Терминал пользователя, способ связи и система связи

Изобретение относится к области радиосвязи. Техническим результатом является обеспечение терминала пользователя, позволяющего применять скачкообразное изменение частоты для радиодоступа в восходящей линии связи системы E-UTRA. Терминал пользователя содержит модуль модуляции, сконфигурированный для системы, в которой в полосе частот системы в частотной области определены несколько ресурсных элементов, во временной области подкадр включает первый слот и второй слот, и каждый из ресурсных элементов имеет длину, равную одному слоту во временной области. Модуль модуляции отображает данные терминала пользователя в ресурсные элементы с различными полосами частот в первом слоте и втором слоте; и передающий модуль, выполненный с возможностью передачи отображенных данных. 3 н. и 2 з.п. ф-лы, 14 ил.

 

Настоящая заявка выделена из заявки №2010106282 на выдачу патента РФ на изобретение, поданной 13.08.2008, с испрашиванием приоритета по дате подачи первой заявки JP 2007-211598, поданной в Патентное ведомство Японии 14.08.2007.

Область техники

Настоящее изобретение в целом относится к системе радиосвязи. Более конкретно, настоящее изобретение относится к терминалу пользователя.

Уровень техники

В настоящее время консорциум 3GPP, занимающийся стандартизацией W-CDMA, обсуждает систему связи LTE (Long Term Evolution, долгосрочное развитие), идущую на смену системам W-CDMA и HSDPA. В LTE в качестве способа радиодоступа в нисходящей линии связи должно использоваться мультиплексирование с ортогональным частотным разделением (OFDM, orthogonal frequency division multiplexing), а в качестве способа радиодоступа в восходящей линии связи должен использоваться множественный доступ с частотным разделением на одной несущей (SC-FDMA, single-carrier frequency division multiple access) (см, например, 3GPP TR 25.814 (V7.0.0), "Physical Layer Aspects for Evolved UTRA," June 2006).

В схеме OFDM полоса частот делится на множество узких полос частот (поднесущих), и данные передаются на указанных поднесущих. Поднесущие тесно соседствуют на оси частот, частично перекрываясь, но не интерферируя друг с другом. Описанный способ позволяет передавать данные с высокой скоростью и повышает эффективность использования частот.

В схеме SC-FDMA с целью снижения интерференции (помех) между терминалами полоса частот делится на множество полос частот, которые выделяются отдельным терминалам для передачи. Схема SC-FDMA также снижает вариации мощности передачи, позволяя тем самым уменьшить энергопотребление терминалов и расширить зону покрытия.

В E-UTRA опорным сигналом для восходящей линии связи является пилотный канал, используемый для таких целей, как синхронизация, оценка канала для когерентного детектирования и измерение принимаемого SINR (signal-to-interference-plus-noise ratio, отношение мощностей сигнал и суммы интерференции и шума) при управлении мощностью передачи. Опорный сигнал представляет собой передаваемый сигнал, известный принимающей стороне, т.е. базовой станции, и вводится в подкадры через определенные интервалы.

Далее со ссылкой на фиг.1 описывается схема SC-FDMA, используемая в качестве способа радиодоступа в восходящей линии связи в E-UTRA. В SC-FDMA полоса частот системы делится на множество блоков ресурсов, каждый из которых включает одну или большее количество поднесущих. Каждому терминалу пользователя (user equipment, UE, пользовательскому устройству) выделяется один или большее количество блоков ресурсов. При частотном планировании с целью повышения эффективности передачи или пропускной способности системы в целом блоки ресурсов выделяются предпочтительно терминалам пользователя с хорошим состоянием канала в соответствии с качеством принятого сигнала либо индикаторами качества канала (CQI, channel quality indicators), измеренными и сообщенными терминалами пользователя на основании нисходящих пилотных каналов для соответствующих блоков ресурсов. Кроме того, для радиодоступа в восходящей линии связи E-UTRA обсуждается использование способа скачкообразного изменения частоты, в котором выделение блоков частот варьируется в соответствии с шаблоном скачкообразного изменения частоты.

На фиг.1 различной штриховкой показаны временные и частотные ресурсы, выделенные различным терминалам пользователя. Например, в первом подкадре для UE2 выделена относительно широкая полоса частот, а в следующем подкадре для UE2 выделена относительно узкая полоса частот. Различные полосы частот, выделяемые терминалам пользователя, не перекрываются.

В SC-FDMA для реализации ортогональности между терминалами пользователя в соте этим терминалам пользователя выделяются различные временные и частотные ресурсы. Наименьший элемент временных и частотных ресурсов называется ресурсным элементом (RU, resource unit). В SC-FDMA для реализации передачи с одной несущей при малой величине отношения пиковой мощности передачи к средней мощности передачи (peak-to-average power ratio, PAPR) каждому пользователю выделяется непрерывная полоса частот. Выделением временных и частотных ресурсов для терминалов пользователя с учетом условий распространения сигнала и качества обслуживания (quality of service, QoS) данных, подлежащих передаче, управляет планировщик базовой станции, QoS включает скорость передачи данных, допустимую вероятность появления ошибки и величину задержки. Таким образом, в SC-FDMA пропускная способность системы повышается путем выделения соответствующим терминалам пользователя временных и частотных ресурсов, обеспечивающих хорошие условия распространения сигнала.

Базовые станции системы выполняют выделение временных и частотных ресурсов независимо друг от друга. Таким образом, полоса частот, выделенная в соте, может перекрываться с полосой частот, выделенной в соседней соте. При частичном перекрытии полос частот, выделенных в соседних сотах, сигналы интерферируют друг с другом, и их качество снижается.

Раскрытие изобретения

Как сказано выше, для радиодоступа в восходящей линии связи E-UTRA обсуждается использование скачкообразного изменения частоты (frequency hopping).

Однако до сих пор не обсуждались средства и способы сообщения и использования шаблона скачкообразного изменения частоты и/или выделения ресурсных элементов при использовании скачкообразного изменения частоты.

Одной из целей настоящего изобретения является предложение терминала пользователя, позволяющего применять скачкообразное изменение частоты для радиодоступа в восходящей линии связи системы E-UTRA.

В одном аспекте настоящего изобретения предлагается терминал пользователя, содержащий модуль модуляции, сконфигурированный для системы, в которой в полосе частот системы в частотной области определены несколько ресурсных элементов, во временной области подкадр включает первый слот и второй слот, и каждый из ресурсных элементов имеет длину, равную одному слоту во временной области, при этом модуль модуляции выполнен с возможностью отображения данных терминала пользователя в ресурсные элементы с различными полосами частот в первом слоте и втором слоте; и передающий модуль, выполненный с возможностью передачи отображенных данных, причем в полосе частот системы для первого слота и для второго слота определены две или большее количество групп ресурсных элементов, каждая из которых включает два или большее количество последовательно идущих в частотной области ресурсных элементов; модуль модулирования выполнен с возможностью отображения данных в первый ресурсный элемент в первой группе ресурсных элементов в первом слоте и во второй ресурсный элемент во второй группе ресурсных элементов во втором слоте, так, что первая группа ресурсных элементов отстоит от второй группы ресурсных элементов на ширину полосы частот, соответствующую заранее заданному количеству групп ресурсных элементов; в каждой из групп ресурсных элементов ресурсным элементам назначены индексы, последовательно возрастающие от 1 в направлении от нижних частот к верхним частотам; и второй ресурсный элемент во второй группе ресурсных элементов, в который отображены данные во втором слоте, определен формулой: (наибольший индекс ресурсных элементов во второй группе ресурсных элементов) + 1 - (индекс первого ресурсного элемента в первой группе ресурсных элементов, в который отображены данные в первом слоте).

