Сырьевая смесь для получения негорючего нетоксичного теплозвукоизоляционного материала на основе тонкодисперсной минеральной пены

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, вагоностроении, аэрокосмической промышленности в качестве сверхлегкого негорючего теплозвукоизоляционного материала для тепловой изоляции корпусных конструкций различного назначения, а также трубопроводов, воздуховодов и энергетических установок и систем в объектах гражданского назначения. Технический результат заключается в улучшении эксплуатационных характеристик: повышение механической прочности и экологической безопасности при сохранении негорючести. Сырьевая смесь содержит следующие компоненты, масс.% на сухое вещество: асбест хризолитовый - 13-20, ультратонкое базальтовое волокно диаметром 0,5-3,0 мкм - 40-50, поверхностно-активное вещество (смачиватель СВ-102) - 20-25, гидрофобизирующую жидкость - 6-13, коллоидный кремнезем (кремнезоль-КС) - 10-15, причем соотношение содержания асбеста и базальтового волокна равно 1:3. 2 табл.

 

Изобретение относится к строительным материалам и может быть использовано в судостроении, строительстве, вагоностроении, аэрокосмической промышленности в качестве сверхлегкого негорючего теплозвукоизоляционного материала для тепловой изоляции корпусных конструкций различного назначения, а также трубопроводов, воздуховодов и энергетических установок и систем в объектах гражданского назначения.

Известен теплоизоляционный материал (патент РФ №2151115 C1, C04B 26/02, C04B 14/38, C04B 38/02, опубл. 20.06.2000 г.), включающий базальтовое супертонкое волокно, поливинилацетатную дисперсию, гидрофобизирующую добавку - кремнийорганическую жидкость ГКЖ-10, кремнезоль и сульфанол при следующем соотношении компонентов, масс.%:

Поливинилацетатная дисперсия - 2,0÷2,5

Кремнезоль - 3,3÷3,8

Сульфанол - 0,05÷0,1

Кремнийорганическая жидкость ГКЖ-10 - 01÷0,3

Базальтовое супертонкое волокно диаметром 0,2-3,0 мкм - остальное.

Материал с таким составом и характеристиками эффективен для использования при температурах, не превышающих ~250°C, т.к. в своем составе он содержит органические компоненты (поливинилацетатную дисперсию и др.), которые при более высокой температуре либо выгорают, либо теряют свои функциональные свойства.

Кроме того, этот материал имеет плотность в 2,5-3,0 раза, превышающую плотность материала предлагаемого изобретения, что неприемлемо для конструкций, масса которых строго ограничена (например, на судах с динамическими принципами поддержания и в авиации).

Известна сырьевая смесь для изготовления теплозвукоизоляционного материала (ISSIV0373-0247, Российский химический журнал. Том LIII, вып.4, 2009 г. С.54-61 «Отечественные теплозвукоизоляционного материалы для судостроения», Н.Г. Сударева и др.), включающая, масс.%:

асбест 64,5
смачиватель СВ-102 25,8
гидрофобизирующая жидкость 9,7

Данная сырьевая смесь не содержит в своем составе связующего компонента, структура материала определяется силами естественного сцепления между волокнами, в связи с чем материал имеет низкую механическую прочность. Кроме того, сырьевая смесь в готовом материале практически на 100% состоит из асбеста, оказывающего фиброгенное и канцерогенное воздействие на организм человека.

Известен огнестойкий теплозвукоизоляционный материал (патент РФ №2344109 C1, C04B 38/10, опубл. 20.01.2009 г.), изготовленный из сырьевой смеси, содержащей волокнистый материал, тонкомолотый неорганический наполнитель, поверхностно-активное вещество, гидрофобизирующий и связующий компонент и жидкую дисперсионную среду. В качестве волокнистого материала сырьевая смесь содержит асбест, или асбест и кремнеземное волокно, или базальтовое волокно, или угленовое волокно при их соотношении 1:1, или базальтовое волокно и полиарамидное волокно, диспергированные до получения волокон диаметром не более 0,01 мкм и длиной менее 2 мм, в качестве тонкомолотого наполнителя - графит, или волластонит, или слюду в виде чешуек крупностью менее 5 мкм, в качестве поверхностно-активного вещества - смачиватель СВ-102, в качестве гидрофобизатора и связующего - ГКЖ-94, в качестве жидкой дисперсионной среды - воду, при следующем соотношении компонентов, мас.%:

