Способ производства проката из низколегированной стали для изготовления элементов конструкций нефтегазопроводов


 


Владельцы патента RU 2500820:

Открытое Акционерное Общество "Магнитогорский металлургический комбинат" (RU)

Изобретение относится к металлургии, конкретнее, к производству конструкционных сталей нормальной прочности улучшенной свариваемости для применения в строительстве, машиностроении и др. отраслях. Техническим результатом изобретения является разработка технологии производства проката толщиной 60-90 мм с гарантированным пределом текучести не менее 275 МПа и повышенной ударной вязкостью при температуре испытания -60°С. Для достижения технического результата получают непрерывнолитые заготовки определенного химического состава, осуществляют их аустенизацию при температуре 1180-1210°С, затем черновую прокатку при температуре 940-1180°С с относительными обжатиями за один проход не менее 12%, охлаждение деформированной заготовки до температуры 720-780°С на воздухе, чистовую прокатку в интервале температур 750-790°С с суммарным обжатием 50-60% и ускоренное охлаждение готового проката с интервале температур 730-770°С до интервала температур 580-620°С со скоростью охлаждения 15-20°С/сек. 2 табл., 1 пр.

 

Изобретение относится к металлургии, конкретнее к производству конструкционных сталей нормальной прочности, улучшенной свариваемости для применения в строительстве, машиностроении и др. отраслях.

Известен способ производства листового проката, включающий получение заготовки из стали следующего состава, мас.%:

Углерод 0,05-0,15
Марганец 1,2-2,0
Кремний 0,2-0,6
Ниобий 0,01-0,1
Титан 0,005-0,03
Алюминий 0,01-0,1
Хром 0,03-0,5
Никель 0,03-0,5
Медь 0,03-0,5
Азот 0,005-0,02
Железо Остальное

Заготовки подвергают аустенизации, деформацию производят с реверсивными частными обжатиями при суммарной степени деформации 50-80%, после окончания процесса деформации прокат при 760-900°С охлаждают со скоростью 10-60 град./с до 300-20°С, а затем производят нагрев до 590-740°С с выдержкой 0,2-3,0 мин/мм и окончательно охлаждают на воздухе до температуры окружающей среды. [1]

Недостатки известного способа состоят в том, что листовая сталь имеет низкие вязкие свойства при отрицательных температурах. Это делает невозможным применение листов для изготовления задвижек нефтегазопроводов. Кроме того, необходимость проведения термообработки листов после прокатки усложняет и удорожает производство.

Известен способ производства стальных листов, включающий выплавку и непрерывную разливку в слябы низколегированной стали, содержащей по мас.%:

Углерод 0,05-0,15
Марганец 1,2-2,0
Кремний 0,2-0,6
Ниобий 0,01-0,1
Титан 0,005-0,03
Алюминий 0,03-0,5
Никель 0,03-0,5
Медь 0,03-0,5
Азот 0,005-0,02
Железо Остальное

Отлитые заготовки нагревают до температуры 1250°С и прокатывают с суммарным обжатием не менее 75%. Прокатанные листы подвергают закалке из аустенитной области и высокотемпературному отпуску [2]. Недостатки известного способа состоят в том, что листовая сталь имеет низкие пластические и вязкостные свойства при отрицательных температурах, неудовлетворительную свариваемость. Это делает невозможным применение листов для изготовления задвижек нефтегазопроводов. Кроме того, необходимость проведения термического улучшения (закалки и отпуска) листов после прокатки усложняет и удорожает производство.

Известен также способ производства толстолистовой низколегированной стали, включающий отливку заготовки следующего химического состава, мас.%:

Углерод 0,02-0,3
Марганец 0,5-2,5
Алюминий 0,005-0,1
Кремний 0,05-1,0
Ниобий 0,003-0,01
Железо Остальное

Заготовки нагревают до температуры 950-1050°С и прокатывают при температуре выше точки Ar3 с суммарным обжатием 50-70%. Прокатанные листы охлаждают на воздухе [3].

