Стенд для поверки и калибровки штрих-кодовых реек

Изобретение относится к области геодезии, в частности к устройствам для метрологической поверки и калибровки геодезических приборов, например штрих-кодовых реек. Стенд содержит изолированные от пола фундаменты, на которых укреплены направляющие рельсы с установленной на них перемещающейся кареткой с эталонной и поверяемой рейками, микроскоп-микрометр, поворотное зеркало, винт микроподачи и лазерный интерферометр. При этом в него дополнительно введена калиброванная штриховая мера длины, расположенная жестко между пятками реек. Рабочие поверхности меры, контактирующие с пятками реек, выполнены в виде сфер, обеспечивающих точечный контакт с центром пяток и заданные расстояния до штрихов меры, а сама калиброванная штриховая мера длины установлена на жесткой горизонтируемой базе. Технический результат - повышение точности измерений. 3 ил.

 

Изобретение относится к области геодезии и, в частности, к стендам для метрологической поверки и калибровки геодезических приборов, например нивелиров и реек.

Известен стенд для поверки и калибровки нивелиров и реек, содержащий горизонтальные направляющие с установленной на ней кареткой, на которой уложена нивелирная рейка, нивелир, установленный на П-образной подставке и интерферометр, при этом горизонтальный визирный луч нивелира на подставке меняет направление на 90° с помощью зеркала [1]. Недостатком данного устройства являются недостаточная точность и невозможность определения пятки рейки.

Наиболее близкими по технической сущности к достигаемому результату является стенд для поверки и калибровки штриховых и штрих-кодовых реек, содержащий блок концевых мер длины, расположенный между скрепленными пятками поверяемой и эталонной рейками. Недостатком данного устройства является недостаточная точность измерения, связанная с отклонением от перпендикулярности пяток реек, а также несоответствием формы контакта основания рейки при ее поверке и при выполнении нивелирования на репере.

Целью изобретения является повышение точности измерений. Указанная цель достигается тем, что на изолированных от пола фундаментах с укрепленными направляющими рельсами с установленной на них перемещающейся кареткой с поверяемой штрих-кодовой рейкой, отражателем лазерного интерферометра, поворотным зеркалом, перемещающимся микроскопом и эталонной рейкой между рейками, скрепленными между собой пятками, расположена калиброванная штриховая мера со сферическими наконечниками, при этом диаметр сфер совпадает с диаметром реперов, используемых в геодезии.

Сущность изобретения поясняется чертежами, где на фиг.1 приведена принципиальная схема устройства, на фиг.2 и фиг.3 приведены схема штриховой меры и схема ее базирования.

Устройство содержит: фундаменты 1, направляющие рельсы 2, подвижную каретку 3, поверяемую штрих-кодовую рейку 4, эталонную штрих-кодовую рейку 5, штриховую меру 6, базу 7, направляющую 8 для перемещения микроскопа 9, лазерный интерферометр 10 с отражателем 11, эталонный цифровой нивелир 12, поворотное зеркало 13, винт микро перемещения 14, уровни 15 и 16, винты 17 для регулировки положения базы с расположенной на ней штриховой мерой.

Устройство работает следующим образом:

