Способ автоматизированного управления проектированием бортовых интеллектуальных систем

Изобретение относится к области автоматизированного управления технологическими процессами и может применяться для многопараметрических объектов, в частности структуры системы управления (СУ) для проектирования бортовых интеллектуальных систем (БИС) обеспечения безопасности мореплавания. Технический результат заключается в повышении эффективности проектирования СУ БИС, обеспечении безопасности мореплавания морских динамических объектов (ДО), функционирующих в режиме реального времени в сложной динамической среде на основе данных измерений, структурированной базы знаний и методов математического моделирования с использованием динамической модели катастроф. Для этого способ состоит в следующем: формируют на пульте блока управления процессом создания СУ БИС команду на начало проектирования структуры СУ БИС и передают ее на концептуальный блок, формулируют задачи, функции и способы управления БИС, генерируют варианты функциональной и организационной структуры СУ БИС, оптимизируют варианты состава и структуры СУ БИС по заданному критерию, моделируют режимы функционирования СУ БИС на основе репозитория сервисов, принципов обработки информации в мультипроцессорной вычислительной среде и методов теории катастроф, проверяют соответствие параметров состава и структуры СУ БИС заданным критериям и входным характеристикам, при несоответствии - корректируют входные характеристики СУ БИС и повторяют процесс проектирования, при соответствии - изготовляют рабочую документацию на СУ БИС. 7 ил.

 

Изобретение относится к области автоматизированного управления технологическими процессами с использованием вычислительных устройств и может применяться для многопараметрических объектов, в частности структуры системы управления (СУ) проектированием бортовых интеллектуальных систем (БИС) обеспечения безопасности мореплавания.

Известен патент RU №2236705, МПК G06T 17/40, опубл. 20.09.2004 «Способ автоматизированного управления процессом проектирования структуры системы управления техническими системами», в котором формируют на пульте управления команду на осуществление моделирования режимов функционирования системы управления (СУ) техническими системами (ТС) и передают ее на узел моделирования режимов функционирования СУ ТС, моделируют режимы функционирования СУ ТС, проверяют соответствие параметров структуры СУ ТС заданным входным характеристикам, при несоответствии корректируют входные характеристики СУ ТС, при соответствии изготовляют рабочую документацию на систему управления ТС.

Расширением функциональных возможностей патента RU №2236705 является патент RU №2331097, МПК G05B 17/00; G06A 17/50. опубл. 10.082008 «Способ автоматизированного управления процессом проектирования структуры системы управления (СУ) техническими системами (ТС) и устройство для его осуществления», в котором предлагается способ формирования структуры ТС для проектирования многопараметрических объектов, в частности структуры СУ техническими системами различного класса вне зависимости от назначения, целей, решаемых задач и сложности. Недостатком этого технического решения является практическая невозможность его использования при проектировании СУ БИС в связи с особенностями морских динамических объектов (ДО), функционирующих в режиме реального времени в мультипроцессорной вычислительной среде на основе данных динамических измерений, структурированной базы знаний и методов современной теории катастроф, а также проведения реального проектирования СУ БИС различными территориально расположенными проектными организациями, обеспечивающими проектирование и испытания опытных образцов СУ БИС в морских условиях.

Для обеспечения работоспособности программного инструментария проектирования СУ БИС для морских ДО, использующих многорежимные принципы управления в условиях неопределенности и неполноты исходной информации, сложности инфраструктуры и удаленности территориально распложенных проектных организаций, возникает необходимость разработки и использования приложения, обеспечивающего объединение и синхронизацию большого количества компьютерных систем и управление вычислительным процессом на основе интеллектуальных технологий.

Техническим результатом изобретения является повышение эффективности проектирования СУ БИС обеспечения безопасности мореплавания морских ДО, функционирующих в режиме реального времени в сложной динамической среде на основе данных измерений, структурированной базы знаний и методов математического моделирования с использованием динамической модели катастроф.

