Покрытие на имплант из титана и его сплавов и способ его приготовления



Покрытие на имплант из титана и его сплавов и способ его приготовления
Покрытие на имплант из титана и его сплавов и способ его приготовления

 


Владельцы патента RU 2502526:

Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) (RU)

Изобретение относится к области медицины. Описано покрытие на имплант из титана и его сплавов, состоящее из двух слоев. Первый слой состоит из оксидов титана, в основном TiO2, второй слой состоит из оксида алюминия гамма-модификации, общая толщина двухслойного покрытия составляет от 40 до 180 мкм при следующем соотношении компонентов, мас.%: оксид титана, в пересчете на TiO2 - 10-30; гамма-оксид алюминия - 70-90. Описан способ его получения, включающий механическую обработку поверхности импланта, обезжиривание, термическую обработку для получения на поверхности импланта оксидов титана, последующее нанесение второго слоя, при этом обезжиривание ведут в растворе щелочи - KOH, NaOH, термическую обработку осуществляют в интервале температур 700-800°C с последующим получением двухслойного покрытия из оксида титана и оксида алюминия, при этом вначале наносят гидроксид алюминия в нагретом до 60-90°C растворе алюминатов щелочных металлов с последующей выдержкой в этом растворе до комнатной температуры, дальнейшей промывкой, сушкой и термической обработкой покрытия при температуре 500-600°C для получения вторичного покрытия из оксида алюминия. Покрытие проявляет повышенную адгезионную прочность. 2 н. и 4 з.п. ф-лы, 2 табл.

 

Изобретение относится к области медицины и к способам получения высокопористых покрытий на инертных металлических носителях из титана и его сплавов применяемых в медицинских целях для замены костных дефектов при имплантации. Изобретение можно также отнести к медицинской технике, а именно к покрытиям имплантатов из титана и его сплавов и способам их получения, и может быть использовано для создания биоинертного или биосовместимого покрытия на костных имплантатах для травматологии и ортопедии.

Имплантат - это искусственный материал или устройство, хирургически помещенное в организм. В настоящее время в качестве имплантатов в травматолого-ортопедической практике и стоматологии широко используется биокерамика, нанесенная на титановый носитель, необходимой формы, применяемый в медицинских целях для замены костных дефектов. К биокерамике относятся: оксид алюминия, двуокись циркония, окись титана, гидроксиапатит, трикальцийфосфат, биоактивные стекла и стеклокерамика. В зависимости от типа реакции в организме биокерамику можно классифицировать на биоинертную, биоактивную и растворяющуюся в организме (резорбирующуюся). Биоинертные керамические материалы, такие как Al2O3 и ZrO2, прикрепляются путем цементирования или путем впрессования в дефект (механическая фиксация). Ряд кальций-фосфатных материалов, таких как гидроксиапатит, трикальцийфосфат, некоторые составы силикатного стекла и стеклокерамики, относятся к биоактивным материалам, близким по своему составу костной ткани человека. Одним из недостатков кальцийфосфатной керамики является незначительная механическая прочность данного вида имплантатов (Берченко Г.Н., Кесян Г.А., Уразгильдеев Р.З. и др. Сравнительное экспериментально-морфологическое исследование влияния некоторых используемых в травматолого-ортопедической практике кальций-фосфатных материалов на активизацию репаративного остеогенеза // Бюлл. Восточно-Сибирского науч. цент-ра СО РАМН. - 2006. - N4. - С.327-332.; д.м.н. Берченко Геннадий Николаевич /Электронный ресурс/ - 2012. - «http://www cito-bone.ru/» - Диагностика патологии костно-суставной системы). С целью повышения прочности импланта обладающего остеоиндуктивными и остеокондуктивными свойствами, биоактивные покрытие наносят на имплант изготовленный из титана или его сплава. А назначение покрытия - повысить надежность эндопротезирования за счет улучшения контакта импланта с окружающими тканями.