Указанный волокнистый материал 2,5-2,8
Указанный тонкомолотый неорганический наполнитель 0,3
Смачиватель СВ-102 0,5
ГКЖ-94 0,4
Вода 96,3-96,7

Приведенный состав сырьевой смеси является наиболее близким по составу, технической сущности и достигнутому результату и принят в качестве прототипа.

Механическую прочность всех приведенных вариантов сырьевых смесей обеспечивают в основном минеральные волокна, которые и формируют пористую структуру материала, удерживаемую силами собственного сцепления.

Техническим результатом изобретения является улучшение эксплуатационных характеристик: повышение механической прочности и экологической безопасности при сохранении негорючести.

Технический результат достигается тем, что в сырьевой смеси для получения негорючего нетоксичного теплозвукоизоляционного материала, содержащей асбест, поверхностно-активное вещество - смачиватель СВ-102 и гидрофобизирующую жидкость, дополнительно используется ультратонкое базальтовое волокно и коллоидный кремнезем при следующем соотношении компонентов, масс % (на сухое вещество минерального волокна):

- Асбест хризотиловый 13-20
- Базальтовое волокно 40-50
- Поверхностно-активное вещество 20-25
(смачиватель СВ-102)
- Гидрофобизирующая жидкость 6-13
(ГКЖ-10 или ГКЖ-11 или ГКЖ-94)
- Коллоидный кремнезем 10-15

Введение в сырьевую смесь базальтового ультратонкого волокна диаметром от 0,5 до 3,0 мкм позволяет формировать устойчивую тонкодисперсную минеральную пену, не разрушающуюся в процессе сушки. Количество базальтового волокна варьировалось от 50% до 100% замещения асбестового волокна. Наиболее оптимальным соотношением содержания в смеси асбестового и базальтового волокон оказалось: 75% базальтового и 25% асбестового. При 100% замене имелся выигрыш в части экологической чистоты, но снижались прочностные характеристики материала.

Введение коллоидного кремнезема (кремнезоль-КС), представляющего собой продукт ионной обработки жидкого стекла, в процессе отверждения обеспечивало упрочнение структуры материала. Количество его в смеси варьировалось от 5% до 20%: введение 5% практически не сказывалось на прочностных характеристиках, введение 20% и более приводило к увеличению плотности материала и увеличению доли несвязанного коллоидного кремнезема. Оптимальным содержанием этого компонента было принято от 10 до 15%.

В предлагаемой сырьевой смеси для получения теплозвукоизоляционного материала использовались следующие материалы

- асбест хризотиловый ГОСТ 12871-67
- поверхностно-активное вещество ТУ 6-14-935-80
(смачиватель СВ-102)
- гидрофобизирующая жидкость
(ГКЖ-10 или ГКЖ-11) ТУ 6-02-696-76
(ГКЖ-94) ГОСТ 10834-76
- ультратонкое базальтовое волокно ТУ 5169-001-13062592-2000
- коллоидный кремнезем
(кремнезоль-КС) ТУ 2145-002-76287984-09

Способ получения теплозвукоизоляционного материала заключается в следующем.

Необходимое количество воды и гидрофобизирующей жидкости последовательно загружают в реактор и перемешивают в течение 2-3 мин. Затем загружают хорошо размятую и предварительно замоченную в воде смесь асбеста и базальтового волокна, смачиватель СВ-102, добавляют расчетное количество коллоидного кремнезема. Полученную смесь тщательно перемешивают, перекачивают в пеногенератор и проводят вспенивание при кратности пены 2,5 в течение 40 мин.