Эталонную 5 и поверяемую 4 рейки установить на подвижной каретке 3 на одной высоте пятками навстречу друг другу, измерительной линейкой измерить расстояние от горизонтальной базы 7 до середины пяток реек, на базу 7 установить штриховую меру 6, так, чтобы ее точки касания соприкасались с серединами пяток реек, настроить на резкость по штриху меры 6 микроскоп 9, после чего рейки жестко соединить между собой и ориентировать относительно измерительного канала лазерного интерферометра 10, подвижную каретку переместить так, чтобы в поле зрения эталонного цифрового нивелира 12 появилась шкала поверяемой штрих-кодовой рейки 4, с помощью винта микроперемещения 14 добиться необходимого отсчета на дисплее цифрового нивелира (например, 500 мм), в этот момент обнулить показания на цифровом блоке лазерного интерферометра 10; каретку 3 переместить так, чтобы в поле зрения эталонного цифрового нивелира попала кодовая шкала эталонной рейки 5, при этом отсчет на дисплее цифрового нивелира должен быть равен отсчету по эталонной рейке (например, те же 500 мм), в этот момент отсчитать значение перемещения D на цифровом табло лазерного интерферометра 10. Далее каретку 3 снова возвратить на отсчет по поверяемой рейке 4, равный 500 мм, проверить нулевой отсчет по лазерному интерферометру, после чего на центральный (удлиненный) штрих меры 6, перемещая микроскоп 9 по направляющей 8, сфокусировать его в центре сетки нитей. После этого, если требуется сразу определить пятку поверяемой рейки, то рейки разъединить и на место поверяемой рейки 4 установить эталонную рейку 5 с поджатой штриховой мерой, по ней выставить отсчет на дисплее цифрового нивелира, равный 500 мм, и обнулить показания лазерного интерферометра 10. При перестановке реек положение штриховой меры не меняется. Далее каретку 3 переместить до совпадения удлиненного штриха меры 6 сетки нитей микроскопа 9, записать отсчет d по лазерному интерферометру 10.

Вычислить пятку Пэт эталонной рейки 5 и сравнить с данными по ее свидетельству: П э т = D L d 2 + d .

Пятка поверяемой рейки равна: Пповэт-d

контроль: Пповэт+L=D

Если необходимо определить разность пяток пары рабочих реек, то вместо эталонной штрих-кодовой рейки выбрать вторую в паре рейку и повторить измерения.

Стенд для поверки и калибровки штрих-кодовых реек, содержащий изолированные от пола фундаменты, на которых укреплены направляющие рельсы с установленной на них перемещающейся кареткой с эталонной и поверяемой рейками, микроскоп-микрометр, поворотное зеркало, винт микроподачи и лазерный интерферометр, отличающийся тем, что в него дополнительно введена калиброванная штриховая мера длины, расположенная жестко между пятками реек, при этом рабочие поверхности меры, контактирующие с пятками реек, выполнены в виде сфер, обеспечивающих точечный контакт с центром пяток и заданные расстояния до штрихов меры, а сама калиброванная штриховая мера длины установлена на жесткой горизонтируемой базе.



 

Похожие патенты:

Изобретение относится к области геодезии, в частности к методам определения превышений между измеряемыми точками с использованием электронных тахеометров, и может быть использовано в тригонометрическом нивелировании.

Изобретение относится к вспомогательному инструменту и может быть использовано при определении расположения поверхностей элементов строительных конструкций и сооружений.

Изобретение относится к области геодезического приборостроения, в частности к лазерным приборам для построения плоскостей. .

Изобретение относится к области геодезического приборостроения и может быть использовано при проведении разбивочных работ в строительстве, при монтаже технического оборудования в машиностроении, а также в других областях науки и техники, где требуется использование световой плоскости и возможность переноса отметок в горизонтальной и вертикальной плоскости.

Изобретение относится к устройствам для метрологической поверки и калибровки геодезических приборов. .

Изобретение относится к устройствам для метрологической поверки и калибровки геодезических приборов, например штриховых и штрихкодовых реек. .

Изобретение относится к геодезическим измерениям и может быть использовано для повышения точности высот, определяемых двусторонним тригонометрическим нивелированием.

Изобретение относится к области геодезического приборостроения. .

Изобретение относится к области геодезии и в частности к устройствам для метрологической поверки и калибровки геодезических приборов, например, нивелиров и реек. .

Изобретение относится к области геодезии, в частности к поверочным схемам в области угловых и линейных измерений, обеспечивающих оперативный и объективный контроль поверяемых параметров и характеристик геодезических приборов.