При таком способе производства листы имеют недостаточную прочность и пластичность при отношении σт/σ в, превышающем 0,94. Такие листы не удовлетворяют требованиям по свариваемости и не пригодны для изготовления задвижек нефтегазопроводов.

Известен способ производства листового проката следующего химического состава, мас.%:

Углерод 0,008-0,10
Марганец 0,008-1,53
Кремний 0,008-0,63
Сера 0,001-0,008
Фосфор 0,001-0,27
Хром 0,001-0,25
Медь 0,001-0,27
Алюминий 0,02-0,06
Титан 0,001-0,021
Железо Остальное

Способ производства проката толщиной 10 мм из низколегированной стали включает нагрев слябов под прокатку выше температуры Аc3+(90-70)°С, что соответствовало 950 и 930°С, и далее подвергали черновой прокатке до промежуточной толщины с суммарным обжатием 80% и частными 20% и 25% за проход и заканчивали при температуре 890°С, затем осуществляли подстуживание раската до температуры 830°С и 850°С, с которой осуществляли чистовую прокатку с суммарным обжатием 78% и частными обжатиями от 7% до 24% до температуры 770°С и 790°С, после этого листы подвергали ускоренному охлаждению со скоростью 60°С/мин до температуры 300°С и 200°С с последующим охлаждением на воздухе до температуры 100°С при однорядном их расположении на стеллаже. [4] - прототип.

Основным недостатком указанного способа производства является широкий диапазон содержания химических элементов, недостаточная стабильность характеристик работоспособности листового проката в толщинах 60-90 мм, в первую очередь, нестабильные характеристики, при испытании ударных образцов при температурах ниже -60°С, что не позволяет использовать данный прокат для задвижек, используемых для транспортировке углеводородов в районах Крайнего Севера и Арктических морей.

Техническим результатам данного изобретения является разработка способа производства проката толщиной 60-90 мм с гарантированным пределом текучести не менее 275 МПа и повышенной ударной вязкостью при температуре испытания -60°С.

Технический результат достигается тем, что в способе производства проката из низколегированной стали для изготовления элементов конструкций нефтегазопроводов, включающем получение слябов, их аустенизацию, деформацию в заданном интервале температур и охлаждение до регламентированной температуры, в отличие от ближайшего аналога получают слябы следующего химического состава мас.%:

Углерод 0,09-0,11
Марганец 1,45-1,60
Кремний 0,40-0,50
Сера 0,001-0,005
Фосфор 0,005-0,015
Хром 0,20-0,30
Медь 0,15-0,25
Никель 0,001-0,30
Алюминий 0,02-0,05
Титан 0,015-0,03
Железо Остальное

аустенизацию выполняют при температуре 1180-1210°С, предварительную деформацию проводят при температуре 940-1180°С с относительными обжатиями за один проход не менее 12%, затем производят охлаждение деформированной заготовки до температуры 720-780°С на воздухе, окончательную деформацию осуществляют до температуры в интервале 750-790°С с суммарным обжатием 50-60%, ускоренное охлаждение готового проката осуществляют с интервала температур 730-770°С до интервала температур 580-620°С со скоростью охлаждения 15-20°С/сек.

Повышение значений ударной вязкости при низких температурах достигается за счет обеспечения лучшего металлургического качества заготовки за счет снижения вредных примесей, газов и неметаллических включений, узкого диапазона состава химических элементов, а также измельчении зерна во время прокатки заготовки и формирования структуры с заданной морфологией.

Модифицирование жидкой стали кальцием снижает общий уровень загрязнения металла неметаллическими включениями, позволяет обеспечивать низкую массовую долю серы и препятствует образованию включений неблагоприятной морфологии(остроугольные, пленочные), приводящих к снижению хладостойкости проката. Оксидные и сульфидные включения при модификации стали кальцием представляют собой мелкие включения глобулярной формы, не влияющие на уровень хладостойкости [5-8].

