритета 16.11.2007 г.), при котором размещают проверочный блок внутри БПЛА, механически и электрически соединяют проверочный блок с системой управления вооружением летательного аппарата и с ее помощью проверяют работоспособность БПЛА, последовательно контролируя отдельные операции и формируя сигнал о неисправности БПЛА при ошибке хотя бы одной операции. Недостатками данного способа являются: сложность применения из-за необходимости использования станции вооружения самолета и разбора БПЛА для размещения проверочного блока, а также ограниченные функциональные возможности, в частности, невозможность проверить информационный обмен БПЛА с разными типами носителей, имеющими разные интерфейсы цифрового обмена.

Задачей предлагаемого изобретения является устранение указанных выше недостатков и создание способа контроля электрического и информационного обмена ракеты, позволяющего осуществлять проверку по двум разным интерфейсам цифрового обмена: ГОСТ 18977-79 и ГОСТ Р 52070-2003. Предлагаемый способ позволяет контролировать информационный обмен ракеты с аппаратурой носителя в момент подготовки и пуска, осуществлять расширенный контроль составных частей ракеты, а также имитацию автономного полета и имитацию фоно-целевой обстановки.

Техническим результатом является увеличение глубины контроля за счет введения имитации фоно-целевой обстановки и расширенного контроля составных частей ракеты, осуществляемого во время имитации подготовки, пуска и автономного полета ракеты, а также расширение функциональных возможностей за счет возможности контроля электрического и информационного обмена ракеты по двум интерфейсам цифрового обмена.

Поставленная задача решается за счет того, что проверку электрического и информационного обмена ракеты осуществляют следующим образом: соединяют бортразъем проверяемой ракеты с блоком коммутации, выбирают один из двух интерфейсов цифрового обмена, блок коммутации соединяют с разъемами проверочного устройства, задают параметры информационного обмена, формируют управляющие сигналы в соответствии с логикой работы аппаратуры носителя при ее электрическом и информационном взаимодействии с ракетой, задают параметры фоно-целевой обстановки, осуществляют имитацию функционирования аппаратуры носителя в режиме предстартовой подготовки, осуществляют имитацию функционирования аппаратуры носителя при возможных ошибках разовых команд, осуществляют имитацию функционирования аппаратуры носителя при возможных ошибках цифрового обмена, имитируют параметры цели, вводят полетное задание, производят контроль логико-временной циклограммы, производят внутренний контроль составных частей ракеты и наглядно отображают ход и результаты контроля.

В одном частном случае задача изобретения решается за счет того, что дополнительно имитируют пуск ракеты и отделение ракеты от носителя, контролируют параметры ракеты в момент перехода на собственное питание, контролируют работу рулей, проверяют работу головки самонаведения и аппаратуры самоликвидации в автономном полете.

В другом частном случае задача изобретения решается за счет того, что перед проведением проверки осуществляют самотестирование проверочного устройства путем подключения к разъему ввода-вывода разовых команд контрольной заглушки «Самоконтроль разовых команд» и подачи на нее тестового напряжения 27 В.

В третьем частном случае задача изобретения решается за счет того, что перед проведением проверки осуществляют самотестирование проверочного устройства путем подключения к первому разъему ввода-вывода цифровых данных первой заглушки «Самоконтроль цифровых данных», перемыкающей линии ввода-вывода цифровых данных по первому интерфейсу цифрового обмена.

В четвертом частном случае задача изобретения решается за счет того, что перед проведением проверки дополнительно осуществляют самотестирование проверочного устройства путем подключения ко второму разъему ввода-вывода цифровых данных второй заглушки «Самоконтроль цифровых данных», перемыкающей линии ввода-вывода цифровых данных по второму интерфейсу цифрового обмена.

Сущность изобретения поясняется чертежами, на которых представлены: фиг.1 - структурная схема проверочного устройства; фиг.2 - схема подключения проверочного устройства в режимах «Самоконтроля».