Указанный технический результат достигается с помощью построения интеллектуальной проблемно-ориентированной среды СУ БИС и функциональных блоков, реализующих управление процессом проектирования СУ БИС на основе концептуальной оценки вырабатываемых решений, функциональной модели программной среды, моделирования и визуализации динамических ситуаций, информационной среды анализа альтернатив и принятия решений, функции выбора и реализации решений с целью обеспечения изготовления рабочей документации и оценки эффективности решения.

Функциональная схема системы представлена на фиг.1. Система включает 9 основных блоков, функционирующих на основе концепции Грид-системы: блок 1 функциональной модели программной среды, концептуальный блок 2, блок моделирования и визуализации 3, блок информационной среды анализа альтернатив и принятия решений 4, блок управления процессом проектирования 5, блок, реализующий изготовление технической документации 6, блок оценки решений 8, блок оценки эффективности решения 9.

Блок 1 содержит функциональную модель программной среды, определяющую процесс проектирования СУ БИС на основе интеллектуальных технологий, методов современной теории катастроф и высокопроизводительных средств вычислений.

Концептуальный блок 2 реализует выработку решений по созданию СУ БИС в рамках концепции обработки информации в мультипроцессорной вычислительной среде, реализуемой в блоке 10 и обеспечивающей на основе принципа конкуренции и принципа формализации нечеткой информации выбор предпочтительной вычислительной технологии обработки данных.

Блок моделирования и визуализации 3 (фиг.2) содержит распределенную архитектуру вычислительных сервисов, функционирующих на основе сигналов от блока управления процессом проектирования 5 и сервисов управления 10, включающих управление вычислительными ресурсами 11 и управление задачей 12, получающих сигналы от системы управления данными 13, осуществляющей композицию 14, связанную с блоком хранения данных 16, и декомпозицию 15, имеющую доступ к массивам данных 17. Вычислительные сервисы (А)-(Н) обеспечивают функции интерпретации решений при оценке динамики внешней среды: ветер (А), волнение (В), при оценке динамики взаимодействия в стандартных (С), экстремальных (D) и нештатных (Е) ситуациях, генерации и анализе альтернатив (F), выработке практических рекомендаций (G), оценке риска принимаемых решений (Н).

Блок информационной среды анализа альтернатив и принятия решений 4 получает информацию о доступных сервисах и их онтологических описаниях блока моделирования и визуализации 3 и создает набор альтернативных вариантов построения СУ БИС и выбора вариантов решений.

Блок 5 управления процессом проектирования СУ БИС осуществляет основные функции управления, реализующие интеллектуальную поддержку принятия решений при обеспечении процесса создания СУ БИС на основе экспертной системы (ЭС) и модуля адаптации 11, реализующего процедуры адаптивного обучения за счет управления вычислительным процессом с динамически меняющейся информацией. Помимо этого, модуль адаптации осуществляет реализацию принципа конкуренции при выборе предпочтительной вычислительной технологии, интеграцию знаний в условиях неоднородности вычислительных ресурсов, стохастической изменчивости параметров коммуникационных сетей и вычислительных систем, неопределенности характеристик задачи и неполноты исходной информации.

Блок изготовления технической документации 6 содержит виртуальную оболочку проектирования СУ БИС, соответствующую основным операциям прикладных вычислительных сервисов (А)-(Н).

Блок модели выбора и реализации решений 7 осуществляет контроль результатов работы блока моделирования и визуализации 3 и блока анализа альтернатив и принятия решений 4. Процедуры выбора и реализации решений обеспечиваются экспертной системой (ЭС) с помощью логического вывода на основе принципа адаптивного резонанса, реализуемого модулем адаптации 11. Динамическая модель знаний, использующая этот принцип, ориентирована на перестройку логических моделей базы знаний ЭС и формализацию информации в условиях неопределенности и неполноты исходной информации. В процессе логического вывода осуществляется проверка соответствия исходных данных формализованной системе знаний и последующая корректировка логических правил ЭС, связанная с модификацией имеющихся правил либо построением новых правил, соответствующих исходным данным.