Регламентирование содержания примесных элементов, особенно серы и фосфора обеспечивает высокую сопротивляемость стали хрупким и слоистым разрушениям в направлении толщины листа и сварных соединений. С увеличением содержания серы растет количество сульфидных включений, вызывающих слоистое разрушение, снижается работа распространения трещин и ударная вязкость [9]. Сера увеличивает склонность металла к образованию трещин при сварке за счет образования дисперсных пленочных выделений сульфидов в зоне сварного шва. В основе вредного влияния фосфора лежит его влияние на расширение области ликвидус-солидус, приводящее к развитию процессов первичной ликвации. А также значительное сужение Г-области, что облегчает развитие сегрегации в твердом состоянии [10].

Алюминий вводится в сталь в качестве раскислителя, а также с целью измельчения зерна. При содержании алюминия в стали свыше 0,05% понижается чистота стали по неметаллическим включениям системы оксидов алюминия, что неблагоприятно сказывается на механических свойствах основного металла и сварных соединений.

Наиболее эффективным механизмом, обеспечивающим повышение хладостойкости, является измельчение действительного зерна. Измельчение структуры достигается применением комплексного легирования титаном, хромом, медью, которые, образуя мелкодисперсные частицы, препятствуют росту зерна аустенита при нагреве и оказывают тормозящее действие на собирательную рекристаллизацию при высокотемпературной стадии прокатки.

Титан является сильным карбидообразующим элементом, способствующим при выбранной концентрации измельчению зерна за счет образования дисперсных соединений с азотом. Дисперсные нитриды модифицируют литую структуру, обеспечивая мелкое аустенитное зерно, не подверженное существенному росту при выбранных температурах нагрева под прокатку.

Легирование титаном, хромом и медью в заявляемых пределах способствует эффективному созданию в процессе прокатки и ускоренного охлаждения ультрамелкозернистой феррито-перлитной или феррито-бейнитной структуры, с мелкодисперсными частицами карбонитридов титана, стабилизирующих созданную структуру при эксплутационных воздействиях.

При невысоком уровне легирования базового состава стали хромом (до 0,6%) не приводит к заметному ухудшению характеристики сопротивления хрупкому разрушению, во всех прочих случаях наблюдается монотонное повышение t50 c увеличением содержания хрома[11].

Главными отличительными особенностями способа производства являются:

- узкий диапазон содержания элементов химического состава;

- ограничение роста зерна за счет мелкодисперсных выделений карбонитридов титана при нагреве под прокатку в интервале температур 1180-1210°С, позволяющих обеспечить наиболее полное растворение мелкодисперсных частиц хрома и меди для последующего улучшения характеристик хладостойкости стали;

- повышение температурного интервала первой (черновой) стадии прокатки до 940-1180°С и единичные обжатия более 12% для измельчения аустенитного зерна за счет процессов рекристаллизации и деформации;

- обеспечение температуры конца прокатки листов толщиной 60-90 мм в интервале температур 750-790°С с суммарным обжатием 50-60% для формирования мелкодисперсной структуры;

- регламентация температурного интервала ускоренного охлаждения при температуре 580-620°С позволяющих сформировать равномерную феррито-перлитную или феррито-бейнитную структуру по всей толщине проката;

Испытания листового проката, изготовленного по указанной технологии, показали, что предлагаемые режимы для стали выбранного химического состава обеспечивают стабильные характеристики сопротивления хрупким разрушениям при температурах до -70°С на ударных образцах с «острым» надрезом в прокате толщиной 60-90 мм.

Пример:

Выплавку стали осуществляли в 370 тонном кислородном конверторе с проведением процесса десульфурации магнием в заливочном ковше. На выпуске осуществляли первичное легирование, предварительное раскисление и обработку металла аргоном в сталеразливочном ковше. Окончательное легирование, микролегирование, обработку металла кальцием и вакуумирование проводили на двухпозиционное установке «Печь-ковш». Разливку производили на МНЛЗ с защитой металла аргоном от вторичного окисления на заготовки толщиной 300 мм. Химический состав стали приведен в таблице 1.