На фиг.1, 2 обозначены:

1 - первый разъем ввода-вывода цифровых данных;

2 - второй разъем ввода-вывода цифровых данных;

3 - разъем ввода-вывода разовых команд;

4 - первый модуль ввода-вывода цифровых данных;

5 - второй модуль ввода-вывода цифровых данных;

6 - модуль ввода-вывода разовых команд;

7 - плата расширения;

8 - управляющий модуль;

9 - модуль хранения данных;

10 - модуль реального времени;

11 - модуль имитации фоно-целевой обстановки;

12 - модуль автоматического контроля составных частей ракеты;

13 - разъем модуля отображения информации;

14 - модуль отображения информации;

15 - разъем модуля задания параметров;

16 - модуль задания параметров;

17 - разъем управления имитацией фоно-целевой обстановки;

18 - блок коммутации;

19 - бортразъем ракеты;

20 - корпус устройства;

21 - ракета;

22 - первая заглушка «Самоконтроль цифровых данных»;

23 - вторая заглушка «Самоконтроль цифровых данных»;

24 - источник постоянного напряжения «+27 В».

25 - заглушка «Самоконтроль разовых команд»;

26 - разъем для регистрирующего устройства.

Предлагаемый способ заключается в том, что бортразъем 19 проверяемой ракеты 21 соединяют с блоком коммутации 18, выбирают один из двух интерфейсов цифрового обмена: обмен цифровыми данными по первому интерфейсу (по ГОСТ 18977-79) или обмен цифровыми данными по второму интерфейсу (по ГОСТ Р 52070-2003), блок коммутации 18 соединяют с первым разъемом ввода-вывода цифровых данных или со вторым разъемом ввода-вывода цифровых данных проверочного устройства, и соответственно, обмен цифровыми данными будет производится через первый модуль ввода-вывода цифровых данных 4 (по ГОСТ 18977-79) или через второй модуль ввода-вывода цифровых данных 5 (по ГОСТ Р 52070-2003), с помощью модуля задания параметров 16 задают параметры информационного обмена и режимы работы, с помощью управляющего модуля 8 формируют управляющие сигналы в соответствии с логикой работы аппаратуры носителя при ее электрическом и информационном взаимодействии с ракетой, через разъем управления имитацией фоно-целевой обстановкой 17 задают параметры фоно-целевой обстановки, осуществляют имитацию функционирования аппаратуры носителя в режиме предстартовой подготовки и контролируют предпусковую логико-временную циклограмму ракеты, осуществляют имитацию функционирования аппаратуры носителя при возможных ошибках разовых команд и контролируют реакцию ракеты на них, осуществляют имитацию функционирования аппаратуры носителя при возможных ошибках цифрового обмена и контролируют реакцию ракеты на них, имитируют параметры цели, вводят полетное задание, производят внутренний контроль составных частей ракеты, полученные данные о ходе и результатах контроля через разъем модуля отображения информации 13 передают в модуль отображения информации 14.

При реализации способа проверки электрического и информационного обмена ракеты возможно проведение имитации пуска и отделения ракеты от носителя, при этом проверяют параметры ракеты в момент перехода от бортового питания носителя на собственное питание, а также проведение имитации автономного полета ракеты, при этом проверяют работу рулей, головки самонаведения и аппаратуры самоликвидации с помощью модуля автоматического контроля составных частей ракеты 12.

При реализации способа проверки электрического и информационного обмена ракеты перед проведением проверки электрического и информационного обмена ракеты возможно проведение самотестирования проверочного устройства, при этом к разъему ввода-вывода разовых команд 3 подключают контрольную заглушку «Самоконтроль разовых команд» 25 и подают на нее тестовое напряжение 27 В.

При реализации способа проверки электрического и информационного обмена ракеты перед проведением проверки электрического и информационного обмена ракеты возможно проведение самотестирования первого интерфейса цифрового обмена проверочного устройства, при этом к первому разъему ввода-вывода цифровых данных 1 подключают первую заглушку «Самоконтроль цифровых данных» 22, перемыкающую линии ввода-вывода цифровых данных.

При реализации способа проверки электрического и информационного обмена ракеты перед проведением проверки электрического и информационного обмена ракеты возможно проведение самотестирование второго интерфейса цифрового обмена проверочного устройства, при этом ко второму разъему ввода-вывода цифровых данных 2 подключают вторую заглушку «Самоконтроль цифровых данных» 23, перемыкающую линии ввода-вывода цифровых данных.

