Реакторно-лазерная установка с прямой накачкой осколками деления



Реакторно-лазерная установка с прямой накачкой осколками деления
Реакторно-лазерная установка с прямой накачкой осколками деления
Реакторно-лазерная установка с прямой накачкой осколками деления
Реакторно-лазерная установка с прямой накачкой осколками деления
Реакторно-лазерная установка с прямой накачкой осколками деления

 


Владельцы патента RU 2502140:

Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" (RU)

Изобретение относится к области преобразования ядерной энергии. Реакторно-лазерная установка с прямой накачкой осколками деления состоит из подкритического лазерного блока с активным веществом (1) и запального импульсного ядерного реактора, окруженного подкритическим лазерным блоком. Активное вещество (1) включает лазерную среду (4), не пороговый делящийся ядерный материал (7) и замедлитель (3) нейтронов. Запальный импульсный ядерный реактор состоит из активной зоны, содержащей делящийся ядерный материал, и модулятора реактивности (5). В качестве делящегося ядерного материала в запальном импульсном ядерном реакторе используют пороговый делящийся ядерный материал (9). В подкритическом лазерном блоке в качестве не порогового делящегося ядерного материала (7) используют, например, уран-233, уран-235, плутоний-239. В запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала (9) используют, например, нептуний-237, плутоний-240 и, по меньшей мере, одну активную зону. Технический результат состоит в повышении энергии и мощности импульса накачки лазерной среды. 5 з.п. ф-лы, 5 ил.

 

Изобретение относится к области преобразования ядерной энергии и может быть использовано в реакторно-лазерной установке с прямой накачкой осколками деления.

Известна лазерная термоядерная установка для получения электрической энергии, содержащая камеру, бланкет, термоядерную мишень, задающий генератор, предварительный усилитель, элементы транспортировки пучка, усилители мощности, фокусирующие элементы, блок управления, контур теплоносителя, парогенератор и электротурбогенератор [А.с. СССР №1626954. Лазерная термоядерная установка для получения электрической энергии. Заявка №4398587, 28.03.1988].

Недостатком известного устройства является то, что в запальном быстром реакторе усилителя мощности используют не пороговые делящиеся элементы, которые не позволяют в полной мере реализовать, заключенную в ядерном источнике накачки энергию и мощность из-за наличия в нем сильной обратной нейтронной связи в системе «лазерный блок - запальный реактор».

Для исключения указанного недостатка в реакторно-лазерной установке с прямой накачкой осколками деления, состоящей из подкритического лазерного блока с активным веществом и запального импульсного ядерного реактора, окруженного подкритическим лазерным блоком, в которой активное вещество включает лазерную среду, не пороговый делящийся ядерный материал и замедлитель нейтронов, а запальный импульсный ядерный реактор состоит из активной зоны, содержащей делящийся ядерный материал, и модулятора реактивности, предлагается в качестве делящегося ядерного материала в запальном импульсном ядерном реакторе использовать пороговый делящийся ядерный материал.

В частных случаях в реакторно-лазерной установке с прямой накачкой осколками деления предлагается:

- в подкритическом лазерном блоке в качестве не порогового делящиеся ядерного материала использовать, например, уран-233, уран-235, плутоний-239;

- в запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала использовать, например, нептуний-237, плутоний-240;

- запальный импульсный ядерный реактор выполнить, по меньшей мере, из одной активной зоны;

- подкритический лазерный блок выполнить в виде пучка дистанционируемых решетками цилиндрических труб, представляющих собой лазерно-активные элементы и отражатель нейтронов, расположенных соответственно в его центральной и периферийной частях, соответствующие лазерно-активным элементам цилиндрические трубы снабдить торцевыми оптическими окнами и изнутри покрыть не пороговым делящимся материалом, объем лазерно-активных элементов заполнить лазерной средой, а замедлитель нейтронов разместить в межтрубном пространстве;

- подкритический лазерный блок выполнить в виде коаксиального расположенных наружной и внутренней цилиндрических труб, ограниченных торцевыми оптическими окнами, образованный ими замкнутый объем заполнить активным веществом в виде гомогенной смеси из лазерной среды с не пороговым делящимся ядерным материалом и замедлителя нейтронов, а внешнюю поверхность наружной цилиндрической трубы окружить отражателем нейтронов.