Согласно указанному способу заготовки подвергали аустенизации при температуре 1180-1210°С в течение 5-7 часов. Прокатку на листы толщиной 60-90 мм производили на реверсивном толстолистовом стане с максимальным усилием 11 тыс. тонн. Прокатку производили в две стадии: черновая и чистовая. В черновую стадию деформацию проводили со строго регламентированными обжатиями, не менее 12% за один проход, в диапазоне температур 940-1180°С. Раскат подстуживали на воздухе до температуры 720-780°С. Деформацию в чистовой стадии производили в интервале температур 750-790°С с суммарным обжатием 50-60%. После окончания деформации листы охлаждали в установке ускоренного охлаждения до интервала температур 580-620°С со скоростью охлаждения 15-20°С/сек

Механические свойства (табл.2) листового проката определяли на поперечных образцах. Испытания на статическое растяжение осуществляли на образцах тип III по ГОСТ 1497, а ударный изгиб - на образцах с V-образным надрезом (тип 11, ГОСТ 9454).

Результаты механических свойств в зависимости от химического состава и технологических параметров представлены в таблице 1 и 2.

Результаты испытаний показывают, что предлагаемый способ производства для стали выбранного химического состава обеспечивает более стабильный уровень характеристики «хладостойкость» при низких температурах, удовлетворяющих требованиям «Прокат листовой горячекатаный из низколегированной стали марки 09Г2С» (ТС 14-101-627-2007 с изменениями 1, 2), чем известный способ.

Таблица 1
Химический состав
Способ производства Варианты производства проката С Si Mn S P Ni Cr Сu Ti Al Fe
не более или в пределах остальное
Прототип 0,008-0,10 0,008-0,63 0,008-1,53 0,001-0,008 0,008-0,010 0,001-0,27 0,001-0,25 0,001-0,27 0,01-0,021 0,02-0,06
Заявляемый 1 0,10 0,43 1,53 0,003 0,008 0,03 0,23 0,20 0,021 0,032
2 0,10 0,43 1,53 0,003 0,008 0,03 0,23 0,20 0,021 0,032
3 0,11 0,42 1,51 0,003 0,01 0,04 0,23 0,18 0,019 0,031
4 0,10 0,50 1,47 0,002 0,009 0,05 0,28 0,21 0,024 0,043
5 0,11 0,45 1,53 0,004 0,010 0,06 0,21 0,21 0,020 0,031

Литературные источники

1. Патент РФ №2062795 МПК С21D 9/46, С21D 8/02 1996 г.

2. Заявка Японии №61-163210, МПК С21D 8/00, 1986 г.

3. Заявка Японии №61-223125, МПК С21D 8/02, С22С 38/54, 1986 г.

4. Патент №2311465, МПК. С21D 8/02, 2005.

5. Бережницкий Л.Т., Громяк Р.С., Трущ И.И. // ФХММ. 1975. №5, с.40.

6. Бродецкий И.Л., Харчевников В.П., Троцан А.И. и др. О влиянии кальция на зернограничное охрупчивание конструкционной стали с карбонитридным упрочнением. МиТОМ. 1995, №5. с.24-26.

7. Коваленко B.C., Кучкин В.И., Пильчук В.Е., Заяц Е.Л. О влиянии кальция на структуру и свойства стали. Металлы, 1983, №6. с.92-96.

8. Волчок И.П., Федьков В.А., Лутов М.В. Неметаллические включения и разрушение стали при низких температурах. ФХММ, 1977, №2, с.10-12.

9. Одесский П.Д., Смирнов Л.А., Кулик Д.В. Микролегированные стали для северных и уникальных металлических конструкций. М.: Интермет Инжиниринг, 2006 г., 176 с.