Покрытия обычно формируют на поверхности окисленного титанового импланта, поэтому очень важно, чтобы оксидный слой на титане обладал хорошей адгезией к поверхности титана и обладал достаточной поверхностью для обеспечения адгезии вторичного биоинертного или биосовместимого покрытия. Предварительно материал подвергается пескоструйной или другой механической обработке для снятия первичного слоя оксида титана с поверхности исходного титанового носителя. Наиболее распространенные способы получения покрытий из оксида титана на титановом импланте это: окисление на воздухе, плазменное напыление и анодирование титана и его сплавов импульсным током в условиях искрового разряда - электрохимический метод. (Бутовский К.Г., Лясников А.В., Ленин А.В., Пенкин Р.В., Лясников ВН. Электроплазменное напыление в производстве внутрикостных имплантатов. - Саратов: Сарат. гос. Техн. ун-т, 2006. - 200 с). Затем наносится дополнительное биоинертное и/или биоактивное покрытие, которое включает оксиды алюминия, кальция, фосфора и/или другие элементы, необходимые для улучшения свойств импланта.

Известен способ изготовления стоматологического имплантата с многослойным биоактивным покрытием, получаемым плазменным напылением. Данный способ включает предварительную пескоструйную обработку поверхности имплантата (патент RU 2146535 C1 20.03.2000) для получения шероховатости поверхности титана, которая позволяет обеспечить адгезионную прочность покрытия, однако не создает поверхностной пористости имплантата. Недостатком покрытия является его низкая поверхностная пористость, ограничивающая остеоинтеграцию, что сдерживает широкое применение такого импланта в медицине.

Известен способ подготовки поверхности импланта из титана или его сплавов для нанесения покрытий (патент US 6,210,807 B1, 03.04.2001), в котором при окислении образца титана или его сплава на воздухе при t=500-750°C в течение от 0,5 до 100 ч образуется хорошо адгезированный поверхностный смешанный слой, содержащий по крайней мере 50% масс. оксидов Ti со структурой рутила, и имеющий слой толщиной 0,2-2 мкм над дуффузионной зоной с глубиной 5-50 мкм, обогащенной твердым раствором, где диффундирующим элементом является кислород. Этот смешанный слой обладает повышенными прочностными свойствами и способностью к адгезии вторичных покрытий. Однако для получения высокого качества покрытия - высокой адгезии - процесс окисления занимает до 100 часов и толщина слоя рутила, образующегося при заявленной температуре 750°C на поверхности титана, равная 2 мкм не достаточна для адгезии вторичных покрытий.

Известен способ (RU 2159094 C1 A61F 2/02, 20.11.2000) нанесения покрытия на имплант из титана и его сплавов путем первоначального анодирования титана постоянным или импульсным токомв условиях искрового разряда, а затем, окунают имплант 2-3 раза в суспензию, содержащую гидроксоапатит (ГА) и биологическое стекло. После каждого окунания сушат и обжигают при температуре 600-800oC, достигая толщины покрытия до 100-300 мкм. Недостатком такого способа является трудоемкость - для достижения необходимой толщины покрытия до 100-300 мкм образец многократно подвергается термическому обжигу, что негативно сказывается на прочности покрытия в целом. Многократное окисление высокотемпературное титана приводит к отшелушиванию оксидного слоя на поверхности титана, являющегося носителем вторичных слоев покрытий.

Известен способ получения покрытия на имплантат из титана и его сплавов (RU 2154463, A61K 6/033, A61N 1/32, 20.08.2000.), которое содержит оксид титана и дополнительно содержит кальций-фосфатные соединения, взятые в определенном количественном соотношении. Способ его нанесения заключается в анодировании титана и его сплавов импульсным током в условиях искрового разряда, при этом процесс ведут в насыщенном растворе гидроксиапатита (ГА) в фосфорной кислоте концентрацией 5-20% или 3-5% суспензии гидроксиапатита дисперсностью менее 100 мкм в этом насыщенном растворе. Недостатком данного способа является то, что его реализация не позволяет получать сплошные и прочные покрытия, а также покрытия толщиной более 30 мкм. Процесс требует сложного технологического оборудования, трудоемок.

