Способ оценивания отношения сигнал/помеха на длительности отрезка гармонического колебания



Способ оценивания отношения сигнал/помеха на длительности отрезка гармонического колебания

 


Владельцы патента RU 2502077:

Открытое акционерное общество "Российский институт мощного радиостроения" (RU)

Способ оценивания отношения сигнал/помеха на длительности отрезка гармонического колебания относится к области радиотехники, а именно к технике радиосвязи, и может быть использован в системах передачи данных, в режиме, когда на длительности элементарной посылки применяется одночастотный гармонический сигнал в заданной частотной полосе без введения избыточности, для осуществления оценки качества канала связи. Техническим результатом заявленного изобретения является обеспечение получения оценки сигнал/шум на длительности элементарной посылки, обладающей более точными характеристиками при воздействии различных типов помех на длительности элементарной посылки без введения избыточности. Технический результат достигается благодаря тому, что предложенный способ основывается на раздельном оценивании мощностей шума, а также смеси сигнала и шума. При этом мощность шума вычисляется путем сравнения принятого и отфильтрованного сигналов и возведения в квадрат их разности, а мощность смеси сигнала и шума вычисляется непосредственным возведением в квадрат принятого сигнала. Способ обеспечивает непрерывную передачу полезной информации. 1 ил.

 

Изобретение относится к области электросвязи и может быть использовано в системах передачи данных, при работе с заданной скоростью в одночастотном режиме без введения избыточности, для осуществления оценки качества канала связи.

В современных системах передачи информации, использующих методы многопараметрической адаптации, возникает задача оперативного и точного оценивания отношения сигнал/помеха (ОСП) в процессе передачи сообщений. Данные об ОСП на каждой элементарной посылке также необходимы для реализации процедур мягкого декодирования. Поэтому, задача определения ОСП на каждой элементарной посылке является актуальной.

В настоящее время известны методы оценки ОСП, использующие первичные параметры сигнала, такие как амплитуда, фаза, искажения фронтов посылок и т.д. [1]. Существенным недостатком этих методов является необходимость получения достаточно большого объема выборочных значений, что не позволяет формировать на их основе оценку ОСП для каждой элементарной посылки. Однако в КВ-каналах из-за наличия замираний величина ОСП на каждой элементарной посылке различается.

Известно устройство для измерения отношения сигнал/шум, описанное в патенте РФ №2332676, позволяющее путем фильтрации отделить мощность шумовой компоненты от мощности смеси сигнала и шума, формируя сигналы, пропорциональные мощности сигнала и шума. Таким образом, получается отношение сигнал/шум.

Недостатком данного способа является то, что отношение сигнал/шум устанавливается для определенного типа помехи и не учитывает возможных изменений параметров сигнала и шума, тем самым снижается точность измерения. Если мощность помехи в полосе сигнала будет отличаться от мощности помехи вне полосы, то точность данного способа резко падает.

Наиболее близким способом к заявленному является способ измерения отношения сигнал/помеха, описанный в патенте РФ №2117954, позволяющий путем накопления и корреляционной обработки фазовой информации обнаружить полезный сигнал на фоне шумов (помех) и выделить значения функции фазовых флуктуации, обусловленных влиянием помех. На основе полученных зависимостей производится анализ дисперсии фазовых флуктуаций и определение отношения сигнал/шум. Измеренное значение отношения сигнал/шум может использоваться для оценки достоверности и точности радиолокационной информации или качества каналов связи.

Измеряемое таким способом отношение сигнал/помеха получается при обработке достаточно длинного входного сигнала, так как функция фазовых флуктуации фактически представляет собой выборку значений фаз, полученных для каждого импульса сигнала (посылки сигнала). Таким образом, получить значение отношения сигнал/помеха для отдельно взятого импульса (посылки) не представляется возможным.

Целью настоящего изобретения является обеспечение получения оценки сигнал/шум на длительности элементарной посылки, обладающей более высокими точностными характеристиками при воздействии различных типов помех, при работе системы передачи данных в режиме, когда на длительности одной элементарной посылки применяется одночастотный сигнал, без введения избыточности.

Поставленная цель достигается путем обнаружения полезного сигнала, фильтрации сигнала, сравнения принятого и отфильтрованного сигнала и анализа их отличия на основе полученной зависимости оценки мощности шумовой компоненты от истинной мощности шумовой компоненты, и последующего вычисления отношения сигнал/шум на основе известной зависимости мощности принятого сигнала от мощности шумовой компоненты.

Структурная схема предложенного способа приведена на фиг.1.

Поставленная задача решается следующим образом.