10. Гудремон Э. Специальные стали. 2-е изд. М., Металлургия, 1966, т.1-2.

11. Шабалов И.П., Морозов Ю.Д., Эфрон Л.И., «Стали для труб и строительных конструкций с повышенными эксплутационными свойствами». - М.: ЗАО «Металлургиздат», 2003. стр 20.

Способ производства проката из низколегированной стали для изготовления элементов конструкций нефтегазопроводов, включающий получение заготовок, их аустенизацию, черновую и чистовую горячую прокатку в заданном интервале температур и ускоренное охлаждение до регламентированной температуры, отличающийся тем, что получают заготовки следующего химического состава, мас.%:

углерод 0,09-0,11
марганец 1,45-1,60
кремний 0,40-0,50
сера 0,001-0,005
фосфор 0,005-0,015
хром 0,20-0,30
медь 0,15-0,25
никель 0,001-0,30
алюминий 0,02-0,05
титан 0,015-0,03
железо остальное,

аустенизацию выполняют при температуре 1180-1210°С, черновую прокатку проводят при температуре 940-1180°С с относительными обжатиями за один проход не менее 12%, затем производят охлаждение деформированной заготовки до температуры 720-780°С на воздухе, чистовую прокатку осуществляют в интервале температуры 750-790°С с суммарным обжатием 50-60%, а ускоренное охлаждение готового проката осуществляют с интервала температур 730-770°С до интервала температур 580-620°С со скоростью охлаждения 15-20°С/с.



 

Похожие патенты:

Изобретение относится к области металлургии, а именно к ферритным нержавеющим сталям, используемым в при изготовлении выхлопных труб и кожухов нейтрализаторов автомобилей и мотоциклов, а также трубопроводов отработанного воздуха тепловых электростанций.

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, в основном, класса прочности Х60.
Сталь // 2445395
Изобретение относится к области черной металлургии, в частности к составам сталей, которые могут быть использованы в машиностроении. .
Изобретение относится к области черной металлургии, в частности к составам сталей, которые могут быть использованы в машиностроении. .

Изобретение относится к области металлургии, а именно к ферритной нержавеющей стали, используемой для изготовления элементов выхлопных систем. .

Изобретение относится к области металлургии, а именно к легированным коррозионно-стойким сталям, используемым для производства насосно-компрессорных и обсадных труб и нефтегазодобывающего оборудования.

Изобретение относится к металлургии, а именно к легированным коррозионно-стойким сталям, используемым для производства насосно-компрессорных и обсадных труб и нефтегазодобывающего оборудования.

Изобретение относится к области металлургии, а именно к ферритной нержавеющей стали, используемой для изготовления компонентов выхлопных систем. .
Изобретение относится к области металлургии, а именно к составам сталей ферритного класса, используемых в качестве жаростойкого и коррозионно-стойкого листового материала для изготовления котельного, печного, нефтехимического и другого высокотемпературного оборудования, работающего при температурах до 1200°С.
Изобретение относится к области металлургии, а именно к легированным коррозионно-стойким сталям, предназначенным для изготовления насосно-компрессорных и обсадных труб, а также скважинного оборудования, эксплуатирующихся в агрессивных средах, содержащих сероводород и углекислый газ.

Изобретение относится к области металлургии. Для повышения коррозионной стойкости стального листового изделия и обеспечения хорошей свариваемости осуществляют предварительное покрытие стальной полосы или листа алюминием, или алюминиевым сплавом, резку указанной стального листа или полосы с предварительным покрытием для получения стальной заготовки с предварительным покрытием, нагрев заготовки в предварительно нагретой печи до температуры и в течение времени согласно диаграмме в соответствии с толщиной заготовки при средней скорости нагрева Vc в температурном диапазоне от 20 до 700°C, составляющей от 4 до 12°C/с и при скорости нагрева Vc' в температурном диапазоне от 500 до 700°C, составляющей от 1,5 до 6°C/с, затем перемещение указанной нагретой заготовки к штамповочному прессу, горячую штамповку нагретой заготовки в штамповочном прессе для получения горячештампованного стального листового изделия, охлаждение нагретой заготовки от температуры на выходе из печи до температуры 400°C при средней скорости охлаждения, по меньшей мере, 30°C/с.