Вышеупомянутые способы получения биоактивных на основе ГА покрытий, позволяют получить покрытия на титановом импланте по прочности не превышающим значений 15-30 МПа.

В патенте RU 2385740 C1 A61L 27/54, 10.04.2010) достигается прочность покрытия на уровне 30-35 МПа за счет нанесения покрытия микродуговым оксидированием в анодном режиме в водном растворе электролита на основе ортофосфорной кислоты, гидроксиапатита и карбоната кальция, но перед нанесением покрытия поверхность титанового импланта подвергают механической (пескоструйной обработке с использованием порошка оксида алюминия и оксида кремния фракции 250-380 мкм с получением шероховатости 1,5-5 мкм) и химической обработке при кипячении в кислотном (на основе концентрированных соляной и серной кислот) травителе с формированием пор 1-2 мкм. Покрытие содержит кальций-фосфаты в рентгеноаморфном состоянии. Однако процесс также требует сложного технологического оборудования и оборудования для очистки «агрессивных» сточных вод, трудоемок и длителен.

Известен способ, описанный в патенте RU 2314787 C1 A61K 6/02, 20.01.2008, для покрытия костного импланта, который заключается в использовании корпуса из титанового сплава ВТ1-0, покрытого оксидом алюминия и первоначально производят травление корпуса плавиковой кислотой, промывку дистиллированной.водой, а затем наносят ионы кальция в наружный слой корпуса, далее наносят снова слой оксида алюминия путем распыления сапфировой мишени ионами аргона в вакууме, причем толщина образовавшегося слоя оксида алюминия лежит в интервале 0,11-0,2 мкм, затем снова производят нанесение ионов кальция в слой оксида алюминии. Заявлено, что способ позволяет получить имплант повышенного качества, однако для достижения необходимой толщины покрытия требуется многократное повторение технологических операций на сложном технологическом оборудовании, кроме того, недостатком способа является низкая пористость слоя оксида алюминия, как и его низкая удельная поверхность, что также не позволяет добиться желаемого результата за один цикл.

Наиболее близким техническим решением является известный способ - RU 2361623 C1, 20.07.2009, в котором описан способ получения покрытия на имплантат из титана и его сплавов, содержащее оксиды титана, и состоящее из двух слоев, первый слой толщиной 20-30 мкм - из оксидов титана, в основном TiO2, второй слой толщиной 2-5 мкм - из смеси оксидов титана и оксида меди при следующем соотношении компонентов, мас.%: оксид титана (TiO2) 65-75; оксид меди 15-25; остальное другие типы оксидных фаз титана (TiO, Ti3O5). Способ заключается в анодировании титана и его сплавов постоянным током после предварительной пескоструйной обработки поверхности имплантата частицами оксида алюминия, дисперсностью 250-400 мкм придавлении воздушно-абразивной струи 0,65 МПа с последующим получением на шероховатой поверхности импланта двухслойного покрытия, при получении первого слоя покрытия процесс ведут в электролите концентрацией 200 г/л серной кислоты в дистиллированной воде, а при получении второго слоя покрытия процесс ведут в этом же электролите с добавлением раствора 50 г/л сульфата меди. Недостатком способа является низкая прочность покрытия, недостаточная его толщина за одну стадию проведения процесса, равная 2-5 мкм, и низкая пористость.

Задача настоящего изобретения состоит в упрощение технологии и получение на импланте из титана и его сплавов прочного двухслойного покрытия, включающего слой оксида титана, прилегающий к поверхности титанового импланта - TiO2/Ti (первичный слой TiO2, образуется в процессе окисления титана) и высокопористого оксида алюминия (вторичный слой), который образуется в процессе химического нанесения слоя гидроксида алюминия в растворах алюминатов щелочных металлов, например калия или натрия, с последующей дегидратацией при температуре 500-600°C. Вторичный слой прилегает к поверхности оксида титана - γ-Al2O3/TiO2-Ti. Техническим результатом изобретения является повышение адгезионной прочности вторичного биоинертного или биосовместимого покрытия.