Блок оценки решений 8 предназначен для экспертизы решений, вырабатываемых в блоке 7. Основная функция этого блока состоит в реализации критериальной базы оценки решений на основе функции выбора.

Блок оценки эффективности решения 9 осуществляет экспертизу решения с позиций обеспечения безопасности эксплуатации ДО на основе национальных и международных стандартов и окончательной оценки результата работы системы создания СУ БИС по критерию информационной эффективности. Поток информации в этом блоке (фиг.3) определяет оценку эффективности решения на основе критериальной базы 19, включающей локальную 20 и глобальную 21 системы нормирования. Формализация неопределенности и многокритериальный анализ рассматриваемого решения по критерию информационной эффективности осуществляются в блоке 22, а нечеткий вывод и принятие решения - в блоке 23, результаты работы которого передаются в блок управляющих воздействий 24.

Блок 10 (фиг.4) реализует принцип конкуренции 25, позволяющий на основе потока выходных данных 26, полученных от измерительной системы MS и конкурирующих вычислительных технологий СТ (стандартный алгоритм SA с выходом α и нейросетевой алгоритм ANN с выходом β) для текущей ситуации, осуществлять анализ альтернатив АА 27 и выбирать предпочтительную вычислительную технологию интерпретации решения.

Блок 11 (фиг.5) отображает структуру адаптивного модуля 28, организованного на основе принципа адаптивного резонанса и позволяющего формировать реакцию динамической базы знаний ЭС для стандартных 29 и нестандартных 30 ситуаций, причем для стандартных ситуаций (стабильное решение 31) осуществляется модификация логической системы 32, а для нестандартных (пластичное решение 30) формируется новая ситуация 33 и реализуется логический вывод 34.

Алгоритм решения сложных задач проектирования в процессе функционирования СУ БИС состоит в выполнении следующих шагов.

Шаг 1. Формулируют концептуальную модель программной среды, определяющей задачи, функции и способы управления БИС на основе интеллектуальных технологий, методов динамической теории катастроф и высокопроизводительных средств вычислений с использованием функции цели

где Cj(j=1,…,m) - вектор элементов технического задания; Xi(i=1,…,n) - вектор оптимизируемых параметров с ограничениями (Xi)min≤(Xi)≤(Xi)max; требования к объекту СУ МИС Bj(X,C)⊕Aj(C), где Bj - оценка j-го качества варианта проекта, Aj(C) - требования к j-му качеству, а ⊕ - знак отношения; Z(X,C) - критерий эффективности, определяющий наилучший вариант решения.

Шаг 2. Генерируют варианты функциональной и организационной структуры СУ БИС на основе концептуальных решений задачи проектирования с помощью формальной модели информационной среды M(S) функционировании СУ БИС в виде обобщенной структуры:

где F(S) - функциональные компоненты, включающие измерительную систему, исполняемые модули прикладных систем обработки информации и служебные модули, обеспечивающие совместную работу объединяемых систем и взаимодействующие с динамической базой знаний B(A,R) и обобщенной базой данных D(W,V); S(t) - исследуемые ситуации; B(AR) - динамическая база знаний; D(Q,W,V) - обобщенная база данных, формируемая на основе общих принципов построения баз данных СУ БИС и содержащая данные о судне, характеристиках волнения W и ветра V в заданном районе эксплуатации; U(PC) - управляющий программный комплекс, обеспечивающий функционирование системы M(S).

Шаг 3. Оптимизируют варианты состава и структуры СУ БИС на основе критериального базиса обеспечения безопасности мореплавания с помощью системы критериев, использующей требования национальной и международной систем нормирования:

где CR(Nat,Int) - критерии глобальной системы нормирования мореходных качеств и прочности по национальным и международным стандартам; CR(PDO) - критерии локальной системы, учитывающие особенности разрабатываемого проекта БИС.