Изобретение относится к металлургии, конкретнее к технологии производства листовой стали, используемой в качестве тыльного слоя двухслойной разнесенной бронезащитной конструкции.

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения свариваемых штрипсов категории прочности X100 по стандарту API 5L-04, используемых при строительстве магистральных нефтегазопроводов высокого давления.

Изобретение относится к области черной металлургии, к прокатному производству, и может быть использовано при получении упаковочной ленты, используемой для автоматизированной обвязки грузов.
Изобретение относится к прокатному производству и может быть использовано для получения листовой стали на толстолистовых реверсивных станах. Для повышения производительности процесса способ включает нагрев слябов, черновую прокатку в раскат промежуточной толщины, охлаждение раската и последующую его многопроходную чистовую прокатку с регламентированной температурой начала и конца прокатки в лист конечной толщины, при этом охлаждение раската осуществляют путем возвратно-поступательного перемещения по водоохлаждаемым роликам, внутренняя полость бочки которых предварительно заполнена шариками из теплопроводящего материала.
Изобретение относится к области металлургии, а именно к низкоуглеродистым сталям для производства проката, используемого для изготовления сварных нефте- и газопроводов, пригодных к эксплуатации в условиях Крайнего Севера.

Изобретение относится к области металлургии. Для обеспечения в толстолистовой стали низкого соотношения между пределом текучести и пределом прочности, высокой прочности, ударной вязкости и стойкости к последеформационному старению, эквивалентной классу API 5L Х60 и менее, толстолистовая сталь содержит, мас.%: от 0,03% до 0,06% C, от 0,01 до 1,0 Si, от 1,2 до 3,0 Mn, 0,015 и менее Р, 0,005 и менее S, 0,08 и менее Al, от 0,005 до 0,07 Nb, от 0,005 до 0,025 Ti, 0,010 и менее N, 0,005% и менее О, остальное Fe и неизбежные примеси, имеет трехфазную микроструктуру, состоящую из бейнита, мартенсито-аустенитного компонента (М-A) и квазиполигонального феррита, при этом доля площади бейнита составляет от 5% до 70%, доля площади компонента М-А - от 3% до 20%, остальную долю площади составляет квазиполигональный феррит, а эквивалентный диаметр круга для компонента М-А составляет 3,0 мкм и менее.
Изобретение относится к металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении толстых листов и штрипсов с применением контролируемой прокатки.
Изобретение относится к области металлургического и термического производства, а именно к обработке стали с получением структуры естественного феррито-мартенситного композита - структура, включающая пластичную ферритную матрицу и дискретные твердые волокна - слои мартенсита, и может быть использовано для получения материала, используемого для броневой защиты воинского персонала, БТР, БМП, блокпостов, от поражения при стрельбе из стрелкового оружия и гранатометов.

Изобретение относится к области металлургии, в частности к нержавеющей стали для нефтяной скважины и трубе из нержавеющей стали для нефтяной скважины. Нержавеющая сталь для нефтяной скважины содержит, % по массе: С не более 0,05, Si не более 0,5, Mn от 0,01 до 0,5, Р не более 0,04, S не более 0,01, Cr свыше 16,0 и не более 18,0, Ni свыше 4,0 и не более 5,6, Мо от 1,6 до 4,0, Cu от 1,5 до 3,0, Al от 0,001 до 0,10, и N не более 0,050, причем остальное составляют Fe и примеси.

Изобретение относится к прокатному производству и может быть использовано на непрерывном широкополосном стане при изготовлении горячекатаных полос из хромоникелевых сталей мартенситного класса для бронезащитных конструкций.
Наверх