Сущность изобретения поясняется фигурами, где на фиг.1 и 2 представлены продольные и поперечное сечения реакторно-лазерной установки с прямой накачкой осколками деления с подкритическим лазерным блоком, выполненным с использованием наружной и внутренней цилиндрических труб; на фиг.3 и 4 представлены продольные и поперечное сечения реакторно-лазерной установки с прямой накачкой осколками деления с подкритическим лазерным блоком, выполненным с использованием пучка лазерно-активных элементов и отражателя нейтронов; на фиг.5 - поперечное сечение лнзерно-активного элемента.

На фигурах приняты следующие обозначения: 1 - активное вещество; 2 - внутренняя цилиндрическая труба; 3 - замедлитель нейтронов; 4 - лазерная среда; 5 - модулятор реактивности; 6 - наружная цилиндрическая труба; 7 - не пороговый делящийся ядерный материал; 8 - отражатель нейтронов; 9 - пороговый делящийся ядерный материал; 10 - решетка; 11 - торцевое оптическое окно; 12 - цилиндрическая труба.

Реакторно-лазерная установка с прямой накачкой осколками деления состоит из подкритического лазерного блока с активным веществом 1 и запального импульсного ядерного реактора, окруженного подкритическим лазерным блоком.

Активное вещество 1 включает лазерную среду 4, не пороговый делящийся ядерный материал 7 и замедлитель 3 нейтронов.

Запальный импульсный ядерный реактор содержит активную зону из порогового делящегося ядерного материала 9 и модулятор 5 реактивности.

Модулятор 5 реактивности - система управления реактором, включающая, в частности, регулятор реактивности, стоп-стержень, стержень тонкой регулировки, импульсный стержень, блок безопасности.

В частных случаях реализации устройства предусмотрено следующее.

В подкритическом лазерном блоке в качестве не порогового делящиеся ядерного материала 7 используют, например, уран-233, уран-235, плутоний-239.

В запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала 9 используют, например, нептуний-237, плутоний-240.

Запальный импульсный ядерный реактор выполнен, по меньшей мере, из одной активной зоны.

Подкритический лазерный блок выполнен в виде пучка дистанционируемых решетками 10 цилиндрических труб 12, представляющих собой лазерно-активные элементы и элементы отражателя 8 нейтронов, расположенных соответственно в его центральной и периферийной частях. Соответствующие лазерно-активным элементам цилиндрические трубы 12 снабжены торцевыми оптическими окнами 11 и изнутри покрыты не пороговым делящимся материалом 7, объем лазерно-активных элементов заполнен лазерной средой 4, а замедлитель 3 нейтронов размещен в межтрубном пространстве.

Подкритический лазерный блок выполнен в виде коаксиального расположенных наружной 6 и внутренней 2 цилиндрических труб, ограниченных торцевыми оптическими окнами 11. Образованный ими замкнутый объем заполнен активным веществом 1 в виде гомогенной смеси из лазерной среды 4 с не пороговым делящимся ядерным материалом 7 и замедлителя 3 нейтронов, а внешняя поверхность наружной цилиндрической трубы 6 окружена отражателем 8 нейтронов.

Устройство в режиме оптического квантового усилителя работает следующим образом.

С помощью модулятора 5 реактивности генерируется импульс делений в запальном импульсном ядерном реакторе. Образовавшиеся нейтроны попадают в Подкритический лазерный блок, замедляются в результате взаимодействия с ядрами замедлителя 3 нейтронов и, вызывая деление ядер не порогового делящегося ядерного материала, находящегося в подкритическом лазерном блоке, размножаются. Возникающие при этом осколки деления тормозятся в лазерной среде 4 и создают в ней ядерно-возбуждаемую плазму с инверсной заселенностью лазерных уровней. Энергия, накопленная в инверсии, выводится из подкритического лазерного блока следующим образом. На вход подкритического лазерного блока подают лазерный пучок задающего генератора. В результате энергия, запасенная в инверсии, снимается в виде фотонов вынужденного излучения и энергия лазерного пучка, проходящего через Подкритический лазерный блок, многократно увеличивается.

Пример конкретного исполнения устройства.

Реакторно-лазерная установка с прямой накачкой осколками деления имеет следующую конструкцию.

