Способ определения общего фосфора методом капиллярного электрофореза


 


Владельцы патента RU 2499989:

Государственное научное учреждение Северо-Кавказский зональный научно-исследовательский институт садоводства и виноградарства Россельхозакадемии (RU)

Изобретение относится к аналитической химии фосфора, в частности к способу определения общего фосфора в сельскохозяйственном сырье и продукции переработки, и направлено на ускорение, совершенствование и повышение объективности количественного анализа. Указанный способ предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания общего фосфора не более 500 мг/дм3, центрифугирование и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, при этом для проведения анализа используют водный раствор ведущего электролита, содержащий 0,2% хромата калия и 0,6% уротропина при отрицательной полярности напряжения и длине волны детектирования - 254 нм. 1 ил., 1 табл., 6 пр.

 

Изобретение относится к аналитической химии фосфора, в частности к способам определения общего фосфора в сельскохозяйственном сырье и продукции переработки.

Фосфор играет исключительно важную роль в процессах обмена энергии в растительных организмах - его недостаток тормозит развитие и задерживает созревание, вызывает снижение урожая и ухудшение качества продукции. Признаки недостатка фосфора проявляются уже на начальных стадиях развития растений, когда они имеют слаборазвитую корневую систему и неспособны усваивать труднорастворимые фосфаты почвы. Однако при избытке фосфора он начинает замещать азот, чем уменьшает биологическую ценность плодов. На долю фосфора приходится до 1% сухого вещества растений и плодов.

Существующие методы определения общего фосфора условно можно разделить на две группы - классические химические и инструментальные. Причем в массовом анализе преобладают классические химические испытания. Сущность всех методов определения общего фосфора заключается в разрушении органического (минерального) вещества с последующим переводом в раствор в виде фосфат-иона и выполнением количественного анализа.

Известен способ определения общего фосфора в пробах растительного сырья с применением для окисления пробы смеси серной и хлорной кислот в течение нескольких часов при кипячении, охлаждении подготовленного образца, регулировании кислотности среды и количественного анализа с использованием фотоколориметра. Недостатки: длительность, необходимость кипячения весьма агрессивной смеси кислот, невозможность получения документального подтверждения исполнения определения [Агрохимические методы исследования почв / Под ред. А.В.Соколова. - М.: Наука, 1975. - 656 с.].

Наиболее близким к заявляемому способу является определение фосфат-ионов методом капиллярного электрофореза. Использованы следующие условия разделения на системе капиллярного электрофореза: водный раствор ведущего электролита - 0,05 М оксид хрома, 0,1 М диэтаноламин, 0,01 М гексадецилтриметиламмоний гидроксид (ЦТА-ОН), 0,025 М глюконата кальция; отрицательное напряжение 17 кВ, длина волны детектирования - 254 нм, эффективная длина капилляра 0,5 м, внутренний диаметр 75 мкм. Нейтральные органические соединения не мешают определению, допускается присутствие до 10 мг/дм3 двухосновных органических кислот и до 3 мг/дм3 перхлорат и формиат-ионов. Диапазон измеряемых концентраций анионов составляет 5-50 мг/дм3. Необходимо кислотность анализируемой среды регулировать аммиаком либо уксусной кислотой [Методика М 01-30-2003. Методика выполнения измерения массовых концентраций хлорид-ионов, нитрит-ионов, сульфат-ионов, нитрат-ионов, фторид-ионов и фосфат-ионов в пробах природных, питьевых и очищенных сточных вод с применением системы капиллярного электрофореза «Капель». - Санкт-Петербург, 2003 г. - 34 с.].

Недостатки: небольшой линейный диапазон для определения фосфат-ионов, что будет требовать многократного разбавления пробы и повлечет искажение результатов измерений в реальных пробах и не будет обеспечивать стабильность количественных результатов. Определению мешают перхлорат-ионы. Применяемому для разделения электролиту присуща нестабильность и образование осадков, что негативно сказывается на результатах количественного анализа.

Задачей изобретения является эффективное определение общего фосфора методом капиллярного электрофореза, обеспечение экспрессных и достоверных количественных результатов при минимальных затратах на выполнение анализа.