В другом аспекте настоящего изобретения предлагается способ, выполняемый терминалом пользователя в системе, в которой в полосе частот системы в частотной области определены несколько ресурсных элементов, во временной области подкадр включает первый слот и второй слот, и каждый из ресурсных элементов имеет длину, равную одному слоту во временной области, при этом способ включает: отображение данных терминала пользователя в ресурсные элементы с различными полосами частот в первом слоте и втором слоте; и передачу отображенных данных, причем в полосе частот системы для первого слота и для второго слота определены две или большее количество групп ресурсных элементов, каждая из которых включает два или большее количество последовательно идущих в частотной области ресурсных элементов; данные отображают в первый ресурсный элемент в первой группе ресурсных элементов в первом слоте и во второй ресурсный элемент во второй группе ресурсных элементов во втором слоте, так, что первая группа ресурсных элементов отстоит от второй группы ресурсных элементов на ширину полосы частот, соответствующую заранее заданному количеству групп ресурсных элементов; в каждой из групп ресурсных элементов ресурсным элементам назначены индексы, последовательно возрастающие от 1 в направлении от нижних частот к верхним частотам; и второй ресурсный элемент во второй группе ресурсных элементов, в который отображены данные во втором слоте, определен формулой: (наибольший индекс ресурсных элементов во второй группе ресурсных элементов) + 1 - (индекс первого ресурсного элемента в первой группе ресурсных элементов, в который отображены данные в первом слоте).

Еще в одном аспекте настоящего изобретения предлагается система связи, включающая терминал пользователя и базовую станцию, причем терминал пользователя содержит модуль модуляции, сконфигурированный для системы, в которой в полосе частот системы в частотной области определены несколько ресурсных элементов, во временной области подкадр включает первый слот и второй слот, и каждый из ресурсных элементов имеет длину, равную одному слоту во временной области, при этом модуль модуляции выполнен с возможностью отображения данных терминала пользователя в ресурсные элементы с различными полосами частот в первом слоте и втором слоте; и передающий модуль, выполненный с возможностью передачи отображенных данных в базовую станцию, причем в полосе частот системы для первого слота и для второго слота определены две или большее количество групп ресурсных элементов, каждая из которых включает два или большее количество последовательно идущих в частотной области ресурсных элементов; модуль модулирования выполнен с возможностью отображения данных в первый ресурсный элемент в первой группе ресурсных элементов в первом слоте и во второй ресурсный элемент во второй группе ресурсных элементов во втором слоте, так, что первая группа ресурсных элементов отстоит от второй группы ресурсных элементов на ширину полосы частот, соответствующую заранее заданному количеству групп ресурсных элементов; в каждой из групп ресурсных элементов ресурсным элементам назначены индексы, последовательно возрастающие от 1 в направлении от нижних частот к верхним частотам; и второй ресурсный элемент во второй группе ресурсных элементов, в который отображены данные во втором слоте, определен формулой: (наибольший индекс ресурсных элементов во второй группе ресурсных элементов) + 1 - (индекс первого ресурсного элемента в первой группе ресурсных элементов, в который отображены данные в первом слоте).

Краткое описание чертежей

Фиг.1 представляет собой иллюстрацию схемы FDMA с одной несущей.

Фиг.2 представляет собой иллюстрацию системы радиосвязи в соответствии с вариантом осуществления настоящего изобретения.

Фиг.3 представляет собой иллюстрацию примера отображения восходящих каналов управления.

Фиг.4 представляет собой иллюстрацию примера выделения ресурсных элементов терминалам пользователя, для которых используется скачкообразное изменение частоты.

Фиг.5 представляет собой неполную структурную схему базовой станции в соответствии с вариантом осуществления настоящего изобретения.

Фиг.6 представляет собой неполную структурную схему терминала пользователя в соответствии с вариантом осуществления настоящего изобретения.

Фиг.7 представляет собой иллюстрацию примера выделения ресурсных элементов терминалам пользователя, для которых используется скачкообразное изменение частоты.

Фиг.8 представляет собой иллюстрацию примера выделения ресурсных элементов терминалам пользователя, для которых используется скачкообразное изменение частоты.

Фиг.9 представляет собой иллюстрацию примера выделения ресурсных элементов терминалам пользователя, для которых используется скачкообразное изменение частоты.

Фиг.10 представляет собой иллюстрацию примера выделения ресурсных элементов терминалам пользователя, для которых используется скачкообразное изменение частоты.

Фиг.11 представляет собой неполную структурную схему базовой станции в соответствии с вариантом осуществления настоящего изобретения.

Фиг.12 представляет собой неполную структурную схему терминала пользователя в соответствии с вариантом осуществления настоящего изобретения.

Фиг.13 представляет собой иллюстрацию примера выделения ресурсных элементов терминалам пользователя, для которых используется скачкообразное изменение частоты.

Фиг.14 представляет собой иллюстрацию примера выделения ресурсных элементов терминалам пользователя, для которых используется скачкообразное изменение частоты.

ПЕРЕЧЕНЬ ОБОЗНАЧЕНИЙ

50k(501, 502, …, 50k): сота;

100n(1001, 1002, 1003, …, 100n): терминал пользователя;

102: модуль демодуляции сигнала OFDM;

104: модуль демодуляции/декодирования сигнала гранта восходящего планирования;

106: модуль демодуляции/декодирования других сигналов управления и данных;

108: модуль формирования опорного сигнала (RS) демодуляции;

110: модуль канального кодирования;

112: модуль модуляции данных;

114: модуль модуляции SC-FDMA;

116: модуль демодуляции/декодирования широковещательного канала;

200m(2001, 2002, 2003, …, 200m): базовая станция;

202: модуль формирования сигнала OFDM;

204: модуль формирования сигнала управления передачей - сигнала гранта восходящего планирования;

206: модуль формирования опорного сигнала (RS) демодуляции;

208: модуль детектирования синхронизации - оценки канала;

210: модуль канального декодирования;

212: модуль когерентного детектирования;

214: модуль оценки состояния восходящего канала;

216: планировщик;

218: модуль определения необходимости скачкообразного изменения частоты;

220: модуль формирования широковещательного канала;

400: опорная сеть;

500: физический восходящий общий канал;

510: восходящий канал управления;

520: восходящий канал управления.

Осуществление изобретения

Варианты осуществления настоящего изобретения описываются далее со ссылкой на сопровождающие чертежи, на которых для элементов, выполняющих одинаковые функции, используются одинаковые обозначения. Повторяющиеся описания таких элементов опущены.

Далее со ссылкой на фиг.2 описывается система 1000 радиосвязи, включающая терминалы пользователя и базовые станции в соответствии с вариантом осуществления настоящего изобретения. В рассматриваемой системе терминалы пользователя (UE) могут также называться мобильными станциями.

Система 1000 радиосвязи использует, например, стандарты Evolved UTRA и UTRAN (также называемые Long Term Evolution или Super 3G). Система 1000 радиосвязи включает базовые станции (eNode В, eNB) 200m(2001, 2002, 2003, …, 200m; m является целым числом, большим 0) и терминалы 100n пользователя (1001, 1002, 1003, …, 100n; n является целым числом, большим 0), осуществляющие связь с базовыми станциями 200m. Базовые станции 200 т связаны со старшим узлом, например, с шлюзом 300 доступа, а шлюз 300 доступа связан с опорной сетью 400. Каждый терминал 100n пользователя находится в одной из сот 50k(501, 502, …, 50k; k является целым числом, большим 0) и осуществляет связь с соответствующей базовой станцией 200m согласно стандартам Evolved UTRA и UTRAN.

Предполагается, что некоторые терминалы 100n пользователя уже установили каналы связи с базовыми станциями 200m и осуществляют связь, а другие терминалы 100n пользователя не установили каналы связи с базовыми станциями 200m и не осуществляют связь.

Каждая базовая станция 200m передает сигналы синхронизации. Каждый терминал 100п пользователя находится в одной из сот 50k(501, 502, …, 50k; k является целым числом, большим 0). Терминал 100п пользователя при, например, включении или нахождении во время связи в режиме прерывистого приема (intermittent reception) выполняет на основании сигналов синхронизации поиск соты с целью нахождения для терминала 100п пользователя соты, обеспечивающей хорошее качество радиосвязи. Более конкретно, терминал 100n пользователя на основании сигналов синхронизации детектирует временные параметры символа и временные параметры кадра, а также детектирует индивидуальную для соты информацию управления, например, идентификатор (ID) соты (или уникальный для соты код скремблирования, сформированный из идентификатора соты) или группу идентификаторов сот (cell ID group).

Поиск соты может выполняться, если терминал 100n пользователя осуществляет связь, а также, когда терминал 100n пользователя не осуществляет связь. Например, терминал 100n пользователя выполняет поиск соты во время связи с целью нахождения соты, использующей ту же частоту, либо с целью нахождения соты, использующей иную частоту. Терминал 100n пользователя также выполняет поиск соты и тогда, когда не осуществляет связь, например, когда терминал 100n пользователя только что включен или находится в режиме ожидания.

