Наноструктурированный катализатор для дожигания монооксида углерода


 


Владельцы патента RU 2500469:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный технический университет (Новочеркасский политехнический институт)" (RU)

Настоящее изобретение относится к катализаторам из металлов платиновой группы на оксидном носителе, предназначенным для удаления вредных компонентов, в частности газообразного монооксида углерода в выхлопных газах автомобильных двигателей, или для использования в электродах газочувствительных сенсоров, в топливных элементах, работающих на синтез-газе, и в других электрохимических устройствах. Описан наноструктурированный катализатор для дожигания монооксида углерода, содержащий в качестве носителя диоксид олова, легированный оксидом сурьмы в соотношении сурьмы к олову 2 мол.%, и частицы нанокристаллической платины, содержание которой в катализаторе составляет 2 мас.%, при этом оксидный носитель имеет однофазный состав, а осажденные на оксидный носитель частицы нанокристаллической платины имеют размер 3-5 нм. Техническим результатом является получение высокоактивного катализатора для окисления монооксида углерода. 2 пр.

 

Изобретение относится к катализаторам из металлов платиновой группы на оксидном носителе, предназначенным для удаления вредных компонентов, в частности газообразного монооксида углерода в выхлопных газах автомобильных двигателей или для использования в электродах газо-чувствительных сенсоров, в топливных элементах, работающих на синез-газе, и в других электрохимических устройствах.

Описан катализатор для дожигания монооксида углерода, в котором металлы платиновой группы закрепляются на носителе - легированном сурьмой диоксиде олова. Техническим результатом является получение высокоактивного катализатора для глубокого окисления оксида углерода.

Примерами бесплатиновых катализаторов окисления монооксида углерода в присутствии водорода путем окисления кислородом или воздухом являются селективные катализаторы на основе меди или марганца, включающие в качестве активного компонента CuO-CeO2 или MnO2-CeO2, с содержанием CuO или MnO2 1-10 мас.% как в массивном виде, так и нанесенные на оксиды алюминия, циркония, кремния, и/или соединения на их основе, или же на графитоподобный углеродный материал.

Например, известно [Авторское свидетельство СССР №844038, Катализатор для обезвреживания моторных отходящих газов, 1981] на катализатор дожигания отходящих газов, содержащего оксид углерода с нанесением на Al2O3 оксидов кобальта и меди из водного раствора, сушкой и прокаливанием на воздухе. Основным недостатком катализаторов, полученных нанесением активного компонента на подобный носитель, является то, что большинство активных компонентов взаимодействуют с Al2O3 с образованием алюминатов, активность которых ниже, чем исходных оксидов кобальта и меди.

В качестве катализаторов на основе благородных металлов, используют системы, в которых в качестве активного компонента применяется платина, палладий, рутений, родий, иридий преимущественно рутений и платина, нанесенные (в количестве 0,05-5 мас.%) на углеродные носители или оксидные материалы - оксиды алюминия, циркония, церия, кремния и/или соединения на их основе. Чаще всего в качестве благородного металла для тройных катализаторов используется платина. Однако при использовании металлов платиновой группы при воздействии высокотемпературного отходящего газа в течение длительного периода времени платиновые частицы увеличиваются в размере, и, таким образом, удельная площадь поверхности каждой платиновой частицы уменьшается, снижая уровень активности катализатора.

Известен катализатор [Патент РФ №2386533, Способ получения нанокатализатора окисления оксида углерода, 2008], содержащий 95-98% оксида алюминия и нанасенных на него наночастиц платиновых металлов (2-5%).

Из известных катализаторов близким по совокупности существенных признаков является катализатор, описанный в патенте [Патент США 4136059, Method for producing highly dispersed catalytic platinum, 1979], выбранный в качестве прототипа. Метод приготовления катализатора заключается в нанесении платины на углеродный носитель из коллоидного раствора в присутствии дитионита натрия с последующим восстановлением муравьиной кислотой. К недостаткам таких катализаторов и аналогичным им при применении в коммерческих электрохимических газовых сенсорах CO следует отнести низкую селективность сенсоров CO (отношение чувствительностей SCO/SH2 не превышает 5-8). Применение такого катализатора для окисления монооксида углерода в углекислый газ неэффективно из-за низкой скорости окисления монооксида углерода в диапазоне температур 0-150°C. Кроме того в таких системах наблюдается снижение активной поверхности катализаторов за счет агломерации платиновых частиц.

Для предотвращения эффекта агломерации и повышения селективности катализаторов предлагается использовать в качестве материала носителя для катализатора - легированный диоксид олова. Свойства поверхности SnO2 зависят от условий синтеза, а также от природы и количества легирующих добавок. Эти факторы определяют характер взаимодействия поверхности рабочего электрода с газом. Легирующие добавки способны снижать тенденцию платинового катализатора к агломерации. Наиболее активным окислительным катализатором является Pt, но температура окисления CO составляет 200°C из-за сильной хемосорбции газа на платине при более низких температурах. Важной задачей является создание бифункционального платинового катализатора, который бы обладал эффективностью окисления CO при пониженных температурах.