Шаг 4. Моделируют режимы функционирования СУ БИС на основе концепции обработки информации в мультипроцессорной вычислительной среде и теории катастроф с использованием распределенной архитектуры вычислительных сервисов. Выбор конкурирующих вычислительных технологий осуществляется на основе принципа конкуренции с помощью семантического поиска по описанию решения задачи проектирования СУ БИС в виде различных вычислительных технологий (стандартные алгоритмы, нечеткие, нейросетевые, эволюционные, энтропийные и когнитивные модели):

где S - система, отображающая принцип конкуренции (СР); R - классы всех операций и математических зависимостей, описываемых СР; Р - совокупность операций на множествах R; Q - множества отношений между элементами класса R.

Шаг 5. Проверяют соответствие параметров состава и структуры СУ БИС заданным критериям и выходным характеристикам с использованием функции выбора βDS, связывающей параметры алгоритма обработки информации PAi, исходные параметры PAj и средства реализации алгоритма PAk:

где i, j, k - общее число исследуемых параметров, которые представляются в виде динамического диапазона параметров в различных физических величинах, что позволяет сформулировать функцию выбора для управляющих и вычислительных алгоритмов в виде экспоненциальной функции:

где KA и KT - коэффициенты, учитывающие особенности алгоритма и время выполнения.

Шаг 6. При несоответствии параметров состава и структуры критериям (5) и (6) производят корректировку входных характеристик СУ БИС и повторяют процесс проектирования, при соответствии разрабатывают техническую документацию.

Шаг 7. Производят оценку эффективности проектного решения по созданию СУ БИС с использованием критерия информационной эффективности:

где εα=(αd-α(Xt))/αd - относительное изменение параметра α(Xt) от предельно допустимого αd; εx=(Х-Xt)/Х - относительное изменение текущего значения фактора Xt(Xt≤X) от выбранного значения Х в заданном интервале.

Реализация логической системы знаний, обеспечивающей алгоритм обработки информации при построении СУ БИС, осуществляется на основе программного комплекса, позволяющего исследовать процессы взаимодействия судна с внешней средой в сложных динамических средах. Техническими средствами, обеспечивающими функционирование программного комплекса, являются многопроцессорный вычислительный комплекс стандартной конфигурации, модуль преобразования исходной информации и измерительная система, содержащая датчики внешних возмущений (ветер, волнение) и параметров ДО (характеристики мореходности, прочности и вибрации). При проведении имитационного моделирования поведения ДО в нестандартных (нештатных и экстремальных) ситуациях в рамках сервисно-распределенной архитектуры используются имитаторы внешних воздействий и интеллектуальные датчики.

Для работы компонента хранения знаний при проектировании СУ БИС требуется установка СУБД Microsoft SQLServer Compact Edition (версии 3.5 или выше) и web-сервера Glassfish версии 3.0.1, обеспечивающего поддержку технологии WebServices, а также серверной ЭВМ со следующими минимальными характеристиками: тип процессоров: Intel-совместимый; количество ядер - не менее 4; количество процессоров - не менее 2; тактовая частота каждого процессора - не менее 2.0 ГГц; оперативная память (на ядро) - не менее 2.0 ГБ; дисковая подсистема - не менее 5×250 ГБ RAID5; пропускная способность сетевых интерфейсов - не менее 1 Гбит/с. Для взаимодействия с другими модулями системы проектирования СУ БИС требуется наличие выхода в Интернет или локальную сеть (если web-сервисы других подсистем доступны из локальной сети) с соответствующей поддержкой со стороны оборудования.

Примером реализации разработанной интеллектуальной технологии создания СУ БИС является алгоритм контроля текущей ситуации при движении судна в ледовом поле, реализуемый на основе принципа конкуренции с использованием концепции мягких вычислений (фиг.6). Адаптивный алгоритм обеспечивает выполнение следующих шагов:

Шаг 1. На основе текущей информации, формируемой в блоке 35 оценки динамики взаимодействия судна с ледовым полем, сигналы с датчиков измерительного блока 36 поступают в вычислительный блок 37, где осуществляют предварительную обработку данных измерений для передачи их вместе с оценкой скорости V*(t) на блок 38 анализа ситуации на основе стандартного алгоритма.