Полученную пеномассу разливают на подложку транспортерной ленты, разравнивают, после чего пена поступает на сушку. Интервал между разливом пеномассы и началом ее сушки не должен превышать 45 мин.

Температура в сушильной камере должны поддерживаться в пределах: 60°C - при входе, 110°C - при выходе.

Высушенная пеномасса поступает в камеру для термической обработки. В процессе термической обработки происходит разложение и удаление органической добавки, смачивателя СВ-102 и полимеризация гидрофобизатора. Термическая обработка производится при температуре от 250°C до 260°C в течение 30-40 мин. до прекращения выделения газообразных продуктов. После термообработки материал приобретает эластичность и гидрофобные свойства.

Для экспериментальной проверки заявленного изобретения было изготовлено несколько вариантов составов сырьевой смеси (таблица 1), образцы которых в результате испытаний показали высокие эксплуатационные характеристики (таблица 2).

Таблица 1
Варианты составов сырьевой смеси
№ состава Химический состав, масс.%
Асбест хризотиловый Базальтовое волокно Смачиватель СВ-102 Гидрофобизир. жидкость Коллоидный кремнезем (кремнезоль-КС)
0,5 мкм 1,5 мкм 3,0 мкм ГЛЖ-10 ГКЖ-11 ГКЖ-94
1 14 42 21 8 15
2 15 45 22 8 10
3 16 48 20 6 10
4 13 40 20 13 14
5 15 45 23 7 10
6 16 48 20 6 10
Таблица 2
Результаты испытаний сырьевой смеси
Номер состава Показатели
Плотность, кг/м3 Прочность на сжатие, МПа Сорбционное увлажнение за 24 ч., %, не менее
1 35,0 0,038 2,9
2 39,0 0,042 3,4
3 40,0 0,045 4,0
4 37,0 0,043 3,0
5 38,0 0,043 3,3
6 40,0 0,045 3,3

Сырьевая смесь для получения негорючего нетоксичного теплозвукоизоляционного материала на основе тонкодисперсной минеральной пены, содержащая асбест, поверхностно-активное вещество - смачиватель СВ-102 и гидрофобизирующую жидкость, отличающаяся тем, что она дополнительно содержит ультратонкое базальтовое волокно диаметром 0,5-3,0 мкм и коллоидный кремнезем при следующем соотношении компонентов, мас.% на сухое вещество:

асбест 13-20
ультратонкое базальтовое волокно 40-50
поверхностно-активное вещество -
смачиватель СВ-102 20-25
гидрофобизирующая жидкость 6-13
коллоидный кремнезем
кремнезоль-КС 10-15,

причем отношение содержания асбеста и базальтового волокна равно 1:3.



 

Похожие патенты:
Изобретение относится к промышленности строительных материалов, в частности к производству бетонов, используемых в малоэтажном строительстве. Сырьевая смесь для изготовления бетона содержит, мас.%: портландцемент 26-28, зола-унос ТЭС 69,6-71,5, смола воздухововлекающая экстракционно-канифольная 0,1-0,15, карбоксиметилцеллюлоза 0,1-0,15, суперпластификатор С-3 0,6-0,9, нарезанное на отрезки 10-30 мм асбестовое волокно 0,7-0,9, метилсиликонат натрия 0,5-0,7.
Изобретение относится к промышленности строительных материалов, в частности к производству мелкозернистых бетонов. Сырьевая смесь для изготовления мелкозернистого бетона содержит, мас.%: портландцемент 22,0-24,0, зола от сжигания бурого или каменного угля 65,9-69,3, нарезанное на отрезки 10-20 мм капроновое волокно 2,0-3,0, кварцевый песок 5,0-7,0, суперпластификатор С-3 0,7-1,1, водоцементное отношение 0,45-0,5.
Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов. Сырьевая смесь для изготовления пенобетона содержит, мас.%: портландцемент 29,0-31,0, зола-унос ТЭС 31,0-33,0, смола воздухововлекающая экстракционно-канифольная 0,11-0,17, карбоксиметилцеллюлоза 0,1-0,14, суперпластификатор С-3 1,0-1,4, мочевина 0,2-0,3, асбест 6 сорта 3,7-4,1, вода - остальное.
Изобретение относится к способу изготовления изделий из ячеистого бетона и к составу сырьевой смеси для изготовления неавтоклавного теплоизоляционного ячеистого бетона.
Изобретение относится к области строительства, в частности к производству строительных материалов, и может быть использовано для получения теплоизоляционных самонесущих материалов, для утепления стен, потолков, перегородок и т.п.
Изобретение относится к способам получения белкового пенообразователя и может быть использовано в технологии изготовления поризованных изделий на основе цемента.
Изобретение относится к промышленности строительных материалов, в частности к производству легких бетонов. Сырьевая смесь для изготовления легкого бетона включает, мас.%: портландцемент 19-21, кварцевый песок 54,3-59,1, дробленые отходы пенополиуретана фракции 5-15 мм 2-3, техническую пену, приготовленную на основе 4% водного раствора пенообразователя ПБ-2000 19-21, суперпластификатор С-3 0,7-0,9.
Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов. .