Изобретение относится к области радиолокации и может быть использовано в системах определения уровня водоемов. Техническим результатом заявленного устройства является повышение точности определения дальности до водной поверхности при наличии волнения. Технический результат достигается благодаря введению двух постоянных запоминающих устройств, блока автосопровождения по дальности, элемента и-или, блока определения временного рассогласования между двумя сигналами, при этом группа выходов блока определения минимальной частоты соединена через первое постоянное запоминающее устройство, через блок автосопровождения по дальности с первой группой входов сумматора, имеющего группу выходов и вторую группу входов, соответственно соединенные с группой входов индикатора и через второе постоянное запоминающее устройство - с группой выходов блока определения временного рассогласования между двумя сигналами, вход которого соединен с выходом элемента и-или, имеющего группу входов, соединенную с группой выходов блока автосопровождения по дальности, и вход, соединенный с выходом этого блока. 1 ил.

Изобретение относится к измерительной технике и самолетной авионике. Видеовысотомер содержит передатчик излучения, выполненный в виде двух параллельных линейных источников света, приемник излучения, выполненный в виде телекамеры с объективом и позиционно-чувствительной матрицей приемников света, а также видеовысотомер содержит индикатор, выполненный в виде видеомонитора. Технический результат - повышение точности измерения высоты полета. 1 ил.

Изобретение относится к измерительному кабелю для гидростатического определения высот при подземной разработке. Измерительный кабель включает в себя охваченную оболочкой кабеля стренгу кабеля, наполненный текучей средой шланг, по меньшей мере один датчик давления для определения давления текучей среды, а также штекерные соединительные элементы, которые расположены каждый на одном конце стренги кабеля. Техническим результатом изобретения является повышение надежности и точности измерений. 2 н. и 8 з.п. ф-лы, 3 ил.
Изобретение относится к области геодезии, в частности к высокоточному геометрическому нивелированию. Техническим результатом является повышение точности геометрического нивелирования. Способ заключается в использовании измерительной системы «цифровой нивелир + две штрихкодовые рейки». Цифровой нивелир имеет функцию "invers". Длины между пятками на каждой рейке известны из калибровки реек в нормальных условиях. При измерениях берут отсчеты по задней и передней рейкам. Рейки переворачивают и измерения повторяют. Отсчитывая, включив на нивелире функцию «INVERS», от верхних пяток, вычисляют длины каждой рейки как суммы отсчетов, полученных из двух положений рейки, и сравнивают их с длинами, полученными при калибровке. Разности длин, полученных при калибровке и в реальных условиях, являются поправками за отклонение температуры, учитывая которые, вычисляют превышения, полученные при двух положениях реек. Равенство нулю вычисленных превышений служит контролем точности измерений.

Изобретение относится к области геофизических исследований и касается устройства для определения вертикали места. Устройство содержит чувствительный элемент, в качестве которого используется баллистический гравиметр, который измеряет ускорения свободного падения с помощью пучка непараллельных лазерных лучей. Технический результат заключается в повышении точности измерений. 1 ил.