До начала информационного обмена проверочное устройство формирует адрес ракеты путем замыкания пяти адресных линий А1…А5 и линии четности адреса с обратной линией адреса, на которую подается напряжение определенной величины. При отсутствии напряжения на всех линиях адреса (А1…А5=00000) проверочное устройство автоматически переключается на цифровой обмен по ГОСТ 18977-79, и сигналы, поступившие на разъем ввода-вывода, проходят на первый модуль ввода-вывода цифровых данных по ГОСТ 18977-79, иначе, если хотя бы на одной из адресных линий А1…А5 есть напряжение (например 01000 или 00100), то обмен осуществляется по ГОСТ Р 52070-2003, и сигналы, поступившие на разъем ввода-вывода, проходят на второй модуль ввода-вывода цифровых данных по ГОСТ Р 52070-2003. Таким образом, выбор интерфейса цифрового обмена происходит автоматически и не требует каких-либо действий оператора.

Предлагаемое устройство позволяет изменять фоно-целевую обстановку, для этого с разъема имитации фоно-целевой обстановки подают сигналы на блок имитации фоно-целевой обстановки.

Сигналы с шины информационного обмена по ГОСТ 18977-79 поступают на первый разъем ввода-вывода цифровых данных 1, с разъема ввода-вывода 1 сигналы поступают на первый модуль ввода-вывода цифровых данных 2, сигналы с первого модуля ввода-вывода 5 поступают на плату расширения 9.

Сигналы с первого модуля ввода-вывода цифровых данных 4 или со второго модуля ввода-вывода цифровых данных 5 и с модуля ввода-вывода разовых команд 4 через плату расширения 7 поступают на управляющий модуль 8, из управляющего модуля 8 в модуль хранения данных 9, а также через разъем модуля отображения информации 13 на модуль отображения информации 14. На модуле отображения информации 14 отражают ход и результаты проверки.

До начала работы в любом режиме необходимо ввести полетное задание и целеуказание, затем выбрать режим работы. Если предстартовая подготовка проведена успешно, осуществить имитацию пуска ракеты, после чего ракета переходит в режим автономного полета. В реальном времени можно изменять признаки целеуказания в любой момент полета (скорость, высоту) и полностью контролировать все требуемые параметры в процессе внутреннего обмена. С помощью модуля задания параметров 15 задают параметры носителя и цели, при этом информация может быть задана в виде цифровых данных или в физических величинах, затем сигналы с управляющего модуля 8 через плату расширения 7 поступают на первый модуль ввода-вывода цифровых данных 4 или на второй модуль ввода-вывода цифровых данных 5 и модуль ввода-вывода разовых команд 6, сигналы с первого модуля ввода-вывода цифровых данных 4 или второго модуля ввода-вывода цифровых данных 5 поступают через первый разъем ввода-вывода цифровых данных 1 или через второй разъем ввода-вывода цифровых данных 2 на первый или второй входы блока коммутации 18, а сигналы с модуля ввода-вывода разовых команд 6 через разъем ввода-вывода разовых команд 3 поступают на третий вход блока коммутации 18, сигналы с четвертой группы входов-выходов блока коммутации 18 поступают на бортразъем ракеты 19, ответные сигналы с бортразъема ракеты 19 поступают на блок коммутации 18, через первый разъем ввода-вывода цифровых данных 1 или через второй разъем ввода-вывода цифровых данных 2 сигналы поступают на первый модуль ввода-вывода цифровых данных 4 или на второй модуль ввода-вывода цифровых данных 5, и через разъем ввода-вывода разовых команд 2 - на модуль ввода-вывода разовых команд 4. Сигналы модуля ввода-вывода цифровых данных 3 и модуля ввода-вывода разовых команд 4 через плату расширения 6 поступают на управляющий модуль 7, из управляющего модуля 7 в модуль хранения данных 8, а также через разъем модуля отображения информации 9 на модуль отображения информации 11. На модуле отображения информации 14 отражают ход и результаты проверки.

В режиме расширенного контроля проверяют отдельные составные части ракеты: головку самонаведения (ГСН) и инерциальную систему управления (ИСУ) (на фиг. не показаны), для этого подключают проверочное устройство через блок коммутации 18 к разъемам, расположенным на корпусе ракеты 16 (на фиг. не показаны), соединенным с разъемами ввода-вывода ИСУ и ГСН, что не требует разборки ракеты. В режиме расширенного контроля не производят имитацию пуска. Информационный обмен записывают для дальнейшей его обработки и анализа.