Техническим результатом при использовании предлагаемого изобретения является экспрессность и достоверность количественного определения общего фосфора методом капиллярного электрофореза с применением доступных реактивов для проведения анализа.

Технический результат достигают за счет того, что способ предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания общего фосфора не более 500 мг/дм3, центрифугирование и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, отличающийся тем, что в анализе используют водный раствор ведущего электролита, содержащий 0,2% хромата калия и 0,6% уротропина при отрицательной полярности напряжения и длине волны детектирования - 254 нм.

Способ отличается тем, что с целью повышения достоверности анализа используют водный раствор ведущего электролита, состоящий из хромата калия и уротропина при отрицательной полярности напряжения.

Поставленная задача решается за счет того, что свойства ведущего электролита позволяют исключить из процесса анализа многостадийную пробоподготовку, избежать значительной кратности разбавления анализируемых проб и выполнить достоверный анализ в присутствии больших концентраций нитрат- и сульфат-ионов.

Преимущества заявляемого способа заключаются в использовании нетоксичных и доступных реактивов при осуществлении анализа на системах капиллярного электрофореза, например, серии «Капель», обеспечении объективности и достоверности анализа реальных проб, стабильности во времени состава ведущего электролита.

Использование предлагаемой совокупности существенных признаков, изложенных в формуле изобретения, позволяет достичь желаемого технического результата - объективного и экспрессного определения массового содержания общего фосфора как в градуировочных растворах, так и в пробах растительного сырья и продукции переработки. Примеры конкретного выполнения.

Пример 1

Пробу комбикорма массой 1,00 г помещали в стакан объемом 50 см3, добавляли 10 см3 30%-ной азотной кислоты, переносили в вытяжной шкаф и медленно нагревали на плитке до кипения смеси, не допуская вспенивания и разбрызгивания. Процесс кипячения вели до полного растворения пробы и прекращения активного выделения окислов азота. После этого нагрев прекращали и пробу охлаждали в естественных условиях. В данных условиях термического кислотного разложения все формы соединений фосфора в биологических объектах разрушаются и переходят под действием азотной кислоты в фосфорную кислоту (фосфат-ион). Содержимое стакана после термического кислотного разложения количественно переносят в мерную колбу объемом 25 см3 и доводят до метки дистиллированной водой, перемешивают, мерной пипеткой отбирают 5 см3 и переносят в чашку для выпаривания. Содержимое в вытяжном шкафу выпаривают до состояния влажных солей, добавляют 5 см3 дистиллированной воды, растворяют пробу, фильтруют, центрифугируют и переносят для анализа в систему капиллярного электрофореза. Суммарное разбавление исходной пробы составляет 25 раз, что учитывали в количественных расчетах.

Анализ осуществляли в следующих условиях. Система капиллярного электрофореза с источником питания отрицательной полярности, например, серии «Капель», оборудованная фотометрическим детектором с установленной длиной волны 254 нм, кварцевым капилляром внутренним диаметром 75 мкм, эффективной длиной 0,5 м; отрицательное напряжение на капилляре 16 кВ; рекомендуется термостатирование капилляра при +24°С; ввод пробы - пневматический - 30 мБар в течение 5 секунд; время анализа - 15 мин. Для проведения анализа используют водный раствор ведущего электролита следующего состава: 0,2% хромата калия и 0,6% уротропина. Срок хранения ведущего электролита не более трех суток.

Контролем служило определение общего фосфора в этой же пробе согласно способу-прототипу.

Пример 2

Аналогично примеру 1, кроме того, что пробоподготовке подвергали высушенные листья груши сорта Киффер.

Пример 3

Аналогично примеру 1, кроме того, что пробоподготовке подвергали сухое виноградное вино в количестве 1 см3.

Пример 4

Аналогично примеру 1, кроме того, что пробоподготовке подвергали российский коньяк пятилетней выдержки в количестве 1 см3.

Пример 5

Аналогично примеру 1, кроме того, что пробоподготовке подвергали яблочное пюре.

Пример 6

Аналогично примеру 1, кроме того, что пробоподготовке подвергали ядра грецкого ореха сорта Идеал.

Электрофореграмма определения общего фосфора в подготовленной пробе комбикорма показана на рисунке.