Подкритический лазерный блок выполнен в виде пучка дистанционируемых решетками 10 цилиндрических труб 12, представляющих собой лазерно-активные элементы и элементы отражателя 8 нейтронов, расположенных соответственно в его центральной и периферийной частях. Соответствующие лазерно-активным элементам цилиндрические трубы 12 снабжены торцевыми оптическими окнами 11 толщиной 10 мм и изнутри покрыты не пороговым делящимся ядерным материалом 7 - уран-235 с 90% обогащением, толщина слоя которого составляет 5 мкм. Торцевые оптические окна 11 выполнены из кварцевого стекла с просветлением.

Соответствующие лазерно-активным элементам и элементам отражателя нейтронов 8 цилиндрические трубы 12 имеют следующие общие конструктивные характеристики: длину - 2500 мм, наружный диаметр - 49 мм, толщину стенки - 0,5 мм, шаг расположения в треугольной решетке пучка - 52 мм. В подкритическом лазерном блоке использовано 700 лазерно-активных элементов и 200 элементов отражателя нейтронов 8. Причем 60 элементов отражателя нейтронов 8 выполнены из графита и по 70 элементов - из парафина и полиэтилена.

Объем лазерно-активных элементов заполнен лазерной средой 4 в виде гомогенной смеси газов: гелия (600 объемных частей), аргона (200 объемных частей) и ксенона (1 объемная часть). При этом давление в указанном объеме составляет 2 атм.

В межтрубном пространстве в качестве замедлителя 3 нейтронов используют цельные вставки из полиэтилена.

В запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала 9 используют нептуний-237 и две активные зоны.

Габаритные размеры установки: описанный диаметр 1,7 м и длина 2,5 м.

Расчетные исследования рассмотренного в примере конкретного исполнения устройства показали, что замена не порогового делящегося материала в запальном импульсном ядерном реакторе на пороговый делящийся ядерный материал в качестве топлива позволяет на пять порядков уменьшить обратную нейтронную связь в системе «лазерный блок-запальный реактор» и в результате, повысить энергию и мощность импульса накачки примерно в 20 раз (энергию с 7 МДж до 120 МДж, мощность с 4 ГВт до 100 ГВт).

Технический результат состоит в повышении энергии и мощности импульса накачки лазерной среды.

1. Реакторно-лазерная установка с прямой накачкой осколками деления, состоящая из подкритического лазерного блока с активным веществом и запального импульсного ядерного реактора, окруженного подкритическим лазерным блоком, причем активное вещество включает лазерную среду, не пороговый делящийся ядерный материал и замедлитель нейтронов, а запальный импульсный ядерный реактор состоит из активной зоны, содержащей делящийся ядерный материал, и модулятора реактивности, отличающаяся тем, что в качестве делящегося ядерного материала в запальном импульсном ядерном реакторе используют пороговый делящийся ядерный материал.

2. Реакторно-лазерная установка с прямой накачкой осколками деления по п.1, отличающаяся тем, что в подкритическом лазерном блоке в качестве непорогового делящиеся ядерного материала используют, например, уран-233, уран-235, плутоний-239.

3. Реакторно-лазерная установка с прямой накачкой осколками деления по п.1, отличающаяся тем, что в запальном импульсном ядерном реакторе в качестве порогового делящегося ядерного материала используют, например, нептуний-237, плутоний-240.

4. Реакторно-лазерная установка с прямой накачкой осколками деления по п.1, отличающаяся тем, что запальный импульсный ядерный реактор выполнен, по меньшей мере, из одной активной зоны.

5. Реакторно-лазерная установка с прямой накачкой осколками деления по п.1, отличающаяся тем, что подкритический лазерный блок выполнен в виде пучка дистанционируемых решетками цилиндрических труб, представляющих собой лазерно-активные элементы и отражатель нейтронов, расположенных соответственно в его центральной и периферийной частях, причем соответствующие лазерно-активным элементам цилиндрические трубы снабжены торцевыми оптическими окнами и изнутри покрыты непороговым делящимся ядерным материалом, объем лазерно-активных элементов заполнен лазерной средой, а замедлитель нейтронов размещен в межтрубном пространстве.

6. Реакторно-лазерная установка с прямой накачкой осколками деления по п.1, отличающаяся тем, что подкритический лазерный блок выполнен в виде коаксиально расположенных наружной и внутренней цилиндрических труб, ограниченных торцевыми оптическими окнами, причем образованный ими замкнутый объем заполнен активным веществом в виде гомогенной смеси из лазерной среды с непороговым делящимся ядерным материалом и замедлителя нейтронов, а внешняя поверхность наружной цилиндрической трубы окружена отражателем нейтронов.