Для осуществления дополнительного самотестирования проверочного устройства собирают схему в соответствии с фиг.2, при этом соединяют группу выходов заглушки «Самоконтроль разовых команд» с группой входов разъема ввода-вывода разовых команд, а группу входов заглушки «Самоконтроль разовых команд» соединяют с источником постоянного напряжения «+27 В». Выбирают режим «Проверка модуля ввода-вывода разовых команд», наблюдают процесс обмена данными на модуле отображения информации 14, по окончании которого при успешном прохождении теста отображается надпись «Устройство исправно», а при отрицательном - «Устройство неисправно».

Для осуществления дополнительного самотестирования первого интерфейса цифрового обмена соединяют группу выходов первой заглушки «Самоконтроль цифровых данных» с группой входов первого разъема ввода-вывода цифровых данных, выбирают режим «Проверка первого модуля ввода-вывода цифровых данных», наблюдают процесс обмена данными на модуле отображения информации.14, по окончании которого в строке «Результат» при успешном прохождении теста отображается надпись «Устройство исправно», а при отрицательном - «Устройство неисправно».

Для осуществления дополнительного самотестирования второго интерфейса цифрового обмена соединяют группу выходов второй заглушки «Самоконтроль цифровых данных» с группой входов второго разъема ввода-вывода цифровых данных, выбирают режим «Проверка второго модуля ввода-вывода цифровых данных», наблюдают процесс обмена данными на модуле отображения информации 14, по окончании которого в строке «Результат» при успешном прохождении теста отображается надпись «Устройство исправно», а при отрицательном - «Устройство неисправно».

Устройство может быть реализовано на базе персонального компьютера (РII или РIII, ЖМД не менее 20 Мб с ОС Windows 98/2000/ХР), в качестве первого модуля ввода-вывода цифровых данных 4 по ГОСТ 18977-79 может быть использован модуль РС-429-3-44(88) фирмы Элкус, в качестве второго модуля ввода-вывода цифровых данных 5 по ГОСТ Р 52070-2003 может быть использован модуль «ТХ1-РС» фирмы «Элкус», в качестве модуля ввода-вывода разовых команд 4 - модуль разовых команд «ACL-7225» фирмы «Adlink». В качестве модуля задания параметров 12 может быть использована клавиатура и экран монитора.

Предлагаемый способ используют для оперативного контроля штатной ракеты и ее модификаций на контрольно-испытательной станции или на технической позиции. Способ позволяет проверять работу ракеты в режимах предстартовой подготовки и пуска, а также автономного полета, производить расширенный контроль составных частей ракеты, в частности контроль головки самонаведения и инерциальной системы управления, и самоконтроль проверочного устройства, что позволяет повысить достоверность контроля, а также снизить стоимость отработки изделия на этапах опытно-конструкторских работ.

Представленные схема и описание устройства позволяют, используя существующую элементную базу, изготовить устройство, что характеризует предлагаемое изобретение как промышленно применимое.

1. Способ проверки электрического и информационного обмена ракеты, при котором соединяют бортразъем проверяемой ракеты с блоком коммутации, выбирают один из двух интерфейсов цифрового обмена, блок коммутации соединяют с проверочным устройством, задают параметры информационного обмена, формируют управляющие сигналы в соответствии с логикой работы аппаратуры носителя при ее электрическом и информационном взаимодействии с ракетой, задают параметры фоно-целевой обстановки, осуществляют имитацию функционирования аппаратуры носителя в режиме предстартовой подготовки, осуществляют имитацию функционирования аппаратуры носителя при возможных ошибках разовых команд, осуществляют имитацию функционирования аппаратуры носителя при возможных ошибках цифрового обмена, имитируют параметры цели, вводят полетное задание, производят контроль логико-временной циклограммы, производят внутренний контроль составных частей ракеты и наглядно отображают ход и результаты контроля.

2. Способ по п.1, при котором дополнительно имитируют пуск, отделение от носителя и автономный полет ракеты, контролируют параметры ракеты в момент перехода на собственное питание, а также проверяют работу рулей, головки самонаведения и аппаратуры самоликвидации в автономном полете.