Изобретение относится к области сельского хозяйства, в частности к экологическому мониторингу. Способ включает выделение на малой реке или ее притоке визуально по карте или натурно участка пойменного луга. Затем на этом участке по течению малой реки или ее притока в характерных местах размечают не менее трех створов измерений в поперечном направлении. Вдоль каждого створа размечают не менее трех пробных площадок с каждой стороны малой реки или ее притока. После разметки измеряют высоту расположения центра каждой пробной площадки от поверхности малой реки или ее притока, а после выявляют закономерности влияния высоты расположения пробных площадок над урезом воды на показатели проб травы. Также проводят оценку влияния отличительных орографических особенностей рельефа и расположенных внутри и вне территории выделенного участка естественных и антропогенных объектов. На каждом створе измерений выделяют характерные места по изменению высоты. Затем с применением нивелира измеряют перепады высот между центрами пробных площадок и урезом реки. Для анализа видового состава травы на характерном месте створа измерений забивают колышек и затем укладывают квадратную рамку с образованием центра в виде колышка. Причем без срезки травы пробная площадка становится виртуальной. Затем на виртуальной пробной площадке внутри квадратной рамки сосчитывают количество видов травы и заносят в таблицу с общим списком по строкам этой таблицы всех видов травяных и травянистых растений, встречающихся хотя бы один раз на выделенном участке малой реки. В столбцах по номерам виртуальных пробных площадок ставят единицу при наличии данного вида травяного и травянистого растения и оставляют клетку таблицы пустой при отсутствии вида растения, так последовательно выполняют измерения наличия видов травы во всех виртуальных пробных площадках. После этого суммируют единицы по столбцам таблицы и вычисляют количество видов растений на каждой виртуальной пробной площадке, а затем делением наличествующего количества видов растений на общее количество видов по всем строкам таблицы вычисляют относительную встречаемость видов травы на каждой виртуальной площадке. Затем выявляют волновые закономерности изменения относительной встречаемости видов в зависимости от высоты виртуальной пробной площадки над урезом воды путем статистического моделирования. Способ позволяет повысить точность учета наличия видов травяных и травянистых растений с учетом измерений нивелиром высоты расположения площадок без срезания травы. 4 з.п. ф-лы, 5 ил., 3 табл., 1 пр.

Изобретение относится к области определения высоты парашютной системы над поверхностью земли. Способ определения высоты парашютной системы заключается в определении высоты полета самолета и высоты снижения до раскрытия парашюта. Дополнительно до прыжка определяют среднюю скорость снижения парашютной системы с раскрытым основным парашютом, время снижения парашютной системы. Высоту снижения парашютной системы после раскрытия парашюта определяют по времени снижения и средней скорости снижения парашютной системы и полученное значение вычитают из высоты парашютной системы, имевшейся в момент раскрытия парашютной системы. Значение высоты над землей озвучивают звуковым сигналом. Изобретение направлено на повышение точности определения высоты и быстродействием. 1 ил.

Способ измерения высоты и вертикальной скорости летательного аппарата (ЛА) заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты. При этом в рабочем режиме полета для определения дальности до объекта используют режим некогерентного накопления. В режимах взлета и посадки отключают режим некогерентного накопления и используют моноимпульсный режим измерения дальности и скорости. Технический результат заключается в обеспечении измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике и может быть использовано в метеорологии для определения физических параметров атмосферы. Технический результат - повышение оперативности. Для этого дополнительно выполняют навигационные измерения орбиты космического аппарата (КА), производят съемку краевой точки видимого с КА на фоне земной поверхности облачного покрова при нахождении в кадре точки тени от выбранной краевой точки облачного покрова и расположении данной краевой точки облачного покрова вне линии, проходящей через КА параллельно направлению на Солнце. Определяют координаты точки земной поверхности, лежащей на линии визирования выбранной краевой точки облачного покрова, и координаты точки земной поверхности, на которую падает тень от выбранной краевой точки облачного покрова. По навигационным измерениям определяют координаты точки местоположения КА на момент выполнения съемки и высоту облачности определяют по высоте выбранной краевой точки облачного покрова. 1 ил.

Изобретение относится к измерительной технике и может найти применение при измерении высоты облачности. Технический результат - повышение оперативности. Для этого по варианту 1 выполняют навигационные измерения орбиты космического аппарата. Производят съемку с космического аппарата (КА) выбранной краевой точки видимого с КА на фоне земной поверхности облачного покрова в моменты, отстоящие один от другого на задаваемое время. По полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова. По навигационным измерениям определяют координаты точек местоположений КА на моменты выполнения снимков. По варианту 2 - по полученным на снимках изображениям определяют координаты точек земной поверхности, лежащих на линиях визирования выбранной краевой точки облачного покрова. 2 н.п. ф-лы, 2 ил.
Наверх