Базовые станции 200m(2001, 2002, 2003, …, 200m) имеют одну и ту же конструкцию и функции, и поэтому далее называются «базовая станция 200», «базовая станция 200m» либо «базовые станции 200m», если не указано иное. Терминалы 100n пользователя (1001, 1002, 1003…100n) имеют одну и ту же конструкцию и функции, и поэтому далее называются «терминал 100 пользователя», «терминал 100n пользователя» либо «терминалы 100n пользователя», если не указано иное. Соты 50k(501, 502, 503, …, 50k) имеют одну и ту же конфигурацию и функции, и поэтому далее называются «сота 50k» либо «соты 50k», если не указано иное.

В системе 1000 радиосвязи в качестве способа радиодоступа в нисходящей линии связи используется мультиплексирование с ортогональным частотным разделением (OFDM), а в качестве способа радиодоступа в восходящей линии связи используется множественный доступ с частотным разделением на одной несущей (SC-FDMA). Как сказано выше, в OFDM полоса частот делится на узкие полосы частот (поднесущие), и данные передаются на указанных поднесущих. В SC-FDMA с целью снижения интерференции между терминалами полоса частот делится на множество полос частот, которые выделяются отдельным терминалам для передачи.

Далее описываются каналы связи, используемые в Evolved UTRA и UTRAN.

В нисходящей линии связи используются физический нисходящий общий канал (physical downlink shared channel, PDSCH), совместно используемый терминалами 100n пользователя, и нисходящий канал управления LTE. Нисходящий канал управления LTE используется в нисходящей линии связи для сообщения информации о терминалах пользователя, подлежащих отображению в физический нисходящий общий канал; информации о транспортном формате для физического нисходящего общего канала; информации о терминалах пользователя, подлежащих отображению в физический восходящий общий канал; информации о транспортном формате для физического восходящего общего канала; информации подтверждения для физического восходящего общего канала. Физический нисходящий общий канал используется для передачи пользовательских данных.

Также в нисходящей линии связи базовые станции 200m передают сигналы синхронизации, используемые терминалами 100n пользователя для выполнения поиска соты.

В восходящей линии связи используются физический восходящий общий канал (physical uplink shared channel, PUSCH), совместно используемый терминалами 100n пользователя, и восходящий канал управления LTE. Существует два типа восходящих каналов управления: первый представляет собой восходящий канал управления, мультиплексируемый с разделением по времени с физическим восходящим общим каналом, а второй представляет собой восходящий канал управления, мультиплексируемый с разделением по частоте с физическим восходящим общим каналом. В восходящей линии связи восходящий канал управления LTE используется для сообщения индикаторов качества канала (CQI, channel quality indicator) нисходящей линии связи, используемых при планировании и при адаптивной модуляции и кодировании (АМС) физического нисходящего Общего канала, а также для сообщения информации подтверждения (информации HARQ АСК) для физического нисходящего общего канала.

Термин «восходящий канал» может обозначать как физический восходящий общий канал, так и восходящий канал управления LTE. Существует два типа восходящих каналов управления LTE: первый представляет собой восходящий канал управления, мультиплексируемый с разделением по времени с физическим восходящим общим каналом, а второй представляет собой восходящий канал управления, мультиплексируемый с разделением по частоте с физическим восходящим общим каналом. Пример отображения восходящих каналов управления LTE представлен на фиг.3.

Как показано на фиг.3, мультиплексированные с разделением по частоте восходящие каналы управления отображаются на различные позиции в двух слотах (временных интервалах) подкадра (для восходящих каналов управления используется скачкообразное изменение частоты). На фиг.3 обозначение 500 используется для физического восходящего общего канала, обозначение 510 используется для восходящих каналов управления, которые мультиплексированы с физическим восходящим общим каналом с разделением по частоте, а обозначение 520 используется для восходящих каналов управления, которые мультиплексированы с физическим восходящим общим каналом с разделением по времени.

Восходящий канал управления LTE используется в восходящей линии связи для сообщения индикаторов качества канала (CQI) нисходящей линии связи, используемых при планировании и при адаптивной модуляции и кодировании (АМС) физического нисходящего общего канала, а также для передачи информации подтверждения (информации HARQ АСК) для физического нисходящего общего канала. Физический восходящий общий канал используется для передачи пользовательских данных.

Транспортным каналом, подлежащим отображению в физический восходящий общий канал, является восходящий общий канал (uplink shared channel, UL-SCH). В канал UL-SCH отображаются пользовательские данные.

Физический восходящий канал управления может использоваться также для передачи, помимо CQI и информации подтверждения, запроса планирования, запрашивающего выделение ресурсов восходящего общего канала, и запроса освобождения (отмены), используемого в долгосрочном планировании (persistent scheduling). Здесь под выделением ресурсов восходящего общего канала понимается процесс, в котором базовая станция с использованием физического нисходящего канала управления в некотором подкадре сообщает в терминал пользователя, что указанному терминалу пользователя в следующем подкадре разрешена связь с использованием восходящего общего канала.

В системе радиосвязи данного варианта осуществления для восходящей линии связи используется скачкообразное изменение частоты. При скачкообразном изменении частоты выделение блоков частот варьируется в соответствии с шаблоном скачкообразного изменения частоты.

Как показано на фиг.4, при использовании для восходящей линии связи скачкообразного изменения частоты ресурсы выделяются терминалу 100n пользователя в единицах ресурсных элементов (RU). На фиг.4 по горизонтальной оси отложена частота, а по вертикальной оси отложено время. Например, один ресурсный элемент имеет ширину полосы частот равную 180 кГц, а один слот имеет длительность в 0,5 мс. Один подкадр содержит два слота (временных интервала).

Терминалам пользователя, для которых используется скачкообразное изменение частоты, могут выделяться полосы частот, расположенные вблизи нижней и верхней границы полосы частот системы, что позволяет увеличить разнесение по частоте терминалов пользователя, для которых используется скачкообразное изменение частоты. При этом полосы частот, отличные от полос частот вблизи нижней и верхней границ полосы частот системы, выделяются терминалам пользователя, для которых используется схема локализованного FDMA. Для терминалов пользователя, к которым применяется схема локализованного FDMA, это улучшает совместимость со схемой передачи с одной несущей.

Базовая станция 200m данного варианта осуществления определяет, следует ли использовать скачкообразное изменение частоты для терминала пользователя на основании информации об условиях распространения радиоволн и типа трафика терминала пользователя. Информация об условиях распространения радиоволн, получаемая из терминала пользователя, содержит скорость движения указанного терминала пользователя. Например, базовая станция 200m принимает решение об использовании скачкообразного изменения частоты для терминала пользователя, если ожидается, что применение скачкообразного изменения частоты для указанного терминала пользователя даст эффект разнесения по частоте. Более конкретно, базовая станция 200m определяет, что следует применить скачкообразное изменение частоты для терминала пользователя, двигающегося с высокой скоростью, или для терминала пользователя, периодически передающего данные небольшого размера, например, пакеты речевой связи (пакеты VolP). После принятия решения о применении скачкообразного изменения частоты для терминала пользователя базовая станция 200m сообщает терминалу пользователя о том, что восходящий сигнал передается в терминал пользователя с использованием скачкообразного изменения частоты.

При планировании базовая станция 200m выделяет терминалу пользователя, для которого будет использоваться скачкообразное изменение частоты, ресурсные элементы с различными полосами частот в различных слотах каждого подкадра. Иными словами, подкадр во временном направлении делится на первую половину (первый слот) и вторую половину (второй слот), и первый ресурсный элемент (элементы), выделенный в первой половине (первом слоте) подкадра, имеет полосу частот, отличающуюся от полосы частот второго ресурсного элемента (элементов), выделенного во второй половине (втором слоте) подкадра.

После выполнения планирования базовая станция 200m сообщает информацию, указывающую выделенные ресурсных элементах, в терминал пользователя посредством гранта восходящего планирования. Например, базовая станция 200m сообщает для каждого подкадра первый ресурсный элемент (элементы) и величину сдвига от первого ресурсного элемента (элементов) в частотном направлении.

Далее со ссылкой на фиг.5 описывается базовая станция 200m данного варианта осуществления.