 

Похожие патенты:

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора на быстрых нейтронах с жидкометаллическим теплоносителем осуществляют в замкнутом топливном цикле с переходом в течение нескольких кампаний к работе на уран-плутониевом топливе.

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем.

Изобретение относится к ядерным реакторам для производства изотопов. Реактор содержит бак, заполненный теплоносителем и разделенный герметичной вертикальной перегородкой на бассейн реактора, в котором размещены активная зона и оборудование реактора, и бассейн хранилища, в котором размещены устройства для хранения свежих и отработавших тепловыделяющих сборок и облучательных устройств.

Изобретение относится к ядерной технике и может быть использовано в интегральных водо-водяных ядерных реакторах. Интегральный водо-водяной ядерный реактор содержит корпус (1) с составной крышкой, состоящей из центральной части (2) и кольцевой периферийной части (3).

Группа изобретений относится к конструктивным элементам активной зоны ядерного реактора. Тепловыделяющая сборка ядерного реактора выполнена с обеспечением возможности расширения содержащегося в ней ядерного топлива.
Изобретение относится к созданию энергетических ядерных реакторов нового поколения на быстрых нейтронах, активная зона которых представляет собой расплавленные смеси хлоридов, содержащих делящиеся изотопы непосредственно контактирующими с жидким теплоносителем -расплавленным свинцом.

Заявленное изобретение относится к способу осуществления взрывной реакции, в том числе ядерной или термоядерной. В заявленном способе взрывная реакция осуществляется путем периодического взрывания заряда внутри прочного герметичного корпуса, принимающего образуемую от взрыва энергию, которую отводят из корпуса для ее дальнейшего использования.

Изобретение относится к ядерной энергетике, в частности к способу снаряжения фольгой оболочки тепловыделяющего элемента и устройству для его осуществления, и может быть использовано в процессе изготовления твэлов.

Изобретение относится к атомной энергетике, а именно к водо-водяным ядерным реакторам на тепловых нейтронах. Способ экспериментального исследования перемешивания теплоносителя в действующем ядерном реакторе заключается в том, что системой аварийного ввода бора на любом уровне мощности, в одной или более петлях создают слабую неравномерность в распределении индикатора, который играет роль температурного индикатора до входа в реактор, а в активной зоне - нейтронно-поглощающего индикатора. При этом используют комплекс штатных систем нейтронного и температурного мониторинга на участках циркуляционного контура: до входа в реактор и активную зону, в активной зоне и до выхода из реактора. Для исключения искажений и флуктуации зарегистрированных сигналов применяют обработку малых возмущений сигналов систем мониторинга. Технический результат - возможность проведения исследования непосредственно в процессе нормальной эксплуатации реактора или при вводе его в эксплуатацию. 20 ил.

Изобретение относится к ядерным реакторам на быстрых нейтронах. Реактор 1 содержит корпус 7 реактора, вмещающий активную зону 2 и теплоноситель 21; опорную решетку 13 активной зоны и перегородку 6, расположенную на опорной решетке, которая тянется вверх и окружает активную зону 2 с боковой стороны. Между внутренней поверхностью корпуса 7 реактора и перегородкой 6 расположен промежуточный теплообменник 15, сконфигурированный для охлаждения теплоносителя 21 первого контура, и электромагнитный насос 14, сконфигурированный для нагнетания охлажденного теплоносителя 21 первого контура. Нейтронный защитный экран 8, поддерживаемый верхней опорной плитой 29 сверху, расположен ниже электромагнитного насоса 14. Верхняя опорная плита 29 имеет проем 29а. Между выпуском 14b электромагнитного насоса 14 и верхней опорной плитой 29 расположен механизм 17 направления теплоносителя, сконфигурированный для направления нагнетаемого теплоносителя 21 первого контура из электромагнитного насоса 14 к нейтронному защитному экрану через проем 29а верхней опорной плиты 29. Технический результат - повышение герметичности по теплоносителю первого контура и упрощение ремонтопригодности. 2 н. и 13 з.п. ф-лы, 19 ил.