Если в качестве сигнала используется отрезок гармонического колебания, то, независимо от вида модуляции и начальной фазы возможно представление сигнала в виде следующей модели:

S(t)=А·cos(ωt+φ),

где А - амплитуда сигнала, ω - круговая частота, φ - начальная фаза, t - время.

Тогда принимаемый сигнал на длительности элементарного символа на входе приемника можно представить следующим образом:

,

где B - амплитуда сигнала, ψ - начальная фаза, изменившиеся в результате воздействия канала связи, ξ(t) - помеха.

В дискретном случае:

Xk=В·cos(ωΔtk+ψ),

ξk=ξ(Δtk),

,

где ω - частота сигнала, Δt - интервал между двумя соседними отсчетами, k - номер отсчета, ψ - начальная фаза.

Известно, что равноотстающие отсчеты гармонического колебания частоты ω связаны между собой следующим рекуррентным соотношением:

Xk=2·cos(ωΔt)·Xk-1-Xk-2.

Воспользуемся этим соотношением для предсказания оценки значения последующего отсчета сигнала по двум предыдущим отсчетам сигнала, принятого из канала:

.

Таким образом, на каждом k-ом шаге с помощью данного прогнозируемого фильтра можно получить пару , . Сформировав выборку этих величин объемом N, выражение для оценки среднеквадратичного отклонения измеренного отсчета от прогнозируемого определяется выражением

Следует отметить, что все входящие в выражение величины доступны для измерения и вычисления на основе измеренных значений. Поскольку математическое ожидание и совпадают, поэтому оценка является несмещенной.

Средний квадрат отклонения прогнозируемого значения от измеренного определяется также следующим образом:

где - это дисперсия шума при измерении, то есть

.

Если характеристики шума в процессе обработки сигнала не изменяются, то

В этом случае выражение для среднего квадрата отклонения прогнозируемого значения от измеренного можно записать таким образом:

Известно, что σ2ш, то есть это мощность шумовой компоненты. Следовательно, оценка мощности шумовой компоненты определяется следующим соотношением:

Оценка мощность смеси сигнала с шумом определяется выражением

Для случаев h2>>1 достаточно точной оценкой является величина:

Следует отметить, что указанное условие в большинстве случаев выполняется при стабильной работе реальных систем связи.

Описываемый способ работает следующим образом.

Принимаемый сигнал подают на аналогово-цифровой преобразователь 1, в котором получают отсчеты сигнала, которые затем поступают в блок накопления 2, где производят их накопление на интервале времени, соответствующем длительности элементарной посылки. Далее, с блока накопления 2 накопленный массив отсчетов подают одновременно на умножитель 3, прогнозирующий фильтр 6 и умножитель 7. В умножителе 3 производят поэлементное умножение полученного массива отсчетов самого на себя, то есть производят его возведение в квадрат. Полученный новый массив подают на сумматор 4, в котором суммируют все элементы массива, и результат передают на делитель 5, в котором производят его деление на длину массива. В прогнозирующем фильтре 6 производят фильтрацию массива отсчетов и передают результат фильтрации в сумматор 8. В умножителе 7 производят умножение массива на минус один и передают полученный массив в сумматор 8. В сумматоре 8 суммируют поэлементно массивы, приходящие с прогнозирующего фильтра 6 и умножителя 7, а результат передают в умножитель 9, в котором производят поэлементное умножение полученного массива самого на себя, а результат передают в сумматор 10. В сумматоре 10 производят суммирование элементов полученного массива и передают результат в делитель 11, в котором делят полученную величину на коэффициент K=(4·cos2(ωΔt)+2)·N, где ω - частота сигнала, Δt - интервал между двумя соседними отсчетами, N - длина массива. Полученный результат передают в делитель 12. В делителе 12 производят деление величины, поступающей с делителя 5 на величину, поступающую с делителя 11, получая, таким образом, искомую оценку отношения сигнал/помеха.

Литература

1. И.Т.Рожков. Синтез измерителей отношения сигнал/помеха принимаемых радиосигналов. Издательство Саратовского университета, 1991.

