Способ намагничивания ферромагнитных параллелепипедов

Изобретение относится к области магнетизма и предназначено для намагничивания ферромагнитных параллелепипедов, векторы намагниченности которых наклонены под некоторым острым углом по отношению к противолежащим двум граням параллелепипеда в направлении их более длинных сторон, и эти грани являются магнитными полюсами ферромагнитного параллелепипеда. Заявлен способ намагничивания ферромагнитных параллелепипедов, основанный на помещении ферромагнитного параллелепипеда в соленоид перпендикулярно его оси симметрии и использовании насыщающего магнитного поля, отличающийся тем, что на ферромагнитный параллелепипед наматывают катушку индуктивности, ось симметрии которой перпендикулярна оси симметрии соленоида, катушку индуктивности соединяют последовательно с соленоидом к источнику импульса тока намагничивания до насыщения ферромагнитного параллелепипеда, после чего снимают катушку индуктивности с ферромагнитного параллелепипеда. Технический результат - осуществление намагничивания ферромагнитного параллелепипеда, векторы магнитной индукции в котором образуют некоторый острый угол к его двум противоположным граням, а их проекции на эти грани направлены вдоль более длинных их сторон. Заявляемый способ позволяет создавать магнитные системы с продольным неоднородным магнитным полем, что может найти применение в магнитной энергетике для повышения энергетической эффективности магнитных генераторов. 8 ил.

 

Изобретение относится к области магнетизма и предназначено для намагничивания ферромагнитных параллелепипедов, векторы намагниченности которых наклонены под некоторым острым углом по отношению к противолежащим двум граням параллелепипеда в направлении их более длинных сторон, и эти грани являются магнитными полюсами ферромагнитного параллелепипеда.

Намагничивание ферромагнетиков с большой коэрцитивной силой (магнитотвердые материалы) осуществляют в насыщающих магнитных полях, например, с помощью их помещения в соленоид, через который пропускают импульс однонаправленного тока от заряженных высоковольтных импульсных конденсаторов [1-3].

Ранее автором были предложены способы так называемого косо-кругового намагничивания ферромагнитных тороидов [4-5]. В частности, способ по патенту [5] может быть взят в качестве прототипа заявляемому техническому решению.

Известный способ косокругового намагничивания ферромагнитного тороида, основанный на помещении ферромагнитного тороида в соленоид, ось симметрии которого совмещена с осью симметрии ферромагнитного тороида, и пропускании через соленоид импульса однонаправленного тока, величина которого соответствует магнитному насыщению ферромагнитного тороида, отличающийся тем, что на ферромагнитный тороид наматывают катушку индуктивности, которую последовательно соединяют с соленоидом и источником импульса тока намагничивания до насыщения материала ферромагнитного тороида, после чего с последнего снимают указанную катушку индуктивности.

Целью изобретения является осуществление намагничивания ферромагнитного параллелепипеда, векторы магнитной индукции в котором образуют некоторый острый угол к его двум противоположным граням, а их проекции на эти грани направлены вдоль более длинных их сторон.

Указанная цель достигается в способе намагничивания ферромагнитных параллелепипедов, основанном на помещении ферромагнитного параллелепипеда в соленоид перпендикулярно его оси симметрии и использовании насыщающего магнитного поля, отличающимся тем, что на ферромагнитный параллелепипед наматывают катушку индуктивности, ось симметрии которой перпендикулярна оси симметрии соленоида, катушку индуктивности соединяют последовательно с соленоидом к источнику импульса тока намагничивания до насыщения ферромагнитного параллелепипеда, после чего снимают катушку индуктивности с ферромагнитного параллелепипеда.

Достижение указанной цели обеспечивается коммутацией указанных обмоток между собой и к источнику намагничивающего импульса тока.

Заявляемый способ понятен из реализующего его устройства, схема которого приведена на рис.1 и содержит следующие элементы:

1 - ферромагнитный параллелепипед,

2 - соленоид, ось симметрии которого (ось z) ортогональна грани параллелепипеда 1,

3 - катушку индуктивности, намотанную на ферромагнитный параллелепипед, ось симметрии которой (ось x) параллельна более длинной стороне его указанной грани,

4 - высоковольтный импульсный конденсатор,

5 - ограничивающий ток заряда конденсатора 4 резистор,

6 - высоковольтный источник постоянного тока,

7 - разрядник,

8 - сильноточный высоковольтный диод, исключающий экстратоки,

9 - первый двойной переключатель,

10 - второй двойной переключатель.