3. Способ по п.1, при котором перед проведением проверки электрического и информационного обмена ракеты осуществляют самотестирование проверочного устройства с помощью подключения к разъему ввода-вывода разовых команд контрольной заглушки «Самоконтроль разовых команд» и подачи на нее тестового напряжения 27 В.

4. Способ по п.1, при котором перед проведением проверки электрического и информационного обмена ракеты дополнительно производят самотестирование первого интерфейса цифрового обмена проверочного устройства с помощью подключения к первому разъему ввода-вывода цифровых данных первой заглушки «Самоконтроль цифровых данных», перемыкающей линии ввода-вывода цифровых данных по первому интерфейсу цифрового обмена.

5. Способ по п.1, при котором перед проведением проверки электрического и информационного обмена ракеты дополнительно производят самотестирование проверочного устройства с помощью подключения ко второму разъему ввода-вывода цифровых данных второй заглушки «Самоконтроль цифровых данных», перемыкающей линии ввода-вывода цифровых данных по второму интерфейсу цифрового обмена.



 

Похожие патенты:

Изобретение относится к области военной технике, в частности к боеприпасам, состоящим из нескольких частей. Боеприпас состоит из двух частей, стыкуемых друг с другом непосредственно перед заряжанием в ствол орудия.
Изобретение относится к вооружению и военной технике, а именно, к способам поражения целей, находящихся в труднодоступных местах или в укрытиях вне зоны прямого видения, и может быть использовано для обезвреживания живой силы противника.

Изобретение относится к оружейной технике, а именно к реактивным гранатометам и ракетам для реактивных гранатометов. Ракета для гранатомета содержит ракетный двигатель с кольцевым или цилиндрическим каналом или кольцевыми бронированными с одной стороны шашками, боевую часть, два или более реактивных сопла, два тандемных кумулятивных заряда, бесконтактный лазерный взрыватель.

Изобретение относится к космической головной части и к способу ее сборки. Космическая головная часть содержит космический аппарат, головной обтекатель и переходную систему, которая обеспечивает стыковку ракеты-носителя с космическим аппаратом.

Изобретение относится к ракетно-космической технике. Система мягкой посадки многоразовой ракетной ступени содержит ракетные двигатели, посадочные опоры и подсистему вертикализации ступени после ее посадки.

Изобретение относится к военной технике, а более конкретно к способу управления движением летательного аппарата. Совмещение стабилизированной линии визирования производят последовательно с каждым объектом визирования.

Изобретение относится к ракетно-космической технике. Способ управления движением ракеты-носителя на начальном участке полета заключается в отклонении качающейся части маршевого двигателя в заданной плоскости увода струи с учетом периодического вычисления командного сигнала на отклонение качающейся части маршевого двигателя ракеты-носителя в зависимости от программного угла, отклонения и скорости отклонения характерной точки ракеты-носителя от вертикальной оси пускового устройства, угла и угловой скорости тангажа ракеты-носителя и в одновременной стабилизации углового положения ракеты-носителя в плоскости, перпендикулярной заданной.

Изобретение относится к ракетно-космической технике. Многоразовый возвращаемый ракетный блок содержит фюзеляж, крыло с двумя консолями, левый и правый блоки двигателей управления.

Изобретение относится к ракетам, в частности к ракетам с бескорпусными бессопловыми двигателями торцевого горения. Ракета с бескорпусным бессопловым двигателем торцевого горения содержит головную часть и шашку твердого ракетного топлива.

Изобретение относится к ракетно-космической технике. .