Базовая станция 200m данного варианта осуществления включает модуль 202 формирования сигнала OFDM, модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования, модуль 206 формирования опорного сигнала (reference signal, RS) демодуляции, модуль 208 детектирования синхронизации - оценки канала, модуль 210 канального декодирования, модуль 212 когерентного детектирования, модуль 214 оценки состояния восходящего канала, планировщик 216 и модуль 218 определения необходимости скачкообразного изменения частоты. Модуль 202 формирования сигнала OFDM и модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования образуют передающий модуль. Модуль 206 формирования опорного сигнала демодуляции, модуль 208 детектирования синхронизации - оценки канала, модуль 210 канального декодирования, модуль 212 когерентного детектирования, модуль 214 оценки состояния восходящего канала, планировщик 216 и модуль 218 определения необходимости скачкообразного изменения частоты образуют приемный модуль.

Восходящие каналы, принятые из терминалов 100n пользователя, передаются в модуль 208 детектирования синхронизации - оценки качества канала, в модуль 212 когерентного детектирования и в модуль 214 оценки состояния восходящего канала.

Модуль 208 детектирования синхронизации - оценки канала выполняет детектирование синхронизации для принятых сигналов с целью определения временных параметров приема указанных сигналов, выполняет оценку канала на основании опорного сигнала демодуляции, поданного из описываемого далее модуля 206 формирования опорного сигнала демодуляции, и передает результаты оценки канала в модуль 212 когерентного детектирования.

Модуль 212 когерентного детектирования выполняет когерентное детектирование принятых сигналов на основании результатов оценки канала, а также выделенных частот и полос частот, поданных из описываемого далее планировщика 216, и передает демодулированные принятые сигналы в модуль 210 канального декодирования.

Модуль 210 канального декодирования декодирует демодулированные принятые сигналы и формирует восстановленные сигналы данных, соответствующие пользовательским номерам выбранных терминалов 100n пользователя, переданным из планировщика 216. Сформированные таким образом восстановленные сигналы данных передаются в сеть.

Модуль 214 оценки состояния восходящего канала на основании поступивших принятых сигналов оценивает состояние восходящих каналов терминалов 100n пользователя и передает оцененное таким образом состояние восходящих каналов в планировщик 216.

Модуль 218 определения необходимости скачкообразного изменения частоты принимает информацию об условиях распространения радиоволн и типах графика для терминалов 100n пользователя. На основании принятой информации об условиях распространения радиоволн и типах трафика терминалов 100n пользователя модуль 218 определения необходимости скачкообразного изменения частоты определяет, следует ли использовать скачкообразное изменение частоты для терминалов 100 пользователя. Например, если информация об условиях распространения радиоволн, полученная из терминала пользователя, указывает, что скорость движения терминала пользователя превышает заранее заданное пороговое значение или равна ему, или если тип трафика представляет собой передаваемые периодически данные небольшого размера, например, пакеты речевой связи (пакеты VolP), то модуль 218 определения необходимости скачкообразного изменения частоты определяет, что следует применить скачкообразное изменение частоты для указанного терминала пользователя. Если же информация об условиях распространения радиоволн, принятая из терминала пользователя, указывает на то, что скорость движения указанного терминала пользователя меньше заранее заданного порогового значения, или если тип трафика отличается от периодически передаваемых данных небольшого размера, таких как пакеты речевой связи (пакеты VolP), то модуль 218 определения необходимости скачкообразного изменения частоты определяет, что не нужно использовать скачкообразное изменение частоты для указанного терминала пользователя. После определения того, что нужно использовать скачкообразное изменение частоты для одного или большего числа терминалов 100n пользователя, модуль 218 определения необходимости скачкообразного изменения частоты извещает планировщик 216 и модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования о предстоящем использовании скачкообразного изменения частоты для терминалов 100n пользователя.

Планировщик 216 выполняет частотное планирование на основании, например, оцененного состояния восходящего канала терминалов 100n пользователя и информации QoS терминалов 100n пользователя, например, такой, как затребованные скорости передачи данных, статусы буферов, допустимые вероятности появления ошибок и задержки. Затем планировщик 216 подает выделенные частоты и полосы частот в модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования и в модуль 212 когерентного детектирования, а также подает пользовательские номера выбранных терминалов 100n пользователя в модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования и в модуль 210 канального декодирования. Здесь термином «планирование» (scheduling) обозначается процесс отбора терминалов пользователя, которым в данном подкадре разрешена передача пакета данных с использованием общего канала. После выбора в ходе планирования терминалов пользователя определяются схемы модуляции, кодовые скорости и размеры данных для пакетных данных, подлежащих передаче выбранными терминалами пользователя. Схемы модуляции, отношения кодирования и размеры данных определяются, например, на основании SIR зондирующих опорных сигналов (sounding reference signals, SRS), передаваемых из терминалов пользователя в восходящей линии связи. Кроме того, определяются ресурсные элементы, которые должны использоваться выбранными терминалами пользователя для передачи пакетных данных. Ресурсные элементы определяются, например, на основании SIR для зондирующих опорных сигналов, передаваемых из терминалов пользователя в восходящей линии связи.

Модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования на основании результатов планирования, определенных транспортных форматов и выделенных частотных ресурсов формирует гранты восходящего планирования. Каждый грант восходящего планирования включает, например, идентификатор выбранного терминала пользователя, которому разрешена связь с использованием физического восходящего общего канала, информацию о транспортном формате пользовательских данных, такую, как размер данных и схема модуляции, информацию о выделении ресурсного элемента в восходящей линии связи и информацию о мощности передачи для восходящего общего канала. Здесь ресурсные элементы восходящей линии связи соответствуют частотным ресурсам и могут также называться блоками ресурсов.

Когда из модуля 218 определения необходимости скачкообразного изменения частоты сообщены терминалы пользователя, для которых должно использоваться скачкообразное изменение частоты (указанные терминалы далее могут называться терминалами пользователя со скачкообразным изменением частоты), планировщик 216 выделяет каждому терминалу пользователя со скачкообразным изменением частоты ресурсные элементы с различными полосами частот в различных слотах каждого подкадра.

Кроме того, модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования сообщает терминалам пользователя со скачкообразным изменением частоты о необходимости применения скачкообразного изменения частоты. Указанное сообщение об использовании скачкообразного изменения частоты может быть передано посредством гранта восходящего планирования или посредством сигнала управления верхнего уровня. Грант восходящего планирования передается в каждом подкадре. По этой причине по сравнению со случаем использования сигнала управления верхнего уровня передача сообщения об использовании скачкообразного изменения частоты посредством гранта восходящего планирования позволяет быстрее переключаться между обычной схемой выделения и схемой выделения со скачкообразным изменением частоты.

Когда для терминала пользователя должно использоваться скачкообразное изменение частоты, модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования формирует для каждого подкадра грант восходящего планирования, содержащий информацию, указывающую первые ресурсные элементы (выделенные в первой половине (первом слоте) подкадра) и величину сдвига от первых ресурсных элементов в частотном направлении. Например, в предположении, что индексы назначаются ресурсным элементам, начиная с одного конца по частотному направлению, модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования формирует для каждого подкадра восходящий грант планирования, содержащий индексы первых ресурсных элементов и величину сдвига от индексов первых ресурсных элементов. Терминал 100n пользователя определяет вторые ресурсные элементы, выделяемые во второй половине (втором слоте) подкадра, используя величину сдвига от первых ресурсных элементов в частотном направлении.

Модуль 206 формирования опорного сигнала демодуляции формирует опорный сигнал демодуляции и передает сформированный опорный сигнал демодуляции в модуль 208 детектирования синхронизации - оценки канала.

Модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования формирует сигнал управления (сигнал управления передачей - сигнал гранта восходящего планирования), содержащий выделенные частоты и полосы частот, а также пользовательские номера выбранных терминалов пользователя, принятые из планировщика 216, и подает сигнал управления в модуль 202 формирования сигнала OFDM. Сигнал управления может содержать гранты восходящего планирования.

Модуль 202 формирования сигнала OFDM формирует сигнал OFDM, содержащий сигнал управления, и передает сигнал OFDM в радиопередатчик. В результате сигнал управления передается в выбранные терминалы пользователя посредством нисходящего канала управления.