Технический результат достигается заявленным способом получения покрытий на импланте из титана и его сплавов. Способ, согласно изобретению, включает предварительную пескоструйную обработку и обезжиривание импланта в растворе шелочи, например, 10% KOH или 10% NaOH при кипячении в течение 1 часа, промывку горячей и холодной дистиллированной водой, сушку на воздухе и термическую обработку (ТО) в интервале температур 700-800°C со скоростью нагрева и охлаждения не выше 1°C мин. и получения на поверхности слоя оксида титана толщиной 10-30 мкм, нанесение покрытия из гидроксида алюминия при погружении заготовки в нагретый до 60-90°C (преимущественно до 90°C) раствор алюмината калия с концентрацией, 4,0-6,0%, преимущественно, 4,0%, или раствор алюмината натрия с концентрацией 14-20,5% (преимущественно 14%) с последующей выдержкой в этом растворе до комнатной температуры в течении 20-60 часов, (преимущественно 20 часов), промывка титанового импланта при кипячении в дистиллированной воде, сушка и ТО покрытия в интервале температур 500-600°C при скорости нагрева и охлаждения не выше 1°C мин.

Получают покрытие на имплант из титана и его сплавов, состоящее из двух слоев, первый слой состоит из оксидов титана, в основном TiO2, второй слой - состоит из оксида алюминия гамма-модификации, причем первый слой имеет толщину 10-30 мкм, а общая толщина покрытия составляет от 40 до 180 мкм, при следующем соотношении компонентов, мас.%. оксид титана, в пересчете на TiO2 - 10-30; гамма-оксид алюминия - 70-90.

Покрытие может быть образовано любой толщины за одну стадию нанесения до 180 мкм и обладает высокой удельной поверхностью (~100 м2/г), а значит и высокой пористостью. Изделия по заявляемому способу могут быть использованы в качестве биоинертного импланта, а также для получения на их поверхности биоактивных и антисептических покрытий с добавками ионов кальция, фосфора, меди и др., например, методом пропитки и/или другими известными методами. Изделия могут быть использованы для внесения лекарственных препаратов в травмированную зону при имплантации, за счет пропитки ими слоя γ-Al2O3.

Формирование покрытия по заявленному способу позволяет повысить адгезионную прочность покрытия на титановом имплантате в 2-5 раза и достичь адгезионной прочности на уровне 100-200 МПа. Покрытие может быть нанесено на имплант различной геометрической формы, необходимой, для замены костных дефектов в травматологии, ортопедии и стоматологии.

Краткое описание изобретения.

Формирование покрытия осуществляют путем предварительной механической (пескоструйной) обработки, обезжиривания в растворе щелочи и окисления на воздухе импланта из титана и его сплавов (например, марки ВТ1-0, ВТ-5, ВТ-6, ВТ-14, ВТ-20), используемых для изготовления медицинских имплантантов, при температурах 700-800°C с определенным режимом нагрева и охлаждения титановой заготовки, для сохранения прочности первичного слоя оксида титана и нанесение на его поверхность покрытия на основе гамма-оксида алюминия, путем химического нанесения на подготовленный титановый имплант покрытия из гидроксида алюминия в растворе алюмината K или Na с последующей промывкой, сушкой и ТО при температурах 500-600°C.

Микроструктуру и толщину слоев оксидов образцов γ-Al2O3/TiO2-Ti-(ВТ1-0) измеряли по аншлифам образцов на фотомикроскопе Neophot-21 с ценой деления измерительной шкалы 0,01 мм и при увеличении до 500х.