Изобретение относится к области военной техники, в частности к управляемым реактивным снарядам. Управляемый реактивный снаряд включает управляющий и разгонный блоки. Управляющий блок выполнен в виде двух модулей: носового с органами управления реактивным снарядом и хвостового. Между собой модули управляющего блока соединены посредством цилиндрического шарнира с осью вращения, совпадающей с продольной осью разгонного блока. Хвостовой модуль управляющего блока выполнен в виде единого конструктивного целого с разгонным блоком. На оси цилиндрического шарнира, жестко связанной с разгонным блоком, расположен ротор электрического моментного двигателя. Статор двигателя жестко связан с корпусом носового модуля управляющего блока. На внешней поверхности носового модуля управляющего блока расположена одна пара аэродинамических рулей, жестко связанных с внешней поверхностью носового модуля. Рули установлены под фиксированным углом к продольной оси управляющего модуля. Достигается упрощение конструкции и повышение боевой эффективности управления реактивных снарядов. 1 ил.
Изобретение относится к способу поражения наземных и воздушных целей. Способ поражения цели заключается в запуске группы, состоящей из двух функционально связанных между собой ракет, запускаемых одна за другой по цели со сдвигом во времени и доставке боевого снаряжения в зону поражения цели. Запускаемую первой ведущую ракету снабжают неотделяемым от борта устройством передачи информации о ее перемещении. Боевым снаряжением оснащают только ведомую ракету. Функциональную связь между ракетами осуществляют путем взаимодействия устройства передачи информации ведущей ракеты и пассивного канала, созданного на ведомой ракете. Задержку запуска между ведущей и ведомой ракетами выдают минимальной и достаточной для устойчивого захвата ведомой ракетой сигнала от ведущей. Достигается увеличение вероятности поражения цели. 3 з.п. ф-лы.

Изобретение относится к области вооружений, в частности к неконтактным взрывателям реактивных боеприпасов. Реактивный снаряд содержит корпус с взрывчатым веществом, взрыватель, источник питания, детонатор, предохранительно-взводящий механизм и оптический датчик цели. В корпусе взрывателя размещены источник питания, детонатор и предохранительно-взводящий механизм. Предохранительно-взводящий механизм соединен с оптическим датчиком цели. Оптический датчик цели включает электронный блок, два и более приемоизлучающих канала. Каждый из приемоизлучающих каналов содержит импульсный источник оптического излучения и фотоприемник, соединенные с электронным блоком. Источник оптического излучения и фотоприемник образуют приемоизлучающий канал. Источник оптического излучения и фотоприемник расположены практически вплотную друг к другу. Оптические оси источника оптического излучения и фотоприемника направлены по направлению движения под углом <90° к продольной оси взрывателя и преимущественно параллельны. Необходимое количество излучателей в оптическом датчике цели определено из условия, при котором хотя бы для одного из излучателей оптического датчика Т≤Δt, где Т - период одного рабочего цикла детектирования одним приемоизлучающим каналом, Δt - временной интервал. Достигается повышение эффективности боеприпаса разрывного действия. 2 з.п. ф-лы, 2 ил.

Изобретение относится к высокоточному управляемому ракетному оружию, в частности к управляющим блокам реактивных снарядов. Управляющий блок реактивного снаряда содержит шарнирно соединенные носовой модуль с системой управления и хвостовой модуль. Головная часть носового модуля выполнена плоской с размещением в ней плоского иллюминатора. Боковая обечайка носового модуля выполнена цилиндрической. Стакан посадочного гнезда хвостового модуля выполнен длиной до головной части носового модуля и снабжен телескопически складываемой аэродинамической иглой. Достигается увеличение кучности стрельбы реактивного снаряда. 2 з.п. ф-лы, 1 ил.

Изобретение относится к боеприпасам, в частности к способам стрельбы управляемым артиллерийским снарядом. Способ стрельбы управляемым артиллерийским снарядом основан на включении на траектории реактивного двигателя только при стрельбе в диапазоне повышенных дальностей. Снаряд содержит реактивный двигатель с воздухозаборным устройством, соплом и топливом с недостатком окислителя. При стрельбе на повышенную дальность реактивный двигатель включают в одном из двух режимов. В одном режиме, при стрельбе в диапазоне максимальных дальностей - в режиме ракетно-прямоточного двигателя. В другом режиме, при стрельбе в диапазоне средних дальностей - в режиме ракетного двигателя на твердом топливе. Достигается расширение диапазона повышенных дальностей полета снаряда. 3 ил.