Способ оценивания отношения сигнал/помеха на длительности элементарной посылки, который может быть использован в системах передачи данных, при работе с заданной скоростью в одночастотном режиме без введения избыточности, для осуществления оценки качества канала связи, отличающийся тем, что на приемной стороне осуществляют прием сигнала, подают его на аналого-цифровой преобразователь один, в котором получают отсчеты сигнала, которые затем поступают в блок накопления два, где производят их накопление на интервале времени, соответствующем длительности элементарной посылки, и формирование соответствующего массива отсчетов, который подают одновременно на умножитель три, прогнозирующий фильтр шесть и умножитель семь, при этом в умножителе три производят поэлементное умножение полученного массива отсчетов самого на себя, то есть производят его возведение в квадрат, а полученный новый массив подают на сумматор четыре, в котором суммируют все элементы массива, и результат передают на делитель пять, в котором производят его деление на длину массива, при этом в прогнозирующем фильтре шесть производят фильтрацию массива отсчетов и передают результат фильтрации в сумматор восемь, при этом в умножителе семь производят умножение массива на минус один и передают полученный массив в сумматор восемь, в котором суммируют поэлементно массивы, приходящие с прогнозирующего фильтра шесть и умножителя семь, а результат передают в умножитель девять, в котором производят поэлементное умножение полученного массива самого на себя, а результат передают в сумматор десять, в котором производят суммирование элементов полученного массива и передают результат в делитель одиннадцать, в котором делят полученную величину на вычисляемый заранее коэффициент K=(4·cos2(ωΔt)+2)·N, где ω - частота сигнала, Δt - интервал между двумя соседними отсчетами, N - длина массива, а полученный результат также передают в делитель двенадцать, в котором производят деление величины, поступающей с делителя пять, на величину, поступающую с делителя одиннадцать, получая, таким образом, искомую оценку отношения сигнал/помеха на длительности элементарной посылки без введения избыточности.



 

Похожие патенты:

Изобретение относится к технике измерений и может быть использовано для измерения напряженности электрического поля. .

Изобретение относится к измерительной технике и может использоваться в радиотехнике, метрологии и других отраслях промышленности для прецизионного измерения разности фаз пары сигналов и ее изменения во времени.

Изобретение относится к импульсной технике и используется в задачах измерения параметров электромагнитных импульсов (ЭМИ). .

Изобретение относится к технике измерений амплитудных значений напряженности электромагнитных импульсов и предназначено для использования при измерении параметров импульсных электрических полей.

Изобретение относится к измерительной технике и может быть использовано в объектах, связанных с транспортировкой и хранением углеводородных топлив. .

Изобретение относится к области электротехники. .

Изобретение относится к области контрольно-измерительной техники и может быть использовано для измерения магнитного поля и электрических токов в энергетике, в том числе в различных цепях телеконтроля и управления электротехнических, электромеханических устройств.

Изобретение относится к области измерительной техники и может быть использовано при физических исследованиях и в пьезотехнике при обработке технологических режимов нанесения пьезоэлектрических пленок, разработке и производстве ВЧ и СВЧ резонаторов и фильтров.

Изобретение относится к электротехнике, к эксплуатации электрических источников света в условиях нестабильного питающего напряжения. .

Изобретение относится к электроизмерительной технике и предназначено для измерения параметров переменного тока промышленной частоты в системах авторегулировки возбуждения электрических машин на вырабатывающих предприятиях.

Изобретение относится к области радиоизмерений и предназначено для контроля работы аналого-цифровых преобразователей без применения специальных тестовых сигналов. Технический результат - повышение точности выявления возникающих искажений за счет выявления искажений до начала амплитудного ограничения. В основе изобретения лежит факт изменения среднего значения случайного процесса в результате его нелинейного преобразования. Случайный процесс с нулевым средним после прохождения устройства с монотонной нелинейной характеристикой изменяет свой спектральный состав таким образом, что в нем появляется постоянная составляющая, зависящая от степени выраженности нелинейности. Таким образом, технический результат достигается измерением и анализом среднего значения цифрового кода на выходе контролируемого аналого-цифрового преобразователя. Устройство для выявления нелинейных искажений содержит блок вычитания, блок измерения модуля среднего значения цифрового кода и блок принятия решений, в вариантном исполнении устройство состоит из блока измерения среднего значения цифрового кода и блока принятия решений. 4 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к технике измерения электрических величин, а также к технике определения характеристик электронных потоков с магнитным удержанием и может быть использовано в высоковольтных и сильноточных электронно-лучевых приборах, находящих применение в электронной технике, при реализации разнообразных технологических процессов и в физическом эксперименте. Способ включает выделение тормозного рентгеновского излучения с участка поверхности твердого тела, бомбардируемого электронами, измерение характеристик тормозного рентгеновского излучения и определение энергетического распределения в пучке электронов на основе данных о тормозном рентгеновском излучении. В любой последовательности измеряют энергетический спектр тормозного рентгеновского излучения исследуемого электронного пучка и спектры тормозного рентгеновского излучения моноэнергетических пучков, создаваемых в той же системе формирования в условиях пренебрежимо малого разброса по энергии электронов в пучках, измеряют энергетические спектры тормозного рентгеновского излучения для моноэнергетических электронных пучков при n дискретных значениях энергии электронов в этих пучках, на основе данных об энергетических спектрах тормозного рентгеновского излучения для моноэнергетических электронных пучков рассчитывают функцию ядра обратного интегрального преобразования и определяют энергетическое распределение электронов в исследуемом пучке путем выполнения операции обратного интегрального преобразования с полученным ядром к функции, описывающей спектр рентгеновского излучения исследуемого электронного пучка. 4 ил.

