Аппаратура для исследования скважин

Изобретение относится к области эксплуатации скважин и может быть использовано для проведения геофизических исследований скважин. Техническим результатом является получение однозначных результатов исследований теплопроводности пластов, окружающих скважину переменного сечения. Аппаратура содержит термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр. Дополнительно содержит блок управления, переключатель и скважинный профилемер с выходным прибором. При этом профилемер установлен на каротажном кабеле-тросе выше нагревателя, а его выход через выходной прибор подключен к блоку управления, выход которого через переключатель соединен или с управляющим входом источника тока нагревателя, или с управляющим входом управляемого привода лебедки спускоподъемного устройства. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к области эксплуатации скважин и может быть использовано для проведения геофизических исследований скважин.

Известна аппаратура, реализуемая в способе аналогичного назначения, согласно которого с помощью термического каротажа регистрируют термограмму по стволу скважины и по величине зарегистрированных температурных аномалий определяют тепловые свойства пород, окружающих скважину /Патент РФ №2136880, кл. Е21В 47/00, 1999/.

Недостатком аналога является влияние на результаты исследований различных амплитудных факторов, например, изменение диаметра скважины.

Известна аппаратура для исследования скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр /Патент США №2274248, кл.73-154, 1942/.

Данная аппаратура принята за прототип. Недостатком прототипа являются погрешности, получаемые при интерпретации термограмм. Поскольку величины температурных градиентов на термограмме, по которым определяют теплопроводность пластов, окружающих скважину, зависят не только от тепловых свойств пород, но и от величины прогрева ствола скважины, а величина прогрева ствола скважины зависит от ее диаметра. Поэтому чем больше поперечное сечение ствола скважины, тем меньше прогрев окружающих ее пород для одной и той же мощности нагрева.

Техническим результатом, получаемым от внедрения изобретения, является устранение недостатка прототипа, то есть получение однозначных результатов исследований теплопроводности пластов, окружающих скважину переменного сечения.

Данный технический результат достигается за счет того, что известная аппаратура для исследования скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр, дополнительно содержит блок управления, переключатель и скважинный профилемер с выходным прибором, при этом профилемер установлен на каротажном кабеле-тросе выше нагревателя, а его выход через выходной прибор подключен к блоку управления, выход которого через переключатель соединен или с управляющим входом источника тока нагревателя, или с управляющим входом управляемого привода лебедки спускоподъемного устройства.

В аппаратуре для исследования скважин скважинный профилемер установлен на каротажном кабеле-тросе с возможностью его смещения относительно нагревателя.

Аппаратура для исследования скважин дополнительно содержит центраторы каротажного кабеля-троса.

В аппаратуре для исследования скважин нагреватель и термометр закреплены на каротажном кабеле-тросе с возможностью изменения расстояния между ними.

Изобретение поясняется чертежами.

На фиг.1 представлена схема реализации аппаратуры в скважине; на фиг.2 - электронная схема аппаратуры.

Аппаратура, реализуемая в скважине 1 (фиг.1), содержит термическую каротажную систему (КС), выполненную в виде нагревателя 2 (фиг.2), подключенного к источнику 3 тока (ИТ 3), и термометра 4, соединенного выходом через усилитель 5 (У 5) с регистратором 6 (Р 6).

КС также включает в себя спускоподъемное устройство 7 (СПУ 7) в виде лебедки 8 с управляемым приводом 9 (УП 9), соединенным выходом с Р6.

Каротажный кабель-трос 10 кинематически связан с лебедкой 8. На кабеле-тросе 10 сверху вниз закреплен профилемер 11, нагреватель 2 и термометр 4.

Нагреватель 2 и термометр 4 выполнены с возможностью изменения расстояния между ними и расстояния от профилемера 11.

Аппаратура может дополнительно содержать один или несколько центраторов кабеля-троса.

Электронная схема (фиг.2) также содержит выходной прибор 12 (ВП 12), блок управления 13 (БУ 13) и переключатель 14.

Электрические связи между блоками электронной схемы показаны на фиг.2.

Выход профилемера 11 связан со входом ВП 12, соединенного выходом со входом БУ 13, выход которого соединен с переключателем 14. Переключатель 14 дистанционно позволяет подключать ВП 12 или к УП 9, или к ИТ 3.

Выходы У 5 и УП 9 подключены к двум входам Р 6, позволяя последнему синхронно регистрировать глубину погружения термометра 4 в скважину 1 и величину выходного сигнала с него.

Аппаратура работает следующим образом.

В скважину 1 спускают на каротажном кабеле-тросе 10 термометр 4, нагреватель 2 и профилемер 11. При спуске рычаги профилемера сложены (если применяется механический тип профилемера), а ИТ 3 нагревателя 2 выключен. При достижении забоя скважины 1 включают в работу профилемер 11 и нагреватель 2 и начинают с равномерной скоростью поднимать приборы 2, 4, 11 вверх, одновременно регистрируя температуру, глубину и диаметр скважины.

С помощью нагревателя 2 происходит разогревание ствола скважины 1 посредством теплового следа 15. Охлаждение ствола скважины 1 будет происходить тем интенсивнее, чем выше теплопроводность пород, окружающих нагретый участок скважины 1. Соответственно, интервалы глубин, представленные породами 16 с высокой теплопроводностью, будут отличаться в регистраторе Р 6 повышенными значениями температуры. На термограмме на этой глубине появляются температурные аномалии, по которым можно исследовать свойства пластов 16 горных пород.