Модуль 202 формирования сигнала OFDM может формировать сигнал OFDM, который в дополнение к вышеописанному каналу управления содержит нисходящие каналы, например, нисходящий опорный сигнал, канал данных и канал вызова, и передавать данный сигнал OFDM в радиопередатчик. В результате нисходящие каналы передаются пользователям.

Далее со ссылкой на фиг.6 описывается терминал 100п пользователя данного варианта осуществления.

Терминал 100n пользователя данного варианта осуществления включает модуль 102 демодуляции сигнала OFDM, модуль 104 демодуляции/декодирования сигнала гранта восходящего планирования, модуль 106 демодуляции/декодирования других сигналов управления и данных, модуль 108 формирования опорного сигнала (RS) демодуляции, модуль 110 канального кодирования, модуль 112 модуляции данных и модуль 114 модуляции SC-FDMA. Модуль 102 демодуляции сигнала OFDM, модуль 104 демодуляции/декодирования сигнала гранта восходящего планирования и модуль 106 демодуляции/декодирования других сигналов управления и данных образуют приемный модуль. Модуль 108 формирования опорного сигнала демодуляции, модуль 110 канального кодирования, модуль 112 модуляции данных и модуль 114 модуляции SC-FDMA образуют передающий модуль.

Терминал 100n пользователя декодирует сигнал гранта восходящего планирования и, если пользовательский номер, соответствующий данному терминалу 100n пользователя, содержится в сигнале гранта восходящего планирования, формирует и передает передаваемый сигнал.

Сигнал, принятый из базовой станции 200m, подается в модуль 102 демодуляции сигнала OFDM. Модуль 102 демодуляции сигнала OFDM демодулирует принятый сигнал, передает содержащийся в принятом сигнале сигнал управления передачей - сигнал гранта восходящего планирования в модуль 104 демодуляции/декодирования сигнала гранта восходящего планирования и передает сигналы управления и сигналы данных, содержащиеся в принятом сигнале, отличные от сигнала управления передачей - сигнала гранта восходящего планирования, в модуль 106 демодуляции/декодирования других сигналов управления и данных.

Модуль 104 демодуляции/декодирования сигнала гранта восходящего планирования демодулирует и декодирует сигнал гранта восходящего планирования. Если сигнал гранта восходящего планирования содержит сообщение об использовании скачкообразного изменения частоты, указывающее на использование скачкообразного изменения частоты для терминала 100n пользователя, то модуль 104 демодуляции/декодирования сигнала гранта восходящего планирования подает сообщение об использовании скачкообразного изменения частоты в модуль 114 модуляции SC-FDMA. Модуль 104 демодуляции/декодирования сигнала гранта восходящего планирования также подает информацию, указывающую выделенные ресурсные элементы, в модуль 114 модуляции SC-FDMA. Например, модуль 104 демодуляции/декодирования сигнала гранта восходящего планирования передает в модуль 114 модуляции SC-FDMA информацию, указывающую первые ресурсные элементы, выделенные в первом слоте каждого подкадра, и величину сдвига от первых ресурсных элементов в частотном направлении.

Модуль 108 формирования опорного сигнала демодуляции формирует опорный сигнал демодуляции и подает сформированный опорный сигнал демодуляции в модуль 114 модуляции SC-FDMA.

В то же время модуль 110 канального кодирования канальное кодирование в отношении пользовательских данных, а модуль 112 модуляции данных выполняет модуляцию данных в отношении прошедших канальное кодирование пользовательских данных и передает прошедшие модуляцию данных пользовательские данные в модуль 114 модуляции SC-FDMA.

Модуль 114 модуляции SC-FDMA (OFDM с БПФ-распределением) модулирует поступившие опорный сигнал демодуляции и пользовательские данные с учетом выделенных ресурсных элементов и выдает передаваемый сигнал. Например, модуль 114 модуляции SC-FDMA (OFDM с БПФ-распределением) определяет вторые ресурсные элементы, выделяемые во втором слоте подкадра, используя величину сдвига от первых ресурсных элементов в частотном направлении. Данный способ позволяет терминалу пользователя, для которого используется скачкообразное изменение частоты, передавать данные с использованием ресурсных элементов с различными полосами частот в различных слотах каждого подкадра.

Далее описывается система радиосвязи, включающая базовые станции и терминалы пользователя, в соответствии с еще одним вариантом осуществления настоящего изобретения.

В данном варианте осуществления конструкции системы радиосвязи, базовых станций и терминалов пользователя в основном повторяют описанные со ссылкой на фиг.2, 5 и 6.

Как и в вышеописанном варианте осуществления, в данном варианте осуществления базовая станция 200 выделяет терминалу пользователя, для которого предстоит использование скачкообразного изменения частоты, ресурсные элементы с различными полосами частот в различных слотах каждого подкадра. В данном варианте осуществления заранее задается величина сдвига в частотном направлении от первых ресурсных элементов, выделяемых в первой половине каждого подкадра, и эта величина сдвига используется для определения вторых ресурсных элементов, выделяемых во второй половине подкадра. Например, в предположении, что индексы назначаются ресурсным элементам, начиная с одного конца по частотному направлению, величина сдвига представляется разностью между индексами (номерами ресурсных элементов) первых и вторых ресурсных элементов.

В примере, представленном на фиг.7, величина сдвига равна +21, и вторые ресурсные элементы идентифицируются номерами ресурсных элементов, полученными путем прибавления 21 к каждому номеру ресурсных элементов среди первых ресурсных элементов. Величина сдвига может задаваться в спецификациях в соответствии с полосой частот, поддерживаемой терминалами пользователя, или сообщаться сигналом верхнего уровня. Данный способ позволяет терминалу пользователя передавать во втором слоте подкадра сигнал с использованием полосы частот, на заданную величину отличающейся от полосы частот, используемой в первом слоте подкадра, и тем самым позволяет получить определенный эффект разнесения по частоте.

После выполнения планирования базовая станция 200 посредством гранта восходящего планирования сообщает в терминал пользователя информацию, указывающую выделенные ресурсные элементы. Поскольку величина сдвига задана заранее либо передана через верхний уровень, базовая станция 200 сообщает для каждого подкадра индексы первых ресурсных элементов.

Когда терминалы пользователя, для которых должно использоваться скачкообразное изменение частоты (терминалы пользователя со скачкообразным изменением частоты) сообщаются модулем 218 определения необходимости скачкообразного изменения частоты, планировщик 216 выделяет терминалам пользователя со скачкообразным изменением частоты первые ресурсные элементы в первой половине (первом слоте) каждого подкадра. Поскольку в восходящей линии связи используется SC-FDMA, здесь в случае необходимости выделения терминалу пользователя нескольких ресурсных элементов, в первом слоте каждого подкадра нужно выделять последовательно идущие ресурсные элементы, чтобы подряд следовали и ресурсные элементы, выделяемые во втором слоте подкадра.

Для терминала пользователя, для которого следует использовать скачкообразное изменение частоты, модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования для каждого подкадра формирует грант восходящего планирования, содержащий информацию, например, индексы, указывающую первые ресурсные элементы, выделенных в первой половине подкадра.

Далее описывается система радиосвязи, включающая базовые станции и терминалы пользователя, в соответствии с еще одним вариантом осуществления настоящего изобретения.

В данном варианте осуществления конструкции системы радиосвязи, базовых станций и терминалов пользователя в основном повторяют описанные со ссылкой на фиг.2, 5 и 6.

В данном варианте осуществления, как и в описанных выше вариантах осуществления, базовая станция 200 выделяет терминалу пользователя, для которого должно использоваться скачкообразное изменение частоты, ресурсные элементы с различными полосами частот в различных слотах каждого подкадра. Кроме того, в данном варианте осуществления заранее задается соответствие между первыми ресурсными элементами, выделяемыми в первой половине подкадра, и вторыми ресурсными элементами, выделяемыми во второй половине подкадра. Например, в предположении, что индексы назначаются ресурсным элементам, начиная с одного конца по частотному направлению, и индекс первого ресурсного элемента в первой половине подкадра равен k (k является целым числом, большим или равным нулю), соответствующий второй ресурсный элемент во второй половине подкадра может определяться выражением «наибольший индекс ресурсного элемента - k», как показано на фиг.8. Указанное соответствие может задаваться в спецификациях или сообщаться посредством сигнала верхнего уровня. Данный способ обеспечивает следование подряд ресурсных элементов, выделенных во втором слоте, и тем самым дает возможность использовать передачу с одной несущей без применения какого-либо специального процесса управления.