Шаг 2. Результаты выполнения операций в блоке анализа ситуации 38 поступают в блок сравнения 39, где производят сравнительный анализ данных вычислений безопасной скорости и реальной скорости судна по результатам измерений v(t). В случае соответствия результатов по принятому критерию процедура завершается. В случае расхождения данных информация от блока 39 передается на вход управляющего контроллера 40 для организации функционирования адаптивной системы 41.

Шаг 3. Функциональный блок адаптивной системы 41 содержит конкурирующие модели обработки информации на основе нейронечеткой системы 42, нейросетевого ансамбля 43 и базы знаний прецедентов 44. Выбор предпочтительной вычислительной технологии позволяет установить фактическую скорость V(t) судна для выработки практических рекомендаций в блоке оператора 45. Оперативный контроль ситуации и принятие решений в блоке 45 ведутся в зависимости от уровня неопределенности в соответствии со стратегией эффективной поддержки оператора на различных контурах управления (алгоритмический, адаптивный, самоорганизации).

Пример контроля экстремальной ситуации на основе методов теории катастроф реализует фиг.7, где представлена эволюция динамики судна в режиме «брочинг». Здесь точками 1-4 показаны фиксированные положения центра тяжести судна G1-G4, а через B(θ)i-B(θ)4 обозначены соответствующие бифуркационные множества. В момент «захвата» судно находится на переднем склоне волны. Точка G0 фиксирует момент «захвата», а точка G1 - выход их этой ситуации и начало разворота судна на волнении. Последовательность динамических сцен на основе фрактальной геометрии процедур обработки информации при движении судна к целевому аттрактору отражает общий принцип анализа и прогноза развития экстремальной ситуации.

Бифуркационное множество В(θ) отображает процесс деформации множества С(θ), причем структурные изменения в форме подводной части корпуса происходят вследствие непрерывного движения судна относительно профиля набегающей волны при развороте. После выхода судна из режима «захвата» (точка G1) судно оказывается в «потенциальной яме» и множество, отображающее динамическую среду, включая внешнее возмущение и особенности динамики объекта, резко изменяет свою конфигурацию (уменьшенная область GZ(θ) показана темным цветом в точке G2). Продолжая эволюцию, судно, лишенное возможности управления, постепенно оказывается в положениях на заднем склоне, подошве и переднем склоне волны, испытывая при этом значительные колебания в зависимости от структуры областей С(θ) и GZ(θ). При развороте до положения судна лагом к набегающему волнению область GZ(θ) возвращается в исходное состояние в точках G0 и G4 (области показаны темным цветом).

Графическая интерпретация катастрофы дополнена кривыми М(θ) и М0, характеризующими области изменения восстанавливающего момента и непрерывного возрастания кренящего момента от разворота. Точка θ1 фиксирует положение статического равновесия в системе, но это равновесие неустойчиво, так как после точки θ1 ординаты кривой кренящего момента значительно превышают соответствующие ординаты диаграммы М(θ) и судно опрокидывается, испытывая большие динамические нагрузки от разворота. Последовательность динамических сцен на основе фрактальной геометрии процедур обработки информации при движении судна к целевому аттрактору отражает общий принцип анализа и прогноза развития экстремальной ситуации. Генерация альтернатив и выработка управляющих воздействий на основе геометрической интерпретации динамической картины катастрофы реализуются с использованием конкурирующих вычислительных технологий в условиях неопределенности и неполноты исходной информации.

Таким образом, в результате использования предлагаемого изобретения на базе интеллектуальной технологии и высокопроизводительных средств обработки информации формируется гибкое информационное пространство создания СУ БИС, включающее методы концептуального моделирования, настраиваемые адаптивные автоматизированные циклы реализации с учетом особенностей текущей ситуации, формализуемой на основе методов и моделей теории катастроф.

Использованная литература

1. Нечаев Ю.И. Теория катастроф: современный поход при принятии решений. - Санкт-Петербург: Арт-Экспресс, 2011.

2. Системы искусственного интеллекта в интеллектуальных технологиях XXI века / Под. ред. Ю.И.Нечаева. - Санкт-Петербург: Арт-Экспресс, 2011.