Полученные результаты, характеризующие способ определения общего фосфора, отражены в таблице.

Таблица
Результаты определения общего фосфора в исследуемых объектах, мг/кг
Пример Предлагаемый способ Прототип
1 3600 1850
2 440 300
3 88 70
4 6,4 18,2
5 290 210
6 370 690

Анализ полученных результатов показал, что:

в случае анализа коньяка и плодов грецкого ореха завышение результатов определения общего фосфора согласно способу-прототипу составляет 100% в сравнении с результатами предлагаемого способа. Это связано для коньяка - с низким содержанием общего фосфора, а для грецкого ореха - со значительным содержанием жиров в пробе. Заниженные результаты согласно способу-прототипу, полученные при определении общего фосфора для проб комбикорма и листьев груши, связаны с необходимостью разбавления анализируемых проб. Искажение результатов определения общего фосфора в пробах вина и яблочного пюре связано с нестабильностью состава ведущего электролита, используемого в способе-прототипе.

Предлагаемый способ практически лишен данных недостатков - для корректного анализа требуется разбавление проб в несколько раз, не сказывается влияние мешающих анионов (хлоридов, нитратов, сульфатов, перхлоратов и т.д.), водный раствор ведущего электролита стабилен во времени и не загрязняет внутреннюю поверхность капилляра. При реализации способа получены количественные результаты определения массовой концентрации общего фосфора, превосходящие по своему качеству прототип.

Способ определения общего фосфора, характеризующийся тем, что предусматривает термическое кислотное разложение пробы растительного образца, кратное разбавление пробы до содержания общего фосфора не более 500 мг/дм3, центрифугирование и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, отличающийся тем, что для проведения анализа используют водный раствор ведущего электролита, содержащий 0,2% хромата калия и 0,6% уротропина при отрицательной полярности напряжения и длине волны детектирования - 254 нм.



 

Похожие патенты:
Использование: в материаловедении, криминалистике, ювелирном деле, а также гальванотехнике для определения состава изделий, выполненных из металлов или металлических сплавов, в том числе и имеющих металлические покрытия.

Изобретение относится к способу измерения редокс потенциала биологических сред и может быть использовано для мониторинга с целью получения диагностической информации о состоянии пациента.
Изобретение относится к аналитической химии сахаров, в частности к способам определения глюкозы, сахарозы, фруктозы в сельскохозяйственном сырье и продукции переработки, и направлено на ускорение, совершенствование и повышение объективности количественного анализа сахаров.

Изобретение относится к измерительной технике и может быть использовано в строительных материалах и изделиях, а также в пищевой, химической и других отраслях промышленности.

Изобретение относится к вольтамперометрическому анализу, а именно к способу удаления кислорода из фоновых растворов для вольтамперометрического анализа. .

Изобретение относится к электрохимическим способам определения концентрации элементов в водных растворах, может быть использовано в промышленности при анализе растворов, в контроле объектов окружающей среды, пищевых продуктов и других объектов, особенно в непрерывных и автоматических измерениях, а также для амперометрического детектирования в жидкостной хроматографии.

Изобретение относится к способу определения оксидантной/антиоксидантной активности веществ. .

Изобретение относится к физическим методам исследования состояния воды в биообъектах, в том числе тканях живых животных, и представляет интерес для биофизики, биологии, медицины, решения ряда проблем «Экологии человека».

Изобретение относится к области черной металлургии, в частности к способам контроля окисленности шлака и металла при выплавке сплавов на основе железа в электродуговых печах переменного тока.