Технической задачей данного изобретения является получение высокоактивного наноструктурированного катализатора для дожигания монооксида углерода, обладающего высокой удельной поверхностью и эффективностью при использовании его в реакциях окисления монооксида углерода в углекислый газ.

Решение поставленной задачи в предлагаемом наноструктурированном катализаторе для дожигания монооксида углерода достигается за счет того, что нанокатализатор содержит один или несколько каталитически активных металлов платиновой группы (например, Pt или Ru) на электропроводящем оксидном носителе, что обеспечивает высокую каталитическую активность, при этом для получения высокой удельной поверхности электрокатализатора в качестве носителя используют легированный оксидом сурьмы диоксид олова с удельной поверхностью около 60 м2/г, причем содержание оксидного носителя в катализаторе составляет 98 мас.%. Благодаря тому, что оксидный носитель имеет однофазный состав, а соотношение элементов в оксидном носителе Sb/Sn=0.02 обеспечивается высокая электронная проводимость. Средний размер частиц металлов платиновой группы составляет 3-5 нм.

Предлагаемый наноструктурированный катализатор представляет собой наночастицы платины, нанесенные на оксидный носитель, состоящий из диоксида олова, легированного сурьмой.

Синтез наноструктукрированного катализатора проходит в два этапа. На первом этапе методом обратных мицелл синтезируется носитель. Для этого соли металлов SnCl4 и SbCl3 растворяют в циклогексане, содержащем соответствующее количество сурфактанта (цетилтриметиламмоний бромид (СТАВ), добавляют NaOH и после тщательного перемешивания оставляют на сутки для формирования частиц оксида. Полученные материалы отжигают на воздухе при температуре 400°C.

На втором этапе в состав катализатора вводят платину согласно следующей методике: к оксидному носителю приливают этиленгликоль и диспергируют в ультразвуке. Затем в полученную суспензию добавляют NaOH и перемешивают до полного растворения гидроксида натрия. Затем добавляют прекурсор платины. Полученную смесь при постоянном перемешивании выдерживают при температуре 130°C в инертной атмосфере, затем сушат в вакуумном шкафу при температуре 80°C.

Пример 1.

Наноструктурированный катализатор представляет собой наночастицы платины, нанесенные на оксидный носитель, состоящий из диоксида олова, легированного сурьмой (содержание Pt составляет 2 мас.%, а содержание Sb/Sn=2 мол.%)

Синтез катализатора проходил в два этапа. На первом этапе методом обратных мицелл синтезировали носитель. Для этого соли металлов SnCl4, SbCl3 растворяли в циклогексане, содержащем соответствующее количество сурфактанта (цетилтриметиламмоний бромид (СТАВ), добавляли NaOH до pH=13 и после тщательного перемешивания оставляли на сутки для формирования частиц оксида. Полученные материалы отжигали на воздухе в течение 1 часа при температуре 400°C.

На втором этапе в состав катализатора вводят платину. К 2 г оксидного носителя приливали 500 мл этиленгликоля и диспергировали в ультразвуке. Затем в полученную суспензию добавляли NaOH (до pH~13) и перемешивали до полного растворения гидроксида натрия. Затем добавляли прекурсор платины с расчетом 2 мас.% платины по отношению к массе носителя. Полученную смесь при постоянном перемешивании выдерживали при температуре 130°C в инертной атмосфере, затем сушили в вакуумном шкафу при температуре 80°C в течение 12 часов.

Оксидный носитель, входящий в состав полученного катализатора, обладает рутилоподобной структурой. Содержание платины в нанокатализаторе составляет около 2 мас.%, средний диаметр частиц платины - 3 нм. Удельная активная поверхность катализатора составляет 68 м2/г Pt. Начальная температура окисления CO составляет 80°C, а температура полной конверсии CO 180°C.

Пример 2.

Наноструктурированный катализатор представляет собой наночастицы платины, нанесенные на оксидный носитель, состоящий из диоксида олова, допированного сурьмой был синтезирован методом, описанным в примере 1 и отличался тем, что содержание Pt в катализаторе составило 2,5 мас.%, а содержание Sb в оксидном носителе - 2,5 мол.%.

Оксидный носитель, входящий в состав полученного катализатора, обладает рутилоподобной структурой. Содержание платины на носителе составляет около 2,5 мас.%, средний диаметр частиц платины - 5 нм. Удельная активная поверхность катализатора, определенная по десорбции монооксида углерода составляет 65 м2/г Pt.

Наноструктурированный катализатор для дожигания монооксида углерода, содержащий в качестве носителя диоксид олова, легированный оксидом сурьмы в соотношении сурьмы к олову 2 мол.%, и частицы нанокристаллической платины, содержание которой в катализаторе составляет 2 мас.%, отличающийся тем, что оксидный носитель имеет однофазный состав, а осажденные на оксидный носитель частицы нанокристаллической платины имеют размер 3-5 нм.



 

Похожие патенты:
Изобретение относится к медицине, а именно к общей хирургии, и может быть использовано при профилактике гнойно-воспалительных осложнений ран передней брюшной стенки при ущемленных вентральных грыжах.