Способ автоматизированного управления проектированием бортовых интеллектуальных систем СУ БИС, в котором формируют на пульте управления команду на осуществление моделирования режимов функционирования системы управления (СУ) техническими системами (ТС) и передают ее на узел моделирования режимов функционирования СУ ТС, моделируют режимы функционирования СУ ТС, проверяют соответствие параметров структуры СУ ТС заданным входным характеристикам, при несоответствии - корректируют входные характеристики СУ ТС, при соответствии - изготовляют рабочую документацию на систему управления ТС, отличающийся тем, что перед формированием на пульте управления процессом создания СУ БИС дополнительно формируют команду на начало проектирования СУ БИС и передают ее на концептуальный блок формирования структуры СУ БИС, формулируют задачи, функции и способы управления БИС на основе интеллектуальных технологий, методов динамической теории катастроф и высокопроизводительных средств вычислений, генерируют варианты функциональной и организационной структуры СУ БИС на основе принципов формализации логической системы знаний в условиях неопределенности и неполноты исходной информации и производят оценку результатов генерации концептуальных решений на основе критериев обеспечения безопасности мореплавания, определяющих требования национальной и международной систем нормирования, моделируют режимы функционирования СУ БИС на основе репозитория сервисов, принципов обработки информации в мультипроцессорной вычислительной среде и методов теории катастроф, проверяют соответствие параметров состава и структуры СУ БИС заданным критериям и входным характеристикам, при несоответствии корректируют входные характеристики СУ БИС и повторяют процесс проектирования, при соответствии разрабатывают техническую документацию и производят общую оценку информационной эффективности принятого решения.



 

Похожие патенты:

Изобретение применяется для проверки эффективности функционирования на этапе ее разработки автомобильной системы, устанавливаемой на транспортное средство в конфигурации дополнительного оборудования для определения момента и степени тяжести аварии при дорожно-транспортном происшествии.

Изобретение относится к конструкциям из композиционных материалов, предназначенных для использования в авиакосмической отрасли. .

Изобретение относится к способу конструирования панели из композиционного материала, содержащей множество зон, каждая из которых содержит множество слоев композиционного материала, уложенных согласно определенной последовательности упаковки, причем каждый из слоев в каждой из последовательностей упаковки имеет соответствующий угол ориентации.

Изобретение относится к области контроля, планирования и управления кпд мощности центров обработки данных. .

Изобретение относится к области моделирования. .

Изобретение относится к области железнодорожной автоматики и предназначено для использования в системах регулирования движения поездов. .

Изобретение относится к средствам моделирования сетей связи. .

Изобретение относится к средствам послойного экструдерного осаждения для построения трехмерных объектов. .

Изобретение относится к области архитектурного проектирования, а именно к способам учета требований к продолжительности инсоляции в жилых кварталах и микрорайонах. Технический результат - выявление оптимальным путем такого максимально-возможного объема пространства, располагаясь внутри которого, новое здание любой формы будет обеспечивать минимально-необходимую продолжительность инсоляции в расчетных точках существующих зданий и территорий. Способ определения допустимого объема застройки из условия продолжительности инсоляции в архитектурном проектировании, включающий создание трехмерных моделей существующих зданий и предварительного объема, выделенного под новую застройку, определение секторов начала и окончания инсоляции в расчетных точках, отличающийся тем, что первоначально определяют секторы исходной инсоляции в расчетных точках до возведения новой застройки, затем определяют минимальные секторы и на их основе лучевые объемы, создающие допустимую продолжительность инсоляции в таких точках, и путем вычитания этих объемов из предварительного объема застройки получают допустимый объем застройки, при этом положение минимальных секторов инсоляции внутри исходных секторов инсоляции оптимизируют таким образом, чтобы обеспечить наибольший допустимый объем застройки. 9 ил.