Использование: для анализа химических или физических свойств, элементного и фазового состава, марки, характера термической обработки металлов и сплавов в машиностроении, металлообработке и металлургической промышленности. Сущность: в предлагаемом способе идентификации металлов и сплавов осуществляют формирование электрохимической системы электроды электролит, при этом пробу испытуемого металла или сплава используют в качестве одного из электродов, затем воздействуют на сформированную электрохимическую систему электрическим током, а именно, по меньшей мере, одним информационным импульсом напряжения, осуществляемым со строго заданным, по меньшей, одним значением скорости нарастания/спада напряжения, проводят измерение электрических параметров в зависимости от скорости нарастания/спада напряжения: значений тока и падения напряжения одновременно с упомянутым воздействием с сохранением массива полученных данных и его математической обработкой, дополнительно перед воздействием информационного импульса на упомянутую электрохимическую систему воздействуют электрическим током с заданным значением количества электричества. Также в изобретении предложено устройство для идентификации металлов и сплавов, содержащее генератор информационных электрических импульсов напряжения, содержащий элементы управления скоростью нарастания и спада выходного напряжения, измерительный модуль, пригодный для измерения электрических параметров сильнотоковых процессов в растворе электролита, и компьютер. Технический результат: возможность контроля и идентификации металлов и их сплавов с высокой точностью, повышение информативности и достоверности способа. 2 н. и 24 з.п.ф-лы, 11 ил.

Использование: для разработки методик анализа никеля в различных типах вод, эко- и биологических объектах, пищевых продуктах, продовольственном сырье, кормах и кормовых добавках. Сущность: заключается в сочетании кислотной минерализации образца на этапе подготовки проб с последующим вольтамперометрическим определением Ni2+ в трехэлектродной ячейке: индикаторный электрод - серебряная подложка, модифицированная арилдиазоний тозилатом с аминогруппой в качестве заместителя, вспомогательный и сравнения - хлоридсеребряные электроды. При этом накопление Ni2+ в перемешиваемом растворе проводят в течение 30 с при потенциале электролиза минус 0,7±0,05 В на фоне хлоридно-аммиачного буферного раствора с добавкой 0,03 см3 0,1 моль/дм диметилглиоксима, без удаления из электролита растворенного кислорода, с последующей регистрацией катодных пиков в дифференциально-импульсном режиме при скорости развертки потенциала 20 мВ/с. Концентрацию никеля определяют по высоте пика в диапазоне потенциалов от минус (1,00±0,05) В методом добавок аттестованных смесей. Технический результат: использование нетоксичных органо-модифицированных электродов (ОМЭ) для определения никеля методом катодной инверсионной вольтамперометрии в присутствии растворенного кислорода. 1 ил., 1 табл.

Изобретение относится к аналитической химии и может быть использовано для определения цинка (II) в технических и природных объектах. Способ заключается в потенциометрическом титровании пробы комплексоном (III) с индикаторным электродом из металлического висмута с буферным раствором при рН 4,1 - 9,0. Достигается упрощение, а также - повышение точности и безопасности анализа. 2 табл., 1 ил.

Настоящее изобретение относится к аналитической химии ауксинов, в частности к способам определения индолил-уксусной кислоты в верхушках концевых приростов побегов и листьев яблони, груши, сливы, черешни, винограда и проростков пшеницы. Способ предусматривает экстракционную подготовку пробы биологического материала, центрифугирование и выполнение анализа на системе капиллярного электрофореза в кварцевом капилляре, эффективной длиной 0,5 м, внутренним диаметром 75 мкм, при этом для анализа используют водный ведущий электролит, содержащий 0,28% борной кислоты и 0,04% тетрабората натрия при положительной полярности напряжения и длине волны детектирования - 254 нм. Изобретение обеспечивает экспрессность и достоверность количественного определения индолил-уксусной кислоты методом капиллярного электрофореза с применением нетоксичных и доступных реактивов для проведения анализа. 6 пр., 1 таб., 1 ил.

Изобретение относится к медицине и представляет собой реагент для детектирования глюкозы, содержащий фермент FAD-глюкозодегидрогеназу, фенотиазиновый или феноксазиновый медиатор, по меньшей мере один сурфактант, полимер и буфер. Реагент используется с электрохимическим тест-сенсором, содержащим множество электродов, при этом тест-сенсор обладает высокой скоростью заполнения и точностью. Реагент является стабильным и характеризуется более низким фоновым током тест-сенсоров. 6 н. и 13 з.п. ф-лы, 2 табл., 13 ил., 9 прим.

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения антиоксидантной/оксидантной активности природных, синтетических и биологических объектов для исследования антиоксидантных/оксидантных свойств веществ и продуктов, контроля состава пищевых продуктов, диагностики заболеваний. Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки раствора реагента или анализируемого вещества. Изобретение обеспечивает повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга анализируемых веществ, используемых реагентов и растворителей. 2 з.п. ф-лы, 6 ил., 6 пр.