Автоматизированная система измерений радиотехнических характеристик головок самонаведения ракет относится к области радиотехнических измерений и может быть использована для экспериментальной оценки радиотехнических характеристик головок самонаведения, содержащих антенну, защищаемую радиопрозрачным обтекателем. Заявленная система содержит дистанционно управляемое двухкоординатное опорно-поворотное устройство, содержащее датчики углового положения обтекателя (по курсу «α» и по тангажу «β»), пеленгационную антенну головок самонаведения, измерительные антенны (имитаторы цели), измерительные устройства (для измерения амплитудно-фазовых соотношений сигналов и относительных значений амплитуды), генератор (источник зондирующих излучений), управляющий компьютер. Технический результат заключается в повышении точности оценки пеленгационных ошибок, возможности первоначальной калибровки системы, учете пеленгационных ошибок по ортогональной координате, возможности измерений радиотехнических характеристик во всем секторе сканирования, высокая производительность измерений. 2 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике. Способ заключается в том, что для достижения положительного эффекта используют формируемую на основе электрического сигнала f(t) специальную функцию, значения которой определяются как временем t, так и вводимым изменяемым углом θ, при этом согласно предлагаемому изобретению указанную функцию возводят в положительную бόльшую единице степень n и для полученной таким образом функциональной зависимости в результате выполнения соответствующего вычислительного процесса выявляют такое значение угла θ, при котором эта функциональная зависимость имеет максимальное значение. Удовлетворяющий этому условию угол θ является искомым значением начальной фазы ψ(k) колебания k-той гармоники. Получаемая в процессе выполнения одной из вычислительных процедур информация может быть использована для определения значения амплитуды Am(k) k-той гармоники. Технический результат заключается в повышении точности определения начальной фазы ψ(k) колебания k-той гармоники, входящей в состав несинусоидального периодического электрического сигнала f(t). 4 ил.

Изобретение относится к измерительной технике и предназначено для решения задач электромагнитной совместимости и экологической безопасности электротехнического и радиоэлектронного оборудования промышленных, транспортных, общественных и бытовых объектов. На габаритных обводах материальных объектов, содержащихся в пространстве, выбирают контрольные точки. Поочередно устанавливая датчик пространственного положения в этих контрольных точках, определяют их координаты и воспроизводят на экране монитора. После чего на экране монитора вычислительного устройства с помощью трехмерного графического редактора воспроизводят трехмерные геометрические фигуры, отображающие габаритные обводы материальных объектов, с контрольными точками, совмещенными с воспроизведенными на экране монитора выбранными контрольными точками материальных объектов. Датчиком пространственного положения сканируют пространство, содержащее материальные объекты, в том числе излучающее поле электрооборудование. Датчиком напряженности электромагнитного поля, совмещенным с указанным датчиком пространственного положения, фиксируют локальные значения напряженности электромагнитного поля. При этом пространственное распределение напряженности электромагнитного поля определяют воспроизведением его относительно пространственного расположения трехмерных фигур, отображающих габаритные обводы моделируемых ими материальных объектов. Предложение обеспечивает снижение стоимости и трудоемкости мероприятий по обеспечению электромагнитной совместимости электротехнического и высокочувствительного радиоэлектронного оборудования, а также экологической безопасности жилых, общественных, транспортных и производственных помещений. Технический результат заключается в снижении трудоемкости и упрощении моделирования пространственного распределения напряженности электромагнитного поля с привязкой его характеристик к координатам пространственных объемов сложной формы, укомплектованных электрооборудованием, излучающим электромагнитные поля. 4 ил.