После выполнения планирования информация, указывающая выделенные ресурсные элементы, сообщается посредством гранта восходящего планирования. Поскольку соответствие между первыми ресурсными элементами и вторыми ресурсными элементами задано заранее или передано через верхний уровень, посредством гранта восходящего планирования для каждого подкадра сообщаются индексы первых ресурсных элементов.

Когда терминалы пользователя, для которых должно использоваться скачкообразное изменение частоты (терминалы пользователя со скачкообразным изменением частоты), сообщаются модулем 218 определения необходимости скачкообразного изменения частоты, планировщик 216 выделяет терминалам пользователя со скачкообразным изменением частоты первые ресурсные элементы в первой половине (первом слоте) каждого подкадра.

Для терминала пользователя, для которого должно использоваться скачкообразное изменение частоты, модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования для каждого подкадра формирует грант восходящего планирования, содержащий информацию (например, индексы), указывающую первые ресурсные элементы.

Далее описывается система радиосвязи, включающая базовые станции и терминалы пользователя, в соответствии с еще одним вариантом осуществления настоящего изобретения.

В данном варианте осуществления конструкции системы радиосвязи, базовых станций и терминалов пользователя в основном повторяют описанные со ссылкой на фиг.2, 5 и 6.

В данном варианте осуществления заданы группы ресурсных элементов (resource unit groups, RUG), каждая из которых содержит несколько следующих подряд ресурсных элементов.

Как и в описанных выше вариантах осуществления, базовая станция 200 выделяет терминалу пользователя, для которого должно использоваться скачкообразное изменение частоты, ресурсные элементы с различными полосами частот в различных слотах каждого подкадра. В данном варианте осуществления заранее задается величина сдвига в частотном направлении от первой группы ресурсных элементов в первой половине (первом слоте) каждого подкадра, и эта величина сдвига используется для определения второй группы ресурсных элементов во второй половине (втором слоте) подкадра. Например, в предположении, что индексы назначаются группам ресурсных элементов, начиная с одного конца по частотному направлению, величина сдвига представляется разностью между индексами (номерами групп ресурсных элементов) первой группы ресурсных элементов и второй группы ресурсных элементов. В примере, представленном на фиг.9, величина сдвига равна +5, и вторая группа ресурсных элементов с номером #6 во втором слоте подкадра идентифицируется путем прибавления 5 к номеру группы ресурсных элементов с номером #1 соответствующей первой группы ресурсных элементов в первом слоте подкадра.

Кроме того, в данном варианте осуществления может заранее задаваться соответствие между ресурсными элементами первой группы ресурсных элементов и второй группы ресурсных элементов. Предположим, что индексы назначены ресурсным элементам в каждой группе ресурсных элементов, начиная с одного конца по частотному направления, как показано на фиг.10. Тогда для индекса ресурсного элемента в первой группе ресурсных элементов, равного i (i является целым числом, большим 0, но не превосходящим количество ресурсных элементов в группе ресурсных элементов), соответствующий ресурсный элемент во второй группе ресурсных элементов может определяться выражением «наибольший индекс ресурсного элемента во второй группе ресурсных элементов + 1 - i». Указанное соответствие может задаваться в спецификации либо сообщаться посредством сигнала верхнего уровня. Данный способ позволяет терминалу пользователя передавать во втором слоте подкадра сигнал с использованием полосы частот во второй группе ресурсных элементов, на заданную величину отличающейся от полосы частот в первой группе ресурсных элементов, используемой в первом слоте подкадра, и тем самым позволяет получить определенный эффект разнесения по частоте. Данный способ также обеспечивает последовательное расположение ресурсных элементов, выделенных во втором слоте, и тем самым дает возможность использовать передачу с одной несущей без применения какого-либо специального процесса управления.

После выполнения планирования информация, например, индексы, указывающая выделенные ресурсные элементы, сообщается посредством гранта восходящего планирования. Поскольку соответствие между первой и второй группами ресурсных элементов и соответствие между ресурсными элементами в первой и второй группе ресурсных элементов задано заранее или передано через верхний уровень, посредством гранта восходящего планирования сообщается информация, указывающая первую группу ресурсных элементов, и информация, указывающая ресурсные элементы в первой группе ресурсных элементов. Более конкретно, посредством гранта восходящего планирования сообщаются индекс первой группы ресурсных элементов и индексы ресурсных элементов в первой группе ресурсных элементов.

Когда терминалы пользователя, для которых должно использоваться скачкообразное изменение частоты (терминалы пользователя со скачкообразным изменением частоты), сообщаются модулем 218 определения необходимости скачкообразного изменения частоты, планировщик 216 выделяет терминалам пользователя со скачкообразным изменением частоты первые ресурсные элементы в первой половине (первом слоте) каждого подкадра.

Для каждого терминала пользователя со скачкообразным изменением частоты модуль 204 формирования сигнала управления передачей - сигнала гранта восходящего планирования формирует для каждого подкадра грант восходящего планирования, содержащий индекс первой группы ресурсных элементов, выделенных в первой половине подкадра, и индексы ресурсных элементов в первой группе ресурсных элементов.

Далее описывается система радиосвязи, включающая базовые станции и терминалы пользователя, в соответствии с еще одним вариантом осуществления настоящего изобретения.

Конструкция системы радиосвязи данного варианта осуществления в основном повторяет описанную выше со ссылкой на фиг.2.

Базовая станция 200 данного варианта осуществления имеет конструкцию, показанную на фиг.11, где к конструкции, показанной на фиг.5, добавлены модуль 220 формирования широковещательного канала, соединенный с планировщиком 216, и модуль 202 формирования сигнала OFDM.

В данном варианте осуществления планировщик 216 передает информацию о выделении, указывающую ресурсные элементы, выделенные в ходе планирования, в модуль 220 формирования широковещательного канала.

Модуль 220 формирования широковещательного канала передает широковещательный канал (broadcast channel), содержащий информацию о выделении, посредством физического нисходящего общего канала. Широковещательный канал, передаваемый посредством физического нисходящего общего канала, также называется динамическим широковещательным каналом.

Данная конфигурация позволяет сообщать терминалу пользователя о том, что нужно использовать скачкообразное изменение частоты для терминала пользователя, используя лишь один бит. В этом случае грант восходящего планирования включает один бит информации, указывающей, должно ли использоваться скачкообразное изменение частоты.

Терминал 100 пользователя данного варианта осуществления имеет конструкцию, показанную на фиг.12, где к конструкции, показанной на фиг.6, добавлены модуль 116 демодуляции/декодирования широковещательного канала, соединенный с модулем 102 демодуляции сигнала OFDM, и модуль 114 модуляции SC-FDMA.

Принятый из базовой станции 200m сигнал передается в модуль 102 демодуляции сигнала OFDM. Модуль 102 демодуляции сигнала OFDM демодулирует принятый сигнал, передает содержащийся в принятом сигнале сигнал управления передачей - сигнал гранта восходящего планирования в модуль 104 демодуляции/декодирования сигнала гранта восходящего планирования, передает широковещательный канал, содержащийся в принятом сигнале, в модуль 116 демодуляции/декодирования широковещательного канала, и передает сигналы управления и сигналы данных, содержащиеся в принятом сигнале, отличные от сигнала управления передачей - сигнала гранта восходящего планирования и широковещательного канала, в модуль 106 демодуляции/декодирования других сигналов управления и данных.

Модуль 116 демодуляции/декодирования широковещательного канала демодулирует и декодирует поступивший широковещательный канал и передает информацию о выделении ресурсных элементов в модуль 114 модуляции SC-FDMA.

В вышеприведенных вариантах осуществления, как показано на фиг.13, полосы частот, расположенные вблизи нижней и верхней границ полосы частот системы, выделяются терминалам пользователя, для которых используется скачкообразное изменение частоты, а остальные полосы частот выделяются терминалам пользователя, для которым используется схема локализованного FDMA. В данном варианте осуществления, как показано на фиг.14, терминалам пользователя, для которых нужно использовать скачкообразное изменение частоты, могут выделяться также и полосы частот, отличные от полос частот, расположенных вблизи нижней и верхней границы полосы частот системы. При использовании данного способа эффективное частотное планирование становится возможным даже при использовании скачкообразного изменения частоты для большого числа терминалов пользователя.