Изобретение относится к средствам автоматизированного моделирования летательных аппаратов. Техническим результатом является минимизация вычислительных затрат при аналитических расчетах аэродинамических сил. В способе определяют координатную сетку параметрического пространства; получают модель для расчета размерных переменных для какой-нибудь точки в параметрическом пространстве, где рассчитывают значения упомянутых одной или более размерных переменных для начальной группы точек с использованием модели CFD; получают начальную модель ROM из упомянутых вычислений CFD; выбирают точку группы с наибольшим отклонением между результатами моделей CFD и ROM; выбирают новые точки в параметрическом пространстве, которые должны быть добавлены в группу точек, рассчитывают значения размерных переменных для новых точек с использованием модели CFD и ROM. 8 з.п. ф-лы, 2 ил., 10 табл.

Изобретение относится к устройству имитации бурения. Техническим результатом является повышение эффективности обучения, сокращение цикла обучения, а также портативность и удобство в использовании. Портативная система имитации бурения содержит главный управляющий компьютер, компьютер графической обработки, пульт фонтанного штуцера и пульт противовыбросовых превенторов. Главный управляющий компьютер, компьютер графической обработки, пульт фонтанного штуцера и пульт противовыбросовых превенторов соединены между собой сетью и последовательными портами. Пульт противовыбросовых превенторов содержит панель управления противовыбросовыми превенторами; зона управления противовыбросовыми превенторами расположена на левой стороне на панели управления противовыбросовыми превенторами, зона управления манифольдом фонтанного штуцера расположена в верхней части правой стороны, и зона управления манифольдом высокого давления расположена в нижней части правой стороны. Пульт фонтанного штуцера содержит панель управления фонтанным штуцером. Главный управляющий компьютер содержит главную управляющую программу; и графический компьютер содержит программу графической обработки. 1 з.п. ф-лы, 36 ил.

Изобретение относится к способам, устройствам и машиночитаемым носителям для вычисления физического значения и численного анализа. Технический результат заключается в снижении рабочей нагрузки при формировании модели расчетных данных и снижении вычислительной нагрузки в решающем процессе без ухудшения точности анализа. Способ вычисления физического значения, выполняемый компьютером, содержит этап вычисления физических значений, на котором посредством центрального процессорного модуля вычисляют физические значения в области анализа, разделенной на множество разделенных областей, с использованием дискретизированного основного уравнения, которое использует значения, не требующие координат вершин (Вершина) разделенных областей и информации о связности вершин (Связность), и которое выводят на основе метода взвешенных невязок и модели расчетных данных, в которой объемы разделенных областей и характеристические значения граничной поверхности, указывающие характеристики граничных поверхностей соседних из разделенных областей, предоставляют в виде значений, не требующих координат вершин (Вершина) разделенных областей и информации о связности вершин (Связность), и дискретизированное основное уравнение и модель расчетных данных сохраняют в запоминающем устройстве. 6 н. и 7 з.п. ф-лы, 24 ил.

Изобретение относится к средствам автоматизированного построения чертежей. Техническим результатом является повышение скорости создания чертежа за счет обеспечения динамической адаптации шага линий сетки к начерчиваемому в текущий момент времени объекту. В способе распознают ранее начерченный объект в пределах сетки с первым шагом линий сетки, определяют размерную единицу указанного объекта, автоматически регулируют шаг линий сетки от первого до второго в зависимости от размерной единицы, где первый шаг отличается от второго и где некоторые из этапов распознавания, определения или автоматического регулирования реализуют посредством компьютерного блока обработки. 3 н. и 17 з.п. ф-лы, 9 ил.

Изобретение относится к вычислительной технике. Техническим результатом изобретения является повышение надежности устройства и увеличение быстродействия устройства. Устройство содержит генератор тактовых импульсов (ГТИ) 1, триггер разрешения 2, триггер готовности результата 3, группу счетчиков 41, 42, …, 4m, матрицу (m×n) триггеров 511, …, 5mn, матрицу (m×n) групп первых элементов И 611, …, 6mn, группу первых сумматоров 71, 72, …, 7n, группу первых регистров 81, 82, …, 8n, группу первых схем сравнения 91, 92, …, 9n, второй элемент И 10, второй сумматор 11, вторую схему сравнения 12, группу вторых регистров 131, 132, …, 13m, третий регистр 14, вход пуска 15, вход начальной установки устройства 16, группу первых выходов устройства 171, 172, …, 17m, второй выход устройства 18, третий выход устройства 19, группу четвертых регистров 201, 202, …, 20m, группу пятых регистров 211, 212, …, 21m, группу третьих схем сравнения 221, 222, …, 22m. 1 ил.