Изобретение относится к ядерной технике и может быть использовано в ядерных реакторах на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем. Способ эксплуатации ядерного реактора на быстрых нейтронах с нитридным топливом и жидкометаллическим теплоносителем осуществляют в замкнутом топливном цикле с переходом в течение нескольких кампаний к работе на нитридном уран-плутониевом топливе в равновесном режиме. В качестве топлива стартового загрузки используют нитрид обогащенного урана, в который вводят плутоний в количестве от 2 до 4 процентов от массы тяжелых атомов топлива. Нитрид обогащенного урана содержит изотоп 15N в количестве не менее 80 процентов от общего количества азота. В каждой последующей загрузке содержание изотопа 15N в нитриде смеси топлива уменьшают на 10-30 процентов по сравнению с предыдущим количеством до достижения его природного значения. Техническим результатом является уменьшение массы загружаемого топлива при старте до массы уран-плутониевого топлива равновесного состава, что позволяет исключить корректировку критической массы топлива в переходный период. 2 ил.

Ядерный реактор с жидкометаллическим теплоносителем содержит корпус, внутри которого помещена разделительная оболочка. В кольцевом пространстве между корпусом и разделительной оболочкой установлены, по меньшей мере, один парогенератор и один насос. Внутри разделительной оболочки находится активная зона, над которой расположен горячий коллектор, сообщающийся с парогенератором в его средней по высоте части для разделения потока жидкометаллического теплоносителя на восходящий и нисходящий потоки, или горячий коллектор выполнен сообщающимся с парогенератором в верхней его части для организации противоточного режима теплообмена. Под крышкой реактора расположен верхний горизонтальный холодный коллектор со свободным уровнем теплоносителя, а под парогенератором - нижний сборный коллектор, сообщающийся с верхним холодным коллектором. Вход насоса соединен с верхним холодным коллектором, а выход насоса - с нижним кольцевым напорным коллектором, причем коллекторы разделены горизонтальной перегородкой, причем нижний кольцевой напорный коллектор сообщен с раздаточным коллектором активной зоны. Технический результат - улучшение эксплуатационных характеристик реактора. 2 н. и 25 з.п. ф-лы, 2 ил.

Изобретение относится к ядерной энергетике, а именно к ядерным реакторам, и может быть использовано для получения тепловой, электрической энергии, для сжигания трансурановых нуклидов, а также для получения ядерного топлива и радиоактивных препаратов. Реакторная установка содержит реактор, в корпусе которого размещена активная зона. Контур охлаждения включает теплообменник, связанный с линией циркуляции хладагента, а также связанную с активной зоной емкость для аварийного сброса топливного раствора. Активная зона реактора образована в его корпусе в виде двух полостей, разделенных установленной в корпусе перегородкой. Полости сообщаются друг с другом в нижней части корпуса реактора посредством щели, образованной между нижним срезом перегородки и дном корпуса, и в верхней части посредством трубопроводов, в каждом из которых установлен циркуляционный насос. Установка оснащена как минимум одной емкостью, размещенной в одной из активных зон и связанной с теплообменником контура охлаждения активной зоны. Технический результат - непрерывный цикл установки, нахождение радиоактивных веществ внутри корпуса. 3 ил.

Изобретение относится к ядерной энергетике, в частности к энергетическим реакторам. Предложено техническое решение для создания и эксплуатации энергетических ядерных реакторов, в которых компенсация реактивности, теряемой в процессе выгорания топлива на одном участке активной зоны, обеспечивается перемещением отражателя на участок активной зоны со «свежим» топливом. Активная зона реактора размещается в горизонтальном корпусе реактора по всей его длине. Перемещаемый отражатель нейтронов охватывает корпус реактора сверху и с боков вне корпуса реактора и, тем самым, охватывает участок активной зоны, находящийся в корпусе реактора, на котором обеспечивается цепная управляемая реакция деления и энерговыделения. Под корпусом реактора размещается стационарный нижний отражатель. Теплоноситель прокачивается в корпусе реактора вдоль активной зоны. В процессе эксплуатации при снижении запаса реактивности в области энерговыделения перемещаемый отражатель перемещается на примыкающий участок активной зоны со «свежим» топливом и вовлекает «свежее» топливо в процесс энерговыделения. Технический результат - бесперегрузочная многолетняя кампания топлива, общее энерговыделение которой зависит от длины активной зоны, упрощение конструкции активной зоны, снижение веса корпуса реактора, избавление от поглотителей нейтронов на участке энерговыделения и потерь нейтронов на торцах области энерговыделения, отказ от процедур обслуживания и хранилищ «свежего» и отработанного топлива. 2 н.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к способу осуществления взрывной реакции, в том числе ядерной или термоядерной. В заявленном способе взрыв осуществляется путем подрыва заряда внутри массивного металлического тела, размещенного в прочном корпусе. В результате взрыва энергия взрыва заряда расплавляет это тело, а теплота расплавленного металла утилизируется. После охлаждения расплава после первого взрыва заряда последовательные взрывы следующих зарядов осуществляются при соответствующем охлаждении расплава с размещением заряда внутри этого расплава. В одном из вариантов осуществления заявленного способа до осуществления первого подрыва взрывного устройства внутреннее пространство прочного корпуса заполняется через соответствующий канал расплавом металла, внутри которого осуществляются все остальные предусмотренные операции после заглушки этого канала. Техническим результатом является возможность уменьшения габаритов используемой установки и повышение радиационной безопасности. 8 ил.