В вышеприведенных вариантах осуществления предполагалось использование системы на основе стандартов Evolved UTRA и UTRAN (также называемого Long Term Evolution или Super 3G). Однако базовая станция в соответствии с осуществлением настоящего изобретения может быть применена в любой системе, использующей для восходящей линии связи схему FDMA, например, SC-FDMA.

Хотя для облегчения понимания настоящего изобретения в вышеприведенных описаниях использованы конкретные численные значения, данные численные значения являются лишь примерами, и вместо них могут использоваться другие значения, если не оговорено обратное.

Настоящее изобретение не ограничивается конкретными раскрытыми вариантами осуществления и может быть реализовано в вариантах и с изменениями без выхода за границы охраны настоящего изобретения. Хотя в вышеприведенных вариантах осуществления для описания устройств использовались структурные схемы, устройства могут быть реализованы с использованием аппаратных средств, программных средств или их комбинации.

1. Терминал пользователя, содержащий модуль модуляции, сконфигурированный для системы, в которой в полосе частот системы в частотной области определены несколько ресурсных элементов, во временной области подкадр включает первый слот и второй слот, и каждый из ресурсных элементов имеет длину, равную одному слоту во временной области, при этом модуль модуляции выполнен с возможностью отображения данных терминала пользователя в ресурсные элементы с различными полосами частот в первом слоте и втором слоте; и передающий модуль, выполненный с возможностью передачи отображенных данных, причем
в полосе частот системы для первого слота и для второго слота определены две или большее количество групп ресурсных элементов, каждая из которых включает два или большее количество последовательно идущих в частотной области ресурсных элементов;
модуль модулирования выполнен с возможностью отображения данных в первый ресурсный элемент в первой группе ресурсных элементов в первом слоте и во второй ресурсный элемент во второй группе ресурсных элементов во втором слоте, так, что первая группа ресурсных элементов отстоит от второй группы ресурсных элементов на ширину полосы частот, соответствующую заранее заданному количеству групп ресурсных элементов;
в каждой из групп ресурсных элементов ресурсным элементам назначены индексы, последовательно возрастающие от 1 в направлении от нижних частот к верхним частотам; и
второй ресурсный элемент во второй группе ресурсных элементов, в который отображены данные во втором слоте, определен формулой:
(наибольший индекс ресурсных элементов во второй группе ресурсных элементов) + 1 - (индекс первого ресурсного элемента в первой группе ресурсных элементов, в который отображены данные в первом слоте).

2. Терминал пользователя по п.1, отличающийся тем, что дополнительно содержит приемный модуль, выполненный с возможностью приема из базовой станции информации, указывающей индекс первого ресурсного элемента в первой группе ресурсных элементов, при этом модуль модуляции выполнен с возможностью отображения данных на основании информации, принятой приемным модулем.

3. Терминал пользователя по п.1, отличающийся тем, что дополнительно содержит приемный модуль, выполненный с возможностью приема из базовой станции информации, указывающей, что данные терминала пользователя должны быть отображены в ресурсные элементы с различными полосами частот в первом слоте и втором слоте.

4. Способ, осуществляемый терминалом пользователя в системе, в которой в полосе частот системы в частотной области определены несколько ресурсных элементов, во временной области подкадр включает первый слот и второй слот, и каждый из ресурсных элементов имеет длину, равную одному слоту во временной области, при этом способ включает:
отображение данных терминала пользователя в ресурсные элементы с различными полосами частот в первом слоте и втором слоте; и
передачу отображенных данных, причем
в полосе частот системы для первого слота и для второго слота определены две или большее количество групп ресурсных элементов, каждая из которых включает два или большее количество последовательно идущих в частотной области ресурсных элементов;
данные отображают в первый ресурсный элемент в первой группе ресурсных элементов в первом слоте и во второй ресурсный элемент во второй группе ресурсных элементов во втором слоте, так, что первая группа ресурсных элементов отстоит от второй группы ресурсных элементов на ширину полосы частот, соответствующую заранее заданному количеству групп ресурсных элементов;
в каждой из групп ресурсных элементов ресурсным элементам назначены индексы, последовательно возрастающие от 1 в направлении от нижних частот к верхним частотам; и
второй ресурсный элемент во второй группе ресурсных элементов, в который отображены данные во втором слоте, определен формулой:
(наибольший индекс ресурсных элементов во второй группе ресурсных элементов) + 1 - (индекс первого ресурсного элемента в первой группе ресурсных элементов, в который отображены данные в первом слоте).

5. Система связи, включающая терминал пользователя и базовую станцию, причем терминал пользователя содержит модуль модуляции, сконфигурированный для системы, в которой в полосе частот системы в частотной области определены несколько ресурсных элементов, во временной области подкадр включает первый слот и второй слот, и каждый из ресурсных элементов имеет длину, равную одному слоту во временной области, при этом модуль модуляции выполнен с возможностью отображения данных терминала пользователя в ресурсные элементы с различными полосами частот в первом слоте и втором слоте; и передающий модуль, выполненный с возможностью передачи отображенных данных в базовую станцию, причем
в полосе частот системы для первого слота и для второго слота определены две или большее количество групп ресурсных элементов, каждая из которых включает два или большее количество последовательно идущих в частотной области ресурсных элементов;
модуль модулирования выполнен с возможностью отображения данных в первый ресурсный элемент в первой группе ресурсных элементов в первом слоте и во второй ресурсный элемент во второй группе ресурсных элементов во втором слоте, так, что первая группа ресурсных элементов отстоит от второй группы ресурсных элементов на ширину полосы частот, соответствующую заранее заданному количеству групп ресурсных элементов;
в каждой из групп ресурсных элементов ресурсным элементам назначены индексы, последовательно возрастающие от 1 в направлении от нижних частот к верхним частотам; и
второй ресурсный элемент во второй группе ресурсных элементов, в который отображены данные во втором слоте, определен формулой:
(наибольший индекс ресурсных элементов во второй группе ресурсных элементов) + 1 - (индекс первого ресурсного элемента в первой группе ресурсных элементов, в который отображены данные в первом слоте).



 

Похожие патенты:

Изобретение относится к системам связи. Технический результат заключается в повышении эффективности приема.

Изобретение относится к средствам обеспечения возможности прямого доступа и совместного использования оценки безопасности. Технический результат заключается в повышении защищенности сети предприятия.

В настоящей группе изобретений, которая относится к области связи, предлагается способ и устройство для передачи данных полупостоянного планирования (SPS-данных) для того, чтобы эффективно снизить вероятность повторной передачи полуустойчивой службы и увеличить пропускную способность системы.

Изобретение относится к области мобильной связи и предназначено для повышения коэффициента использования ресурсов за счет устранении проблемы бесполезного расходования доступных ресурсов базовой станции вследствие невозможности их рационального распределения.

Изобретение относится к технике связи. Технический результат заключается в предоставлении устройства базовой станции для беспроводной связи, которое может предотвращать снижение пропускной способности системы вследствие снижения качества эффективности использования ресурса связи канала для выполнения передачи с частотным разнесением, когда передача с частотной диспетчеризацией и передача с частотным разнесением одновременно выполняются при связи с несколькими несущими.

Изобретение относится к системам связи. Технический результат заключается в обеспечении скачкообразного изменения частоты в беспроводной сети в различных эксплуатационных сценариях.

Изобретение относится к технологиям позиционирования, предназначенным для предоставления услуг, основанных на определении местоположения, и, в частности, к получению в терминале информации о точном времени.

Изобретение относится к беспроводной связи. Раскрывается способ передачи отчета о мощности для мобильного устройства, сконфигурированного с множеством составляющих несущих восходящей линии связи и/или параллельной передачей по PUCCH и PUSCH в системе беспроводной связи.

Изобретение относится к устройству базовой станции радиосвязи, устройству мобильной станции радиосвязи, способу декодирования канала управления и способу выделения канала управления.

Изобретение относится к беспроводной связи. Технический результат заключается в уменьшении задержки передачи обслуживания в системе беспроводной связи.