На рис.1 показаны векторы намагничивающего магнитного поля: соленоида 2 вдоль оси z и катушки индуктивности 3, выполненной на ферромагнитном параллелепипеде 1, вдоль оси x, а также результирующий вектор намагниченности, наклоненной относительно грани xy ферромагнитного параллелепипеда и составляющий с осью z некоторый острый угол.

На рис.2 представлены четыре возможных комбинации намагничивания ферромагнитного параллелепипеда в зависимости от положения коммутации двойных переключателей 9 и 10 в позициях «а» или «б», как это указано на рис.2а, 2б, 2в и 2г.

На рис.3 указан вариант взаимного отталкивания двух ферромагнитных параллелепипедов, встречно-косонамагниченных, с указанием стрелками возникающих тангенциальных сил отталкивания.

На рис.4 представлена другая картина взаимного отталкивания двух намагниченных указанным образом ферромагнитных параллелепипедов с противоположно направленными горизонтальными составляющими сил по сравнению с такими же силами на рис.3.

На рис.5 представленная пара намагниченных указанным образом ферромагнитных параллелепипедов подобрана так, что образует между полюсами однонаправленный магнитный поток влево с его линейным убыванием вдоль оси x, как это представлено на графике рис.6.

На рис.7 другая пара иначе намагниченных ферромагнитных параллелепипедов подобрана так, что образует между полюсами однонаправленный магнитный поток вправо с его линейным возрастанием вдоль оси x, как это видно на графике рис.8.

Общее количество различных комбинаций из пар намагниченных указанным образом ферромагнитных параллелепипедов равно восьми: кроме представленных четырех комбинаций на рис.3, 4, 5 и 7, в которых обращены друг к другу полюсы N, можно образовать такую же четверку пар с обращенными друг к другу полюсами S. Во всех восьми комбинациях возникают силы отталкивания. Еще восемь аналогичных комбинаций образуют пары при их взаимном притяжении, что, однако, интереса для практического применения не представляет.

Основной интерес представляют пары, образующие однонаправленные влево или вправо магнитные потоки с переменной напряженностью магнитного поля, создающие втягивающие силы для пробного ферромагнитного объекта, то есть формирующие продольное неоднородное магнитное поле вдоль оси x при использовании двух постоянных магнитов с их намагничиванием (рис.5 и 7) по заявляемому способу. Изменение напряженности магнитного поля в таких парах обусловлено эффектом накопления магнитных силовых линий в магнитном потоке того или иного направления.

Заявляемый способ может найти применение в магнитной энергетике [6-10] для повышения энергетической эффективности магнитных генераторов, преобразующих тепловую энергию окружающей среды, например, водных бассейнов, в механическую работу.

Литература

1. Преображенский А.А., Биширд Е.Г. Магнитные материалы и элементы, 3 изд., М., 1986.

2. Февралева И.Е. Магнитотвердые материалы и постоянные магниты, К., 1969.

3. Постоянные магниты. Справочник. М., 1971.

4. Меньших О.Ф. Способ косокругового намагничивания ферромагнитного тороида, Патент РФ №2391730, опубл. в бюлл. №16 от 10.06.2010.

5. Меньших О.Ф. Способ косокругового намагничивания ферромагнитного тороида, Патент РФ №2392681, опубл. в бюлл. №17 от 20.06.2010.

6. Меньших О.Ф. Магнитовязкий ротатор, Патент РФ №2325754, опубл. в бюлл. №15 от 27.05.2008.

7. Меньших О.Ф. Способ получения энергии и устройство для его реализации, Патент РФ №2332778, опубл. в бюлл. №24 от 17.08.2008.

8. Меньших О.Ф. Устройство стабилизации частоты генератора, Патент РФ №2368073, опубл. в бюлл. №26 от 20.09.2009.

9. Меньших О.Ф. Способ получения энергии и устройство для его реализации, Решение о выдаче патента РФ на изобретение от 24.02.2012 по заявке №2010138231/07 (054577) с приоритетом от 15.09.2010.

10. Меньших О.Ф. Устройство автоматического управления электрогенератором, Патент РФ №2444802, с приоритетом от 05.10.2010, опубл. в бюлл. №7 от 10.03.2012. Запрос из Германии о патентовании.