Изобретение относится к области техники, которая может удаленно осуществлять мониторинг образования и роста трещин в металлических конструкциях. Устройство содержит оболочку, которая имеет магнитные ножки для прикрепления оболочки к ферромагнитной конструкции, по меньшей мере одну пару управляемых микропроцессором регуляторов напряжения, причем каждый регулятор напряжения имеет провод датчика к электрохимическому усталостному датчику, прикрепленному к конструкции, подлежащей анализу на наличие растущих трещин вследствие усталости металла в металлической конструкции, источник питания и заземление, при этом регулятор напряжения используется для осуществления мониторинга усталостного состояния металлической конструкции, при этом каждый регулятор напряжения электрически изолирован от остальной части электрической монтажной платы устройства и содержит аналого-цифровой преобразователь. Посредством регулятора напряжения прикладывают напряжение через упомянутые датчики во время циклической нагрузки и измеряют ток, проходящий через упомянутые датчики, и оцифровывают результат измерения для анализа усталостного состояния металлической конструкции. Технический результат: возможность предотвращения появление шумов и искажения данных при измерении. 5 н. и 29 з.п. ф-лы, 4 ил.

Изобретение относится к области аналитической химии и может быть использовано для одновременного определения содержания ионов Cu(II), Pb(II), Fe(III) и Bi(III) в различных матрицах. Техническим результатом изобретения является расширение перечня определяемых компонентов, разработка простого, чувствительного и экспрессного способа определения ионов переходных металлов в объектах окружающей среды, отходах промышленных производств, сложнооксидных материалах и других объектах методом капиллярного зонного электрофореза. Сущность изобретения: способ совместного определения ионов Cu(II), Pb(II), Fe(III) и Bi(III) методом капиллярного зонного электрофореза включает в себя предварительное комплексообразование компонентов пробы с этилендиаминтетрауксусной кислотой, ввод зоны пробы в немодифицированный кварцевый капилляр, заполненный фосфатным буферным электролитом, после зоны диглицилглицина, разделение компонентов при отрицательной полярности источника напряжения, прямое спектрофотометрическое детектирование при длине волны 260 нм, идентификацию и количественное определение каждого компонента по предварительно построенному градуировочному графику либо методом стандартных добавок. 4 ил.

Устройство для определения концентрации кислорода и водорода в газовой среде относится к средствам измерительной техники и может быть использовано для контроля параметров газовых сред, в частности содержащих кислород и водород. Устройство состоит из канала (7), расположенного под углом к горизонту, входного сенсора водорода (2) и входного сенсора кислорода (3), расположенных во входной части полости канала (7), входного каталитически активного элемента (1), установленного в полости канала (7) над выходными сенсорами водорода (2) и кислорода (3), выходного сенсора водорода (5) и выходного сенсора кислорода (6), расположенных в полости канала (7) между входным (1) и выходным (4) каталитически активными элементами. Причем входной (2) и выходной (4) каталитически активные элементы выполнены из высокопористых ячеистых материалов с нанесенным на их поверхность платиновым покрытием. В качестве входного сенсора водорода (5) и выходного сенсора водорода (7) использованы твердоэлектролитные датчики концентрации водорода с керамическим чувствительным элементом, выполненным из кислородпроводящей керамики. Технический результат заключается в повышении быстродействия и чувствительности устройства, обеспечении защиты от ошибочных показаний устройства. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области аналитической химии. Способ характеризуется тем, что электрохимически концентрируют бензойную кислоту на поверхности графитового электрода в течение 90 с при потенциале электролиза (-0,500) В на фоне 0,1 моль/л натрия гидрофосфата, затем регистрируют поляризационные кривые при линейной скорости развертки потенциала 25 мВ/с и по высоте пика в диапазоне потенциалов 0,5-1,6 В относительно хлорсеребряного электрода определяют концентрацию бензойной кислоты. Способ позволяет с высокой чувствительностью и экспрессностью определить бензойную кислоту в лекарственных препаратах. 3 пр., 6 табл.
Наверх