Изобретение относится к области строительных материалов, в частности к ячеистым бетонам автоклавного твердения. .

Изобретение относится к теплоизоляционным ячеистым бетонам неавтоклавного твердения и может быть использовано при изготовлении теплозащитных конструкций зданий и сооружений.
Изобретение относится к теплоизоляционным строительным материалам и может быть использовано в качестве комплексной наноразмерной добавки в технологии пенобетона. Комплексная наноразмерная добавка для пенобетонной смеси содержит, мас.%: золь гидроксида железа (III) с концентрацией Fe(OH)3 0,6-1,5% 88,78-95,56, жидкое стекло 4,44-11,22. Технический результат - повышение устойчивости пены при сохранении пенообразующей способности пенообразователя. 1 пр., 1 табл.

Изобретение относится к строительным материалам, которые могут быть использованы для производства конструкционно-теплоизоляционных ячеистых бетонов неавтоклавного твердения. Смесь для приготовления конструкционно-теплоизоляционного ячеистого бетона, включающая портландцемент, кремнеземистый наполнитель, состоящий из природного песка и активной минеральной добавки, пенообразователь и воду, в качестве кремнеземистого наполнителя она содержит продукт совместного сухого помола природного песка и силикагеля при следующем соотношении компонентов смеси, мас.%: портландцемент 50-55, природный песок 42,5-48, силикагель 2,0-2,5, вода В/Т 0,5-0,55, пенообразователь 3 % от объема воды. Смесь в качестве пенообразователя содержит синтетическую пенообразующую добавку ПБ-2000, или ПБ-люкс, или Бенотех ПБ-С. Технический результат - повышение прочности при незначительном увеличении средней плотности, повышение коэффициента конструктивного качества ячеистого бетона. 1 з.п. ф-лы, 1 пр., 2 табл.
Изобретение относится к области строительства, в частности к составам для получения пенобетона, предназначенного для устройства эффективных ограждающих конструкций. Сырьевая смесь для получения пенобетона, включающая портландцемент, облегчающий наполнитель, пенообразователь и воду затворения, в качестве указанного наполнителя содержит полые керамические микросферы с насыпной плотностью 320-370 кг/м3 и размером 40-100 мкм, в качестве пенообразователя протеиновый пенообразователь при следующем соотношении компонентов, мас.%: портландцемент 44,44-53,47, указанные микросферы 0,69-17,78, указанный пенообразователь 0,025-0,03, вода - остальное. Технический результат - повышение теплозащитных характеристик и прочности. 2 табл.
Изобретение относится к промышленности строительных материалов, в частности к производству легких бетонов. Сырьевая смесь для изготовления легкого бетона включает, мас.%: портландцемент 35-40, опоку 25-35, пену, приготовленную на основе 4 % водного раствора пенообразователя ПБ-2000, 30-35. Технический результат - повышение морозостойкости легкого бетона, полученного из сырьевой смеси. 1 табл.
Изобретение относится к области производства строительных материалов и касается составов сырьевых смесей для изготовления кирпича, который может быть использован для теплоизоляции. Сырьевая смесь для изготовления кирпича включает, мас. %: древесные опилки, просеянные через сетку №5, 5,0-7,0; кварцевый песок, просеянный через сетку №014, 29,0-33,0; портландцемент 20,0-24,0; известковое тесто 33,0-37,0; техническая пена, приготовленная на основе 4%-ного водного раствора пенообразователя ПБ-2000, 5,0-7,0. Технический результат - повышение теплоизоляционных свойств при сохранении прочности. 1 табл. .