Способ намагничивания ферромагнитных параллелепипедов, основанный на помещении ферромагнитного параллелепипеда в соленоид перпендикулярно его оси симметрии и использовании насыщающего магнитного поля, отличающийся тем, что на ферромагнитный параллелепипед наматывают катушку индуктивности, ось симметрии которой перпендикулярна оси симметрии соленоида, катушку индуктивности соединяют последовательно с соленоидом к источнику импульса тока намагничивания до насыщения ферромагнитного параллелепипеда, после чего снимают катушку индуктивности с ферромагнитного параллелепипеда.



 

Похожие патенты:

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор. .

Изобретение относится к электротехнике, к размагничиванию ферромагнитных материалов и изделий и может быть использовано для снятия остаточной магнитной индукции труб, сортового и листового проката в производственных линиях металлургических заводов.

Изобретение относится к физике магнетизма и может быть использовано при изготовлении постоянных магнитов с большим энергетическим произведением (ВН)max в форме намагниченных колец или полых цилиндров.

Изобретение относится к электротехнике, к физике магнетизма и может быть использовано для изготовления ферромагнитных тороидов с большой коэрцитивной силой - постоянных магнитов, векторы намагничивания которых являются разнонаклонно ориентированными к вертикалям к плоскости граней ферромагнитного тороида в одну и ту же сторону по окружностям, проходящим через точки пересечения этих вертикалей с плоскостью граней ферромагнитного тороида.

Изобретение относится к электротехнике, к размагничиванию длинномерных ферромагнитных материалов и изделий. .
Изобретение относится к электротехнике, к размагничиванию ферромагнитных тонкостенных кольцевых деталей больших диаметров (более 1500 мм) с 3-10 полюсами и степенью намагниченности 8-140 А/см.

Изобретение относится к физике магнетизма и может быть использовано при намагничивании стержневых постоянных магнитов, выполненных из магнитожестких ферромагнетиков, например, из материала SmCo3.

Изобретение относится к технике размагничивания труб, стыков труб промысловых и магистральных газопроводов всех категорий. .

Изобретение относится к электротехнике и может быть использовано для изготовления ферритовых тороидов с большой коэрцитивной силой - постоянных магнитов, векторы намагничивания которых являются косокруговыми, то есть когда из любой i-ой точки на торцевой поверхности тороида можно провести вектор, лежащий в плоскости уi zi под некоторым углом относительно оси zi, где ось уi является касательной к окружности с центром в начале координатной системы xi уi zi, проходящей через данную точку i на данной окружности.

Изобретение относится к электротехнике и может быть использовано для изготовления постоянных магнитов в виде ферромагнитных тороидов с большой коэрцитивной силой, векторы намагничивания которых являются косокруговыми, для магнитных амортизаторов вместо поршневых амортизаторов колебательных движений на основе двух совмещенных одноименными магнитными полюсами тороидов с косокруговой намагниченностью, вращение одного из которых относительно другого в одном направлении осуществляется легко, а в противоположном - с усилиями.

Изобретение относится к электротехнике и может быть использовано для научных исследований, в частности по взаимодействию тороидального магнитного поля с однополярными магнитными жидкостями. Технический результат состоит в создании тороидального магнитного поля без использования электрической энергии. Cогласно изобретению склеивают между собой две пары соосно установленных магнитотвердых ферромагнитных тороидов с прямоугольной формой сечения так, что в первой паре тороиды одинаковой толщины вставляют друг в друга с зазором. Одинаковые тороиды второй пары перекрывают своими плоскими гранями зазор первой пары тороидов с обеих сторон, образуя тороидальную полость между четверкой тороидов. На все четыре тороида предварительно наматывают катушки их намагничивания. Катушку первого тороида первой пары соединяют с катушкой первого электромагнита, образующего радиально-кольцевое магнитное поле, в которое помещают первый тороид первой пары, и производят его намагничивание постоянным током. Аналогичные операции осуществляют со вторым тороидом первой пары, используя второй электромагнит с габаритами кольцевого зазора, соответствующими габаритам второго тороида первой пары. Затем катушки намагничивания первого и второго тороидов второй пары соединяют последовательно между собой и с катушкой третьего электромагнита, образующего однородное соленоидальное магнитное поле, ортогональное плоским граням первого и второго тороидов второй пары, помещенных в магнитное поле третьего электромагнита, и производят намагничивание второй пары тороидов. После намагничивания со всех четырех тороидов снимают катушки намагничивания. Склеивание тороидов между собой производят так, что все одноименные магнитные полюсы обращают в образующуюся тороидальную полость с одинаковыми направлениями тангенциальных составляющих векторов намагниченности всех четырех тороидов. 5 ил.