Изобретение относится к области цифровой вычислительной техники и предназначено для планирования топологии логических интегральных схем при проектировании вычислительных систем. Техническим результатом является планирования топологии программируемых логических интегральных схем по критерию минимизации интенсивности взаимодействия процессов и данных. Устройство содержит устройство поиска нижней оценки размещения в матричных системах при двунаправленной передаче информации и устройство планирования топологии логических интегральных схем, содержащее микропроцессор, оперативную память, контроллер прямого доступа в память, параллельный порт, последовательный порт, блок планирования топологии ПЛИС, матрицу смежности и матрицу цепей блока нахождения минимальной нижней оценки, блок поисковых перестановок, блок нахождения минимальной нижней оценки, блок поиска начального значения коммуникационной задержки. 1 з.п. ф-лы, 18 ил.

Изобретение относится к моделированию и может быть использовано для создания модели поведения конструкций и изделий авиационной техники в условиях неопределенности входных параметров. Техническим результатом является повышение точности испытаний механических и эксплуатационных свойств разрабатываемых и восстановленных узлов и деталей. Способ содержит создание модели поведения конструкций и изделий авиационной техники в условиях неопределенности входных параметров на двух уровнях: макроскопическом - методом конечно-элементного моделирования и микроскопическом - методами квантовой механики и молекулярной динамики, сначала рассматриваются микроскопические образцы, представляющие модель, геометрически подобную стандартным образцам, используемым для механических испытаний, которые виртуально испытываются методами молекулярной динамики, а полученные механические параметры микроскопических образцов используют, как недостающие макроскопические параметры в моделях материалов для конечно-элементного моделирования, причем при переходе от микроскопического к макроскопическому уровню моделирования и обратно используют масштабную инвариантность механических параметров и законов. 4 ил.

Способ сжатия информации для автоматизированного проектирования систем управления движения корабля для устройства, состоящего из блока измеряемой информации, локальных сетей, регуляторов, исполнительных средств, динамической модели движения корабля, блока представления информации и записи результатов, блока управления и оптимизации режимов, блока сжатия информации, содержащий регистры полученного значения и времени его прихода, первый блок сравнения, регистр регистрации времени передачи, логические блоки ИЛИ и И, таймер, второй блок сравнения, регистр переданного значения, формирователь сетевых пакетов. Способ заключается в том, что производят задержку по времени передачи измеряемой информации в локальную сеть на заданную величину C1. Обеспечивается сжатие информации путем прореживания с отсеиванием всех промежуточных значений. 7 ил.

Изобретение относится к системе и способу проектирования систем служб зданий. Технический результат заключается в повышении эффективности и точности проектирования систем служб зданий. Система включает в себя процессор, выполненный с возможностью исполнения компьютерной программы, пользовательский интерфейс, подсоединенный к процессору и выполненный с возможностью приема множества наборов данных, включающих в себя первый набор данных, содержащий местоположения множества компонентных устройств системы служб здания и второй набор данных, содержащий по меньшей мере один рабочий параметр, связанный с по меньшей мере одним из множества компонентных устройств, при этом процессор посредством выполнения компьютерной программы использует множество наборов данных для генерирования множества проектных решений, причем каждое из множества проектных решений содержит компоновку соединений между множеством компонентных устройств, а также определяет затраты на строительство, связанные с каждым из множества проектных решений, и определяет оптимизированное проектное решение из числа множества проектных решений на основе эксплуатационных затрат. 2 н. и 18 з.п. ф-лы, 2 ил.
Наверх