Адгезионную прочность покрытия испытывали с использованием адгезиметра (скратч-тестер) REVETEST, CSM Instruments, Швейцария (Петржик М.И., Левашов Е.А., Кристаллография, 2007, том 52, №6, с.1002). По данным скратч-теста покрытия обладают высокой прочностью по меньшей мере ~30 МПа при толщине слоя γ-Al2O3 ~150 мкм, преимущественно ~100 МПА и до ~200 МПА при толщине слоя γ-Al2O3 40-50 мкм, а по данным анализа методом БЭТ на приборе TriStar 3000, Micromeritics, США, все покрытия обладают высокой удельной поверхностью (90-100 м2/г) и пористостью, что позволит использовать промежуточное покрытие для получения биоинертных или биосовместимых имплантов. Рентгеноструктурный анализ покрытия проводили на приборе XRD-6000, SHTMADZU, Япония, в излучении CuKα+c использованием монохроматора при идентификации анализируемых веществ по базе данных «2003 JCPDS - ICDD». Модификация Al2O3, входящая в состав покрытия титанового импланта, полученного по заявляемому способу, представляет собой γ-Al2O3 Модификация оксида титана на титане, полученного по заявляемому способу, представляет собой рутил-TiO2.

В процессе скратч-теста образцов покрытий γ-Al2O3/TiO2-Ti-(BTl-0) с удельной поверхностью покрытия из γ-Al2O3 ~100 м2/г и различной толщиной слоя гамма-оксида алюминия, полученных заявляемым способом, проводят измерительное царапание изучаемой поверхности алмазным конусным индентором типа Роквелла при непрерывно нарастающей нагрузке. В ходе скольжения индентора с заданной скоростью и с увеличивающейся нагрузкой в процессе испытаний осуществляется регистрация показаний нескольких датчиков, а именно: силы нагружения, акустической эмиссии, силы трения, коэффициента трения. Далее по анализу кривых "свойство - нагрузка" и наблюдению следов разрушения с помощью оптического микроскопа, оборудованного цифровой камерой, определяют какая минимальная (критическая) нагрузка, привела к разрушению покрытия (когезионное разрушение) или разрушению сцепления покрытия с подложкой (адгезионное разрушение). Были нанесены несколько царапин на каждом образце №1 - толщина слоя γ-Al2O3 - 50 мкм, №2 - толщина слоя γ-Al2O3 - 100 мкм и №3 - толщина слоя γ-Al2O3 - 150 мкм и определены усредненные значения критической нагрузки. Из представленных результатов следует, что царапание образца 1 при увеличении нагрузки до 30 H не приводит к разрушению покрытия и вскрытию подложки. Для образцов 2 и 3 вскрытие подложки достигается при 9,6 и 8,6 Н. При расчете прочности покрытия γ-Al2O3/TiO2-Ti-BT1-0 по данным скратч-теста исходили из характеристик индентера - угол-120° и радиус 200 мкм. Ширина царапины, образованной индентером - визуально (оптический микроскоп) около 600-400 мкм. Результаты исследований образцов Al2O3/TiO2-Ti-(BT1-0) приведены в Таблице 1.

В таблице 2 сведены стадии получения покрытия в качестве примеров получения покрытий на имплантах из титана марки ВТ 1-0.

1. Покрытие на имплант из титана и его сплавов, состоящее из двух слоев, первый слой состоит из оксидов титана, в основном TiO2, отличающееся тем, что второй слой состоит из оксида алюминия гамма-модификации, причем первый слой имеет толщину 10-30 мкм, а общая толщина покрытия составляет от 40 до 180 мкм, при следующем соотношении компонентов, мас.%: оксид титана, в пересчете на TiO2 - 10-30; гамма-оксид алюминия - 70-90.

2. Способ получения покрытия по п.1, включающий механическую обработку поверхности импланта, обезжиривание, термическую обработку для получения на его поверхности оксидов титана, последующее нанесение второго слоя, отличающийся тем, что обезжиривание ведут в растворе щелочи - KOH, NaOH, термическую обработку осуществляют в интервале температур 700-800°C со скоростью нагрева и охлаждения не выше 1°C в мин, с последующим получением двухслойного покрытия из оксида титана и оксида алюминия, причем вначале наносят гидроксид алюминия в нагретом при 60-90°C растворе алюминатов щелочных металлов с последующей выдержкой в этом растворе до комнатной температуры, дальнейшей промывкой, сушкой и термической обработкой покрытия при температуре 500-600°C со скоростью нагрева и охлаждения не выше 1°C в мин для получения вторичного покрытия из оксида алюминия.