Изобретение относится к способу получения пленочного металлсодержащего углеродного наноматериала, который может быть использован в различных элементах электроники, в частности при разработке фоторезисторов, фотоприемников, фотодиодов и элементов фотовольтаики.

Изобретение относится к области биохимии, молекулярной биологии и медицины. Предложен способ получения наноразмерной системы доставки фрагментов нуклеиновых кислот (ФНК) и их аналогов в клетки млекопитающих.

Изобретение относится к области химии, а именно к электрореологическим суспензиям, получаемым на основе наноразмерных частиц полимеров. Способ заключается в выборе моделированием дисперсной фазы электрореологической суспензии на основе наноразмерных частиц полиимидов.
Изобретение относится к способам получения композиций поливинилового спирта для изготовления пленочных материалов медицинского назначения. Предлагаемый способ включает смешение эквиконцентрированных водных растворов поливинилового спирта глубокой степени омыления и поливинилового спирта неполной степени омыления и наполнителя, где в качестве наполнителя используют нанотела, выбранные из фуллеренов и нанотрубок, в количестве 0,02-1,0 мас.% в расчете на полимер.
Изобретение относится к области медицины, а именно к гнойной хирургии, и может быть использовано при лечении гнойных ран. Для этого проводят хирургическую обработку гнойных очагов с иссечением некротизированных тканей.

Использование: в электронной технике, при производстве интегральных схем различного назначения. Технический результат изобретения - технологический процесс, позволяющий создавать МДП-нанотранзисторы без использования литографии высокого разрешения с максимальным подавлением короткоканальных эффектов.

Изобретение относится к получению многослойной затворной структуры для полевого транзистора. Сущность изобретения: способ получения многослойной затворной структуры для полевых транзисторов включает формирование металлсодержащего слоя непосредственно на первом слое нитрида титана TiN, покрывающем области полупроводниковой подложки, предназначенные для первого и второго типов полевых транзисторов, формирование защитного слоя путем нанесения второго TiN-слоя поверх металлсодержащего слоя, формирование рисунка на втором TiN-слое и металлсодержащем слое для покрытия только первой части первого TiN-слоя, покрывающей область, предназначенную для полевых транзисторов первого типа, вытравливание второй части первого TiN-слоя, оставшейся открытой при формировании рисунка, в то время как первая часть первого TiN-слоя остается защищенной от травления за счет ее закрытия по меньшей мере частью толщины металлсодержащего слоя, на котором сформирован рисунок, и формирование третьего TiN-слоя, покрывающего область полупроводниковой подложки, предназначенную для второго типа полевых транзисторов.

Многофункциональный сканирующий зондовый микроскоп содержит: основание (1); блок сближения (3), мобильно установленный на основании (1); пьезосканер (4), расположенный на блоке предварительного сближения (3); держатель объекта (5), расположенный на пьезосканере (4); образец (6), содержащий зону измерений (М) и закрепленный с помощью держателя объекта (5) на пьезосканере (4); платформу (9), закрепленную на основании (1) напротив образца (6); анализатор, установленный на платформе (9) и содержащий первую измерительную головку (13), обращенную к образцу (6) и адаптированную для зондирования зоны измерений (М) образца (6).

Изобретение относится к измерительной технике. В способе измерения давления с использованием тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы (НиМЭМС), в режиме измерения значение измеренного давления Pi вычисляют путем бигармонической сплайн интерполяции по контрольным точкам, исходя из сохраненного на этапе калибровки вектор-столбца W(Pэ, Uiz, Upt, X1…Xn) по формуле: Pi=GT×W, где GT - транспонированный вектор-столбец G; символ «×» обозначает матричное произведение.
Изобретение относится к способам получения катализаторов, предпочтительно используемых для очистки выхлопных газов двигателей внутреннего сгорания. .

Изобретение относится к висмут- и фосфорсодержащим носителям для катализаторов, катализаторам риформинга нефти, приготовленным из этих носителей, способам изготовления как носителей, так и катализаторов, и способу риформинга нефти с применением этих катализаторов.
Изобретение относится к области приготовления катализаторов риформинга. .
Изобретение относится к усовершенствованному способу предотвращения выпадения каталитической системы в осадок при получении уксусной кислоты карбонилированием метанола и/или его реакционно-способного производного моноксидом углерода в по меньшей мере одной зоне реакции карбонилирования, содержащей жидкую реакционную композицию, включающую иридиевый катализатор карбонилирования, метилиодидный сокатализатор, воду в ограниченной концентрации, уксусную кислоту, метилацетат и в качестве промоторов бор и галлий.
Изобретение относится к формованному катализатору с заданной высокой плотностью и с заданным низким соотношением компонента платиновой группы к олову и касается способа применения катализатора для конверсии углеводородов.
Изобретение относится к каталитической системе и способу восстановления выбросов оксидов азота. .

Изобретение относится к области органической химии и нефтехимии, в частности к разработке и использованию катализаторов. .
Наверх