Изобретение относится к области вооружений, в частности к взрывателям с оптическим датчиком цели для реактивных боеприпасов. Оптический датчик цели установлен внутри корпуса головного взрывателя. На корпус взрывателя установлен защитный кожух, головной стопорный элемент, пиропривод, электронно-временное устройство и нижний стопорный элемент. Кожух представляет собой тело вращения оболочечного типа, преимущественно повторяющее наружные обводы взрывателя. Кожух установлен с наружной стороны взрывателя. Кожух состоит из трех и более сегментов. Головной стопорный элемент установлен на головной части защитного кожуха. Пиропривод установлен на корпусе взрывателя и обеспечивает осевое перемещение головного стопорного элемента. Выводы электронно-временного устройства соединены с выводами пиропривода. Нижний стопорный элемент взаимодействует с нижними частями сегментов защитного кожуха и фиксирует сегменты защитного кожуха на корпусе взрывателя от перемещения в радиальном направлении. Сегменты защитного кожуха имеют конструктивные элементы, взаимодействующие с ответными конструктивными элементами на корпусе взрывателя, и исключают возможность перемещения сегментов относительно корпуса взрывателя при установленных головном и нижнем стопорных элементах. Достигается расширение функциональных характеристик реактивного боеприпаса с оптическим датчиком цели. 3 ил.

Изобретение относится к боеприпасам, в частности к управляемым ракетам, размещенным в транспортно-пусковых контейнерах. Управляемая ракета в транспортно-пусковом контейнере содержит разгонный двигатель, маршевый двигатель, боевую часть, рулевой отсек и бортразъем. Рулевой отсек включает в себя источник вторичного электропитания, блок формирования одноканального сигнала управления и связанную с ним рулевую машинку, а также аппаратурную часть с элементами радиокомандной системы управления в виде радиоприемного устройства и блока ответчика. Бортовая система управления ракеты выполнена двухсистемной за счет введения в аппаратурную часть фотоприемного устройства лазерно-лучевой системы управления, системного блока управления, модуля управления, блока эквивалентной нагрузки, источника питания. Выход источника вторичного электропитания подключен ко второму входу блока ответчика и первому входу блока эквивалентной нагрузки. Выход модуля управления соединен со вторым входом блока эквивалентной нагрузки, третий вход которого подключен к контакту бортразъема носителя, предназначенного для автоматического выбора и коммутации элементов одной из указанных систем управления ракеты для работы в соответствии с системой управления носителя. Достигается расширение боевых возможностей ракеты. 3 з.п. ф-лы, 8 ил.

Изобретение относится к области ракетной техники, а именно к устройствам управления элевоном складываемого крыла ракеты. Механизм управления элевоном состоит из размещенного на корпусе ракеты вала вращения, рычага, жестко закрепленного на валу, и установленной рулевой машинки в корпусе ракеты, шток которой шарнирно соединен с рычагом. Один конец вала с возможностью осевого перемещения входит в отверстие сферической опоры. Сферическая опора установлена во втулке, имеющей возможность вращения в корпусе ракеты. На другом конце вала шарнирно закреплена обойма, шарнирно соединенная с поводком, жестко закрепленным на элевоне складываемого крыла. Ось шарнирного соединения поводка и обоймы совмещена с осью вращения крыла, на поводке выполнен зуб, на обойме выполнен паз, в котором размещен зуб поводка. Технический результат заключается в улучшенном управлении элевона. 4 ил.
Изобретение относится к боеприпасам, в частности к снарядам, невидимым для радиорадаров (стелс-снарядам). Стелс-снаряд содержит корпус, взрыватель и взрывчатое вещество. Снаряд выполнен из радиопрозрачного композитного материала и имеет заднюю (относительно направления движения) часть в виде полусферы или полуэллипсоида, или полуовала вращения. Достигается создание снаряда, невидимого для радиорадаров. 3 з.п. ф-лы.

Изобретение относится к вооружению, а именно к боеприпасам. Артиллерийский снаряд содержит корпус кормового отсека (ККО) с блоком стабилизаторов и донным газогенератором, воздухозаборное устройство. Корпус кормового отсека составлен из телескопически сложенных наружной и внутренней обечаек. После вылета снаряда производят забор атмосферного воздуха для дожигания газообразной смеси, трансформируют ККО сразу после вылета снаряда из канала ствола путем выдвижения наружной обечайки для формирования ракетно-прямоточного двигателя, затем трансформируют ККО путем возвращения наружной обечайки в исходное положение и закрывают воздухозаборное устройство. Изобретение позволяет увеличить дальность полета артиллерийского снаряда. 4 ил.
Наверх