3. Способ по п.2, отличающийся тем, что нанесение гидроксида алюминия проводят при снижении температуры от 60°C до комнатной температуры в течение 20-60 ч в растворе алюмината калия с концентрацией в интервале 4,0-5,5%.

4. Способ по п.2, отличающийся тем, что нанесение гидроксида алюминия проводят при плавном снижении температуры от 90°C до комнатной температуры в течение 20-60 ч в растворе алюмината натрия с концентрацией в интервале 14,0-20,5%.

5. Способ по п.2, отличающийся тем, что в качестве импланта используют титан марки ВТ1-0 и титановые сплавы марок ВТ-5, ВТ-6, ВТ-14, ВТ-20.

6. Способ по п.2, отличающийся тем, что имплант различной геометрической формы с нанесенным покрытием используют для замены костных дефектов в травматологии, ортопедии и стоматологии.



 

Похожие патенты:
Изобретение предназначено для подготовки поверхности титана перед нанесением биоактивных покрытий на поверхность имплантата. Травитель для титановых имплантатов содержит фосфорную кислоту, окислитель и воду при следующих количественных соотношениях компонентов, мас.%: фосфорная кислота 23-65, пероксид водорода 3-30, вода - остальное.

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и может быть использовано для изготовления внутритканевых эндопротезов на титановой основе, а также для подготовки поверхности имплантатов под нанесение биосовместимых покрытий.

Изобретение относится к области медицинской техники, а именно к ортопедической стоматологии. .

Изобретение относится к медицинским изделиям и к способу получения медицинских изделий. .

Изобретение относится к способу создания наноструктурной пористой поверхности имплантатов из титана и сплавов титана. .

Изобретение относится к способу изготовления композитного материала из сплавов на основе никелида титана. .
Изобретение относится к неорганической химии и может быть использовано для нанесения кальцитных, апатитовых и композиционных покрытий на титановые имплантаты с целью защиты металла от коррозии жидкостями организма и придания шероховатости поверхности.

Изобретение относится к медицинской технике. .

Изобретение относится к области изготовления металлических имплантатов на основе титана, предназначенных для вставления в костную ткань. .

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и может быть использовано для изготовления внутритканевых эндопротезов на титановой основе, а также для подготовки поверхности имплантатов под нанесение биосовместимых покрытий.
Изобретение относится к области медицины и касается цементных материалов для пластической реконструкции поврежденных костных тканей. .
Изобретение относится к медицине, в частности к травматологии и ортопедии, и может найти применение при лечении ложных суставов длинных трубчатых костей. .

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и может быть использовано при изготовлении внутрикостных имплантатов путем нанесения на их металлическую основу многослойных плазменных покрытий с последующей ионно-лучевой модификацией.

Изобретение относится к медицине. .

Изобретение относится к медицине. .
Изобретение относится к медицине, в частности к кальцийфосфатным керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях.

Изобретение относится к области медицины, а именно к травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для заполнения костных дефектов.

Изобретение относится к медицине, в частности к кальцийфосфатным фторгидроксиапатитовым керамическим материалам, предназначенным для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях.
Изобретение относится к медицине. Описан брушитовый гидравлический цемент для восстановления костных тканей, содержащий порошок α-трикальцийфосфата и затворяющую жидкость, представляющую собой раствор фосфата магния в фосфорной кислоте, где цементный порошок содержит гранулы карбоната кальция размером 50-100 мкм при следующем содержании компонентов: α-трикальцийфосфата - 90-95% масс., карбонат кальция - 5-10% масс.
Наверх