Изобретение относится к ядерному реактору на быстрых нейтронах. Совокупность активной зоны, отражателя и бланкета представляет собой двухфазную металлическую систему: Pb-Pu-U, или Pb-U-Th, или Pb-Pu-U-Th. Это позволяет достичь высоких степеней выгорания топлива, находящегося преимущественно в твердой фазе, за счет ликвидации радиационных повреждений путем периодического расплавления и последующего формирования активной зоны из расплава. Изобретение позволяет исключить из активной зоны реактора, подвергающейся интенсивному нейтронному облучению, конструктивные узлы, оставив только теплообменник первого контура, который представляет собой статическое оборудование, при этом механически нагруженные элементы теплообменника находятся вне зоны облучения. Будучи сменным узлом, теплообменник не лимитирует срок службы ядерного реактора в целом. При этом изобретение позволяет создать самоуправляющуюся активную зону, в которой тепловыделение цепной реакции деления будет балансировать теплосъем в теплообменнике первого контура вследствие естественного физического механизма. Одновременно обеспечивается быстродействующая защита от разгона на мгновенных нейтронах. 4 н. и 7 з.п. ф-лы, 1 ил.

Изобретение относится к области эксплуатации канальных ядерных реакторов, касается, в частности, крышки коллектора парогазовой смеси, содержащей гелий, и может быть использована при выполнении работ по контролю и восстановлению телескопических соединений трактов технологических каналов, а также в нефтегазовой, химической и других отраслях промышленности. Технический результат - оперативность проникновения в реакторное пространство, возможность многократного вскрытия и восстановления плотного гелиевого шва, сокращение трудоемкости демонтажа и обратной сборки крышки, снижение поглощенной дозы облучения персоналом. Быстросъемная крышка коллектора парогазовой смеси канального ядерного реактора включает траверсу, кольцеобразное основание и заглушку, к вертикальным отбортовкам которых приварены тонкостенные юбки с ориентированным расположением волокон проката. Юбки выполнены в виде обратных усеченных конусов с сопрягающимися поверхностями и соединены между собой сварным швом по торцевым поверхностям. Траверса снабжена узлами крепления к горизонтальной отбортовке основания и заглушке. 3 ил.
Изобретение относится к лазерной технике и технике формирования пучков заряженных частиц и генерации потоков электромагнитного излучения. Изобретение может использоваться, в частности, для разработки и получения источников импульсного (когерентного) электромагнитного ионизирующего излучения в гамма- и рентгеновском диапазонах спектра. Исходный оптический импульс мощного фемтосекундного источника лазерного излучения фокусируется в вакуумном объеме с помощью системы фокусировки на газообразной мишени-конвертере, выполненной, например, в виде газовой струи. Варьированием параметров мощного фемтосекундного источника лазерного излучения и системы фокусировки достигается требуемая интенсивность лазерного импульса для эффективной генерации потока электронов. Поток электронов от мишени-конвертора проходит через селектор-концентратор, в котором выделяют поток электронов с энергиями, достаточными для возбуждения ядерных состояний, и фокусируют на мишени, содержащей ядра возбуждаемого изотопа. Далее излучение, образующееся при распаде возбужденных ядерных состояний, поступает на устройство регистрации. 2 н. и 3 з.п. ф-лы.
Наверх