Изобретение относится к области железнодорожного транспорта, к способу размагничивания рельсового изолирующего стыка. Согласно способу размагничивания рельсового изолирующего стыка объект подвергают воздействию магнитного поля, возбуждаемого индуктором, обмотка которого подключена к блоку конденсаторов. Обмотку индуктора подключают к блоку конденсаторов через блок электронных ключей, управляемых с помощью датчика Холла, таким образом, чтобы магнитный импульс, возбуждаемый обмоткой индуктора при разрядке конденсаторов, имел направление вектора магнитной индукции, противоположное вектору магнитной индукции, создаваемому магнитным полем изолирующего стыка. Блок конденсаторов заряжают от пьезоэлектрического генератора, при этом для деформации пьезоэлектрических элементов генератора используют механические колебания рельсов, возбуждаемых проходящим подвижным составом. Разрядку блока конденсаторов на обмотку индуктора производят посредством силового ключа, при достижении номинального напряжения блока конденсаторов, контролируемого посредством порогового элемента. Изобретение относится также к устройству для осуществления указанного способа. В результате обеспечивается постоянное размагничивание рельсового изолирующего стыка за счет энергии проходящего подвижного состава. 2 н.п. ф-лы, 2 ил.

Изобретение относится к судовым средствам магнитной защиты подводного или надводного объекта, в частности к автоматическим регуляторам его магнитного поля. Автоматический регулятор магнитного поля подводного или надводного объекта включает блок приема сигналов от датчиков его магнитного поля, от навигационного комплекса и сигналов о токах компенсаторов магнитного поля объекта, блок формирования алгоритма управления системы автоматического управления магнитным полем объекта, блоки управления компенсаторами магнитного поля объекта и блок распределения сигналов управления эффективностью компенсаторов магнитного поля объекта. В него введен блок контроля магнитного состояния объекта, соединенный с выходом блока формирования алгоритма управления, и блок сигнализации о превышении предельных значений параметров его магнитной защиты, соединенный с выходом блока контроля магнитного состояния объекта. В результате обеспечивается возможность оценивать магнитное состояние объекта в процессе плавания и сигнализировать о снижении требуемого уровня его магнитной защиты. 1 ил.

Изобретение относится к электротехнике, к средствам для использования эффекта сверхпроводимости, и может быть использовано в установках для активации высокотемпературных сверхпроводников (ВТСП). Технический результат состоит в повышении технологичности и качества процесса намагничивания. После замыкания клемм 1, 2 переключателя к ВТСП 9 подается транспортный ток от внешнего источника постоянного тока. Транспортный ток, протекая через ВТСП 9, взаимодействует с квантованными нитями магнитного потока 7 и создает силу Лоренца, которая перемещает квантованные нити магнитного потока 7 в направлении, перпендикулярном направлению течения транспортного тока. После размыкания клемм 1, 2 переключателя магнитный поток в ВТСП 9 остается захваченным центрами пиннинга. Запасаемая в ВТСП 9 электромагнитная энергия и возникающие в режиме вязкостного движения квантованных нитей магнитного потока 7 потери компенсируются внешним источником постоянного тока. Таким образом, в процессе активации происходит преобразование тепловой энергии в электрическую, ответственную за движение квантованных нитей магнитного потока 7, и в электромагнитную, ответственную за наличие положительной остаточной намагниченности ВТСП 9. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к электротехнике, к размагничиванию магнитных контуров индуктивности части объема веществ или полного объема, характеризуемого потерей магнитного момента. Технический результат состоит в обеспечении возможности создания условий размагничивания биометрических характеристик живой ткани за счет потери магнитного момента в катушках индуктивности и взаимного размещения этих индуктивных контуров вблизи тела человека, не менее чем в 2-3 см в зоне взаимодействия. магнитного контура катушек индуктивности и тканью живого организма, воспринимающего процесс размагничивания. Это способствует нормализации правильного настроя живых клеток в организме человека при ориентации на состав 3-4,5% железа в крови и водном составе здоровой ткани, способствующей ускоренному заживлению ран и повреждений кожного покрова. 1 ил.