При этом, когда диаметр скважины 1 изменяется, например, на глубине 17, температура нагрева скважины в этом месте также изменяется (при увеличении диаметра уменьшается, при уменьшении диаметра - увеличивается).

На термограмме на этой глубине также появится температурная аномалия, которая будет интерпретироваться как появление пласта с другими температурными свойствами породы, что может привести к погрешностям определения тепловых свойств пластов.

Для исключения подобных ошибок с профилемера 11, в зависимости от положения переключателя 14 на ИТ 3 или УП 9, своевременно подается командный сигнал по увеличению или уменьшению степени нагрева нагревателя 2, или по изменению скорости его подъема. Этим корректируются изменения температуры скважины из-за изменения ее диаметра.

При этом, если диаметр сечения скважины изменяется достаточно быстро, изменяют ток нагревателя 2, если плавно, то изменяют скорость каротажа.

Предварительно аппаратура проходит метрологические испытания и градуировку в заводских условиях, при которых подбирают оптимальные значения расстояний между термометром 4, нагревателем 2 и профилемером 11 для каждого вида испытуемых скважин.

1. Аппаратура для исследования скважин, содержащая термическую каротажную систему, выполненную в виде нагревателя, подключенного к источнику тока, термометра, соединенного выходом через усилитель с регистратором, и спускоподъемного устройства в виде лебедки с управляемым приводом, соединенного выходом с регистратором, а также кинематически связанного с лебедкой спускоподъемного устройства каротажного кабеля-троса, на конце которого закреплены друг над другом нагреватель и термометр, отличающаяся тем, что дополнительно содержит блок управления, переключатель и скважинный профилемер с выходным прибором, при этом профилемер установлен на каротажном кабеле-тросе выше нагревателя, а его выход через выходной прибор подключен к блоку управления, выход которого через переключатель соединен или с управляющим входом источника тока нагревателя или с управляющим входом управляемого привода лебедки спускоподъемного устройства.

2. Аппаратура по п.1, отличающаяся тем, что скважинный профилемер установлен на каротажном кабеле-тросе с возможностью его смещения относительно нагревателя.

3. Аппаратура по п.1, отличающаяся тем, что дополнительно содержит центраторы каротажного кабеля-троса.

4. Аппаратура по п.1, отличающаяся тем, что нагреватель и термометр закреплены на каротажном кабеле-тросе с возможностью изменения расстояния между ними.



 

Похожие патенты:

Изобретение относится к геофизическим исследованиям в скважине и может быть применено при электромагнитной дефектоскопии многоколонных конструкций стальных труб.

Изобретение относится к области средств измерений для геологической и гидроэнергетической промышленности и может быть применено для измерения диаметров буровых, дренажных и пьезометрических скважин, их глубины, а также величины иловых отложений в скважинах.

Изобретение относится к области геофизических исследований скважин, а именно к комплексным средствам для изучения технического состояния обсадных колонн и насосно-компрессорных труб нефтегазовых скважин методами профилеметрии и дефектоскопии.

Изобретение относится к устройствам неразрушающего контроля труб, например трубопроводов различного назначения и обсадных колонн в нефтяных и газовых скважинах. .

Изобретение относится к области геофизических исследований глубоких и сверхглубоких скважин, может быть использовано в многорычажных профилемерах-сканерах для детального контроля качества внутренней поверхности обсадных колонн.

Изобретение относится к нефтегазовой промышленности и может быть использовано для измерения внутреннего размера ствола углеводородной скважины. .

Изобретение относится к нефтедобывающей промышленности и предназначено для определения скорости ультразвукового импульса (УИ) в буровом растворе (БР) в скважинных условиях.

Изобретение относится к нефтегазодобывающей промышленности и может быть применено при эксплуатации газовых, газоконденсатных и нефтяных скважин. .

Изобретение относится к нефтедобывающей промышленности и может быть использовано при освоении добывающих скважин. .

Изобретение относится к области промыслово-геофизических исследований совместно работающих газовых пластов, проводимых с целью определения их основных параметров: пластового давления, пластовой температуры и фильтрационных коэффициентов, необходимых для эффективной разработки месторождения.

Изобретение относится к горному делу и может быть применено для гидродинамических исследований скважин в режиме депрессии. .

Изобретение относится к нефтяной и газовой промышленности и предназначено для измерения давления бурового раствора в процессе бурения скважин. .

Изобретение относится к нефтегазовой промышленности и может быть использовано при освоении скважин с пластовым давлением в пределах от 0,8 до 1 от гидростатического давления столба жидкости в скважине.

Изобретение относится к нефтегазовой промышленности и может быть использовано при освоении и исследовании скважин. .

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при разработке и эксплуатации газовых и газоконденсатных месторождений на основе данных по пластовым давлениям.

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для исследования нефтяных и газовых скважин. Техническим результатом является устранение необходимости проведения двух измерений распределений температуры вдоль оси скважины при закачке и отборе флюида для исследования технического состояния скважин. Способ включает двукратную регистрацию распределений температуры вдоль ствола скважины посредством термического каротажа с помощью двух идентичных термометров, расположенных на определенном расстоянии друг от друга вдоль ствола скважины, и с последующим сопоставлением полученных термограмм. Сопоставление полученных термограмм осуществляют путем их корреляционной обработки, по результатам которой судят о наличии геофизических неоднородностей в пластах скважины или присутствии в ней перетоков флюида. 2 з.п. ф-лы, 3 ил.
Наверх