Изобретение относится, в общем, к беспроводным сетям, которые используют ограничения доступа для определенных частей сети, таких как сети, имеющие соты, такие как закрытые группы абонентов 3GPP TS.36.300, которые открыты только для участников предопределенной группы. Технический результат заключается в предоставлении возможности лицам, не являющимся участниками закрытой группы абонентов (CSG), получить доступ к сети CSG оператора. Изобретение раскрывает возможность разрешения пользовательскому оборудованию доступа к сети закрытой группы абонентов в качестве участника-гостя. 6 н. и 24 з.п. ф-лы, 4 ил.

Изобретение относится к терминалу приема данных, серверу, системе и способу распространения данных в сети мобильной связи. Технический результат заключается в предотвращении появления необязательных затрат ресурсов на связь при восстановлении дефектных участков при широковещательной передаче данных. Предложен терминал (20) приема данных, который имеет функцию приема широковещательного сигнала и функцию посылки/приема сигнала связи. Блок (210) управления связью принимает данные от сервера (10) распространения данных путем использования функции приема широковещательного сигнала. Когда определено, что имеется дефектный участок, блок (220) определения определяет, следует ли восстановить дефектный участок, в соответствии по меньшей мере с одним из: статуса связи между терминалом (20) приема данных и сервером (10) распространения данных и статуса релевантности данных, относящегося к данным. Когда блок (220) определения определяет, что дефектный участок необходимо восстановить, блок (210) связи запрашивает сервер (10) распространения данных, чтобы тот повторно переслал дефектный участок, путем использования функции посылки/приема сигнала связи и принимает дефектный участок, посланный сервером (10) распространения данных, в соответствии с запросом на повторную посылку путем использования функции посылки/приема сигнала связи. 12 н. и 24 з.п. ф-лы, 13 ил.

Предлагается система и способ управления связью в системе сотовой связи. Технический результат заключается в предотвращении отказа присоединения к групповому вызову. Способ (30) включает измерение (32) условий связи в по меньшей мере одной соте связи системы связи и оценку (34) перегрузки в пределах по меньшей мере одной соты связи системы связи на основе измеренных условий связи. Способ также включает корректировку (40, 42) линий связи в пределах по меньшей мере одной соты связи на основе выполненной оценки перегрузки. 2 н. и 14 з.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к системе и способу избирательной обработки текстовых сообщений в режиме первой попытки доставки (ППД). Технический результат заключается в снижении нагрузки сети мобильной связи. Система (124) передачи текстовых сообщений включает в себя базу (136) правил, устанавливающих, доставка каких текстовых сообщений разрешена путем обработки в режиме ППД, процессор (134) сообщений, первоначально принимающий текстовое сообщение и определяющий, применима ли избирательная обработка в режиме ППД в течение определенного периода времени вследствие наступления инициирующего события. Если избирательная обработка в режиме ППД применима, процессор (134) сообщений осуществляет обработку правил из базы (136) правил, чтобы определить, разрешена ли обработка текстового сообщения в режиме ППД в период избирательной обработки в режиме ППД. Если она разрешена, процессор (134) сообщений пересылает текстовое сообщение системе (132) ППД для обработки в режиме ППД. Если обработка не разрешена, процессор (134) сообщений пересылает текстовое сообщение системе (122) передачи с промежуточным накоплением для обработки в режиме передачи с промежуточным накоплением. 2 н. и 8 з.п. ф-лы, 5 ил.

Группа изобретений относится к средствам обработки услуг. Техническим результатом является повышение безопасности системы при установке мелодии контроля вызова и уменьшение сетевого трафика. Способ включает в себя следующее: клиент управления, расположенный в пользовательском терминале, получает запрос обработки установки мелодии вызова пользователя; и клиент управления отправляет запрос обработки установки мелодии вызова на обслуживающий сервер через сеть мобильной связи, чтобы обслуживающий сервер мог выполнять соответствующую обработку в соответствии с запросом обработки установки мелодии вызова. Устройство реализует операции способа. В вариантах осуществления изобретения также раскрыты система связи и клиент управления, расположенный в пользовательском терминале. 4 н. и 16 з.п. ф-лы, 10 ил., 6 табл.

Заявленное изобретение относится к беспроводной связи. Технический результат состоит в отправке идентификатора устройства по беспроводному соединению именно безопасным образом, чтобы не привлечь к мобильному устройству внимание злоумышленников. Для этого получение ключа(ей) защиты по беспроводному соединению безопасным образом осуществляют путем отправки мобильной станцией по беспроводному соединению односторонней перестановки идентификатора мобильной станции, установления ключей с базовой станцией и отправки реального идентификатора мобильной станции безопасным образом. 6 н. и 27 з.п. ф-лы, 2 ил.

Изобретение относится к мобильной связи. Раскрываются способ управления передачей обслуживания, устройства и система связи. Технический результат заключается в обеспечении эстафетной передачи обслуживания в сети связи с ретрансляторами. Технический результат достигается за счет того, что управляющая базовая станция (DeNB) узла-ретранслятора идентифицируется согласно установленной зависимости между узлом-ретранслятором и управляющей базовой станцией, и вследствие этого маршрутизация сообщения запроса передачи обслуживания может выполняться до корректного DeNB и в итоге отправляться в RN, и обслуживание оборудования пользователя может быть нормально передано соте, управляемой узлом-ретранслятором. 11 н. и 24 з.п. ф-лы, 19 ил.

Изобретение относится к технике связи и может быть использовано для установления беспроводной линии связи в беспроводных сетевых окружениях, имеющих периоды передачи сигнала маяка с различной частотой. Способ беспроводной связи заключается в определении в устройстве, которое находится в активном состоянии во время периода передачи маяка, есть ли кадры в очереди на передачу, в конкуренции устройства за первую возможность передачи для получения доступа к среде беспроводной связи, при этом, если устройство получает доступ к среде беспроводной связи и не имеет кадров в очереди на передачу, конкуренция за дополнительные возможности передачи до достижения заранее заданного количества возможностей передачи и переводится в состояние сна, когда достигнуто заранее заданное количество возможностей передачи или определено, что период активного состояния закончился. Технический результат - уменьшение количества времени активности устройства в сети. 3 н. и 12 з.п. ф-лы, 8 ил.

Изобретение относится к радиосвязи. Раскрыто устройство базовой станции беспроводной связи, в котором ССЕ-выделение может гибко выполняться без коллизии ACK/NACK-сигналов между множеством единичных полос частот, даже когда широкополосная передача выполняется исключительно в схеме нисходящей линии связи, что является техническим результатом. В этом устройстве модуль (105) выделения устанавливает взаимно различные области поиска для каждой из множества единичных полос частот нисходящей линии связи относительно терминалов беспроводной связи, которые осуществляют связь с использованием множества единичных полос частот нисходящей линии связи, и выделяет информацию выделения ресурсов данных схемы нисходящей линии связи, предназначенных для терминалов беспроводной связи для ССЕ во взаимно различных областях поиска, для каждой из множества единичных полос частот нисходящей линии связи, и модуль (119) ACK/NACK-приема извлекает сигнал ответа относительно данных схемы нисходящей линии связи из канала управления восходящей линии связи, ассоциированного с ССЕ, для которого выделена информация выделения ресурсов этих данных схемы нисходящей линии связи. 7 н. и 17 з.п. ф-лы, 9 ил.

Изобретение относится к радиосвязи. Терминал, способный сокращать ресурсные области в полосе частот компонента восходящей линии связи без увеличения сигнализации, даже если множество сигналов подтверждения данных нисходящей линии связи, передаваемых соответственно во множестве полос частот компонента нисходящей линии связи, передается из одной полосы частот компонента восходящей линии связи. Терминал (200), в котором блок (208) приема PCFICH получает информацию CFI, указывающую количество символов, используемых для канала управления, которому выделяется информация выделения ресурсов, относящаяся к данным нисходящей линии связи, направленным устройству, для каждой из полос частот компонента нисходящей линии связи, блок отображения (214) задает ресурсную область, которой выделяется сигнал подтверждения данных нисходящей линии связи, для каждой из множества полос частот компонента нисходящей линии связи, согласно информации CFI каждой из полос частот компонента нисходящей линии связи, в полосе частот компонента восходящей линии связи, заданной для устройства, и отображает сигналы подтверждения в ресурсные области, соответствующие полосам частот компонента нисходящей линии связи, используемым для выделения данных нисходящей линии связи. 6 н. и 14 з.п. ф-лы, 10 ил.
Наверх