Изобретение относится к радиолокации и может быть использовано для экспериментальной оценки вклада участков крупногабаритного объекта, например авиационного турбореактивного двигателя, в интегральную величину эффективной поверхности рассеяния двигателя. Достигаемый технический результат - определение эффективной поверхности рассеяния участков объекта для различных ракурсов. Указанный результат достигается за счет того, что способ измерения эффективной поверхности рассеяния крупногабаритных объектов включает установку объекта на опорно-поворотное устройство, измерение фона, эталонирование неподвижного объекта при его полном укрытии радиопоглощающим материалом, облучение и определение мощности отраженных сигналов при вращении объекта вокруг вертикальной оси, при этом объект разбивают на участки, измеряют мощность отраженных сигналов от участков при последовательном удалении с них радиопоглощающего материала и определяют ЭПР участков, затем получают интегральную ЭПР методом сравнения измерений, проведенных в штатном состоянии и с замаскированным участком, при этом относительный вклад каждого участка объекта в интегральную ЭПР в заданном угловом секторе определяют в соответствии с выражением: где - средние значения ЭПР объекта в штатном состоянии и с замаскированным участком соответственно. В качестве радиопоглощающего материала используют материал с коэффициентом отражения электромагнитного излучения на металлической поверхности не более -20 дБ в рабочем диапазоне частот и поляризации электромагнитного излучения. 1 з.п. ф-лы.

Устройство для регистрации формы импульса делений относится к измерительной технике и может быть использовано в ядерной физике при исследовании физических параметров импульсных исследовательских ядерных установок (ИЯУ). Устройство содержит блок приема сигнала детектора излучения, в качестве которого использован преобразователь «ток-напряжение», два измерительных тракта, каждый из которых состоит из соединенных друг с другом операционного усилителя (ОУ), подключенного к выходу преобразователя «ток-напряжение», и восемнадцатиразрядного аналого-цифрового преобразователя (АЦП), один из входов которого соединен с блоком управления и синхронизации, блок обработки данных, включающий элементы, выполняющие функции селекции кодов и пределов измерения, а также хранения данных, при этом блок обработки данных снабжен функцией автоматического переключения пределов измерения сигналов с АЦП. Техническим результатом является повышение точности регистрации импульса нейтронного излучения, увеличение быстродействия регистрации и повышение надежности работы устройства регистрации за счет усовершенствования схемы устройства для регистрации формы импульса делений. 1 ил.

Изобретение относится к электротехнической, радиотехнической, электронной областям промышленности и может быть использовано в процессе настройки или проверки работоспособности СВЧ-устройства (нескольких СВЧ-устройств) для снятия его (их) характеристик в широком частотном диапазоне. Приспособление для снятия характеристик СВЧ-устройств, содержащее основание и коаксиально-микрополосковые переходы (КМПП). При этом каждый КМПП закреплен на кронштейне, который передвигается по оси, перемещаемой в плоскости, параллельной основанию, а движение СВЧ-устройств перпендикулярно основанию осуществляется толкателями. Технический результат заключается в обеспечении возможности снятия характеристик СВЧ-устройства, независимо от его габаритов, толщины платы, количества и расположения выводов. 2 з.п. ф-лы, 3 ил.

Изобретение относится к экранировке аппаратов или их деталей от электрических или магнитных полей и может быть использовано для контроля эффективности электромагнитного экранирования корабельных помещений, защищенных от преднамеренных электромагнитных воздействий. В предлагаемом способе оценки качества электромагнитного экранирования узла уплотнения отверстия в электропроводящем экране с закрывающей его электропроводящей конструкцией фиксируют распределение температуры на поверхностях электропроводящего экрана и/или электропроводящей конструкции по периметру отверстия в электропроводящем экране. По величине неравномерности этого распределения температуры судят об эффективности электромагнитного экранирования. Причем фиксацию распределения температуры по периметру отверстия в электропроводящем экране осуществляют тепловизионной съемкой. Технический результат - повышение точности и упрощение технологического процесса оценки и документирования качества электромагнитного экранирования узла уплотнения отверстия в электропроводящем экране с закрывающей его электропроводящей конструкцией в процессе строительства корабля и в условиях его эксплуатации. 1 з.п. ф-лы, 1 ил.

Изобретение относится к радиотехнике и может быть использовано при радиотехнических испытаниях обтекателей радиолокационных станций. Измерения потерь в обтекателях проводятся серией из N измерений уровня сигнала Е0j падающей плоской ЭМВ в диапазоне длин волн λ0±Δλ на выходе измерительной антенны без обтекателя и серией из N измерений уровня Ei сигнала на выходе антенны с установленным обтекателем (измерительная антенна замещается системой антенна-обтекатель) с последующей математической обработкой результатов. Причем вариация фазы производится за счет вариации несущей длины волны падающей ЭМВ. Технический результат заключается в возможности измерения потерь ЭМВ в обтекателях с более высокой точностью и более высокой достоверностью результатов измерения, а также без использования штатных антенных устройств РЛС и организации штатного взаимного расположения и перемещения антенны и обтекателя, направлен на снижение трудоемкости и повышение автоматизации вычислений. 1 з.п. ф-лы.
Наверх