Изобретение относится к электротехнике, к первичным источникам электроэнергии. Технический результат состоит в обеспечении полного промагничивания намагничиваемых элементов в радиальном направлении и повышении тем самым их магнитных характеристик. По первому варианту электромагнит выполнен в виде n-полюсного сердечника, между полюсами которого намотаны дополнительные обмотки на намагничиваемом элементе. По второму варианту электромагнит выполнен в виде n-проводников в защитных капсулах, расположенных по внешнему и внутреннему радиусу намагничиваемого элемента, между проводниками электромагнита намотаны дополнительные обмотки на намагничиваемом элементе.2 н.п. ф-лы, 4 ил.

Изобретение относится к области электротехники и может быть использовано при исследовании физической природы так называемого магнитного трения и его связи с магнитной восприимчивостью ферромагнетика, помещенного в изменяющееся внешнее магнитное поле. Технический результат - обеспечение возможности исследовании магнитного трения в ферромагнетиках, в частности зависимости магнитного трения от величины приложенного к ферромагнетику внешнего магнитного поля. Устройство для исследования магнитного трения содержит намагниченные вращающийся ротор и неподвижный статор, выполненные из исследуемого ферромагнитного вещества, катушку подмагничивания, высокочастотный трансформатор, регулируемый источник постоянного тока, электромагнитный датчик угловой скорости вращения ротора с противовесом, измеритель частоты, блок управления и обработки информации, широкополосный малошумящий усилитель и спектроанализатор, синхронный двигатель, регулируемый по частоте источник переменного тока, прибор измерения потребляемой синхронным двигателем мощности. Вращающийся ротор выполнен в виде симметричной конструкции с двумя одинаковыми цилиндрическими полюсами, зазор которых относительно цилиндрического статора не менее чем на два порядка меньше радиуса цилиндрических полюсов ротора. Указанные элементы соединены между собой так, как указано в материалах заявки. 4 ил.

Изобретение относится к электротехнике, к электрическим машинам. Технический результат состоит в упрощении намагничивания. Способ включает сборку массива ненамагниченных анизотропных сегментов постоянного магнита вокруг шпинделя ротора, заключенного в металлическое кольцо. Затем определяют оптимальные направления намагничивания указанных сегментов, позиционируют собранные сегменты вокруг шпинделя ротора так, чтобы оптимальные направления ориентации намагничивания анизотропных сегментов постоянного магнита выровнены в направлении линий магнитного потока, созданного намагничивающим устройством. Возбуждение намагничивающего устройства для намагничивания сегментов осуществляют импульсным постоянным током в течение оптимальной длительности импульса, которая зависит от толщины, магнитной проницаемости и удельного электрического сопротивления стопорного кольца. 3 н. и 20 з.п. ф-лы, 6 ил.

Изобретение относится к области электротехники и может быть использовано для создания вращательного движения механической системы на постоянном токе. Технический результат - создание магнитного двигателя постоянного тока с использованием косокруговой конфигурации ротор-статорного или ротор-роторного магнитных полей (в зависимости от конструктивного исполнения). Двигатель содержит вращающиеся во взаимно противоположных направлениях относительно неподвижной оси два ротора, соосно установленные между собой и выполненные с обмотками, создающими встречно ориентированные косокруговые магнитные поля соответственно по правому и левому кругам, создаваемые постоянным током в этих обмотках, расположенных вблизи друг от друга, витки которых наклонены к плоскостям роторов, ортогональных неподвижной оси вращения роторов, и равномерно распределены по их кольцевым (тороидально подобным) объемам, а подсоединение этих обмоток к источнику постоянного тока через скользящие токосъемники осуществлено так, что образующиеся косокруговые магнитные поля являются взаимно встречными с одноименными магнитными полюсами. 5 ил.

Изобретение относится к способам для размагничивания рельсов. Способ устранения остаточной неравномерной намагниченности рельсов заключается в том, что на размагничивающей установке устанавливают одновременно два электромагнита, включенных разнополюсно. До и после места установки электромагнитов, перед первой и последней колесными парами размагничивающей установки, для измерения и контроля входной и выходной величин намагниченности участков рельсов устанавливают датчики Холла. Результаты измерения величины напряженности магнитного поля рельсов и путевой скорости регистрируются и анализируются, а на основании этой информации происходит управление электромагнитами - их включение или выключение. Технический результат заключается в повышении безопасности и обеспечении бесперебойности движения поездов. 1 ил.
Наверх