Изобретение относится к промышленности строительных материалов и может быть использовано для приготовления пенобетона неавтоклавного твердения, применяемого для мелких стеновых блоков производственных помещений и индивидуальных жилых домов. Сырьевая смесь для приготовления пенобетона содержит, мас.%: портландцемент 38,0 - 40,0, кварцевый песок 28,0 - 30,0, пенообразователь 0,6 - 0,8, термомодифицированную торфяную добавку, полученную путем нагрева торфа до 600°С с последующим его измельчением, 1,9 - 2,8, воду - остальное. Технический результат - получение пенобетона с более высокой прочностью и улучшенными теплофизическими свойствами. 2 табл.
Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент 35,0-37,0, пенообразователь ПБ-2000 0,25-0,35, золу ТЭС 15,65-20,25, дробленое пеностекло фракции 5-10 мм 20,0-25,0, нарезанное на отрезки 5-15 мм асбестовое волокно 1,0-1,5, воду 21,0-23,0. Технический результат - повышение термостойкости пенобетона, полученного из сырьевой смеси. 1 табл.
Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент 35,0-37,0, пенообразователь ПБ-2000 0,25-0,35, золу ТЭС 10,65-13,25, дробленое пеностекло фракции 5-10 мм 20,0-25,0, измельченную и просеянную через сетку №2,5 минеральную вату 1,0-1,5, керамзитовый песок 5,0-7,0, воду 21,0-23,0. Технический результат - повышение термостойкости пенобетона, полученного из сырьевой смеси. 1 табл.
Изобретение относится к промышленности строительных материалов, в частности к производству ячеистых бетонов. Сырьевая смесь для изготовления пенобетона включает, мас.%: портландцемент 28,0-30,0, пенообразователь ПБ-2000 0,4-0,5, золу ТЭС 17,5-21,6, измельченную и просеянную через сетку №5 слюду 20,0-26,0, воду 26,0-30,0. Технический результат - уменьшение водопотребности сырьевой смеси для изготовления пенобетона. 1 табл.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении пористых строительных теплоизоляционных изделий или монолитной изоляции для утепления внешних фасадов зданий и сооружений. В способе получения пористого теплоизоляционного материала, включающем смешение одной из составляющих вспенивающегося полиуретана с наполнителем и последующее введение в смесь другой составляющей - полиизоционата, в качестве наполнителя используют древесные опилки размерами 4±2 мм, которые предварительно подвергают паровой обработке при температуре, равной 250°C, после обработки опилки подают в диффузор диффузорно-конфузорного устройства, а в зону перехода диффузора в конфузор к опилкам подают составляющую вспенивающегося полиуретана, включающую простой полиэфир на основе окиси пропилена, оксипропилэтилендиамин, диметилэтаноламин, оксиалкиленметилсилоксановый блок-сополимер, трихлорэтилфосфат, затем полученную смесь выгружают в реактор, в котором смесь перемешивают и вакуумируют ее до остаточного давления, равного 15-20 кПа, после чего в смесь вводят полиизоцианат при соотношении всех компонентов смеси, мас.%: простой полиэфир на основе окиси пропилена 24,54-26,89, оксипропилэтилендиамин 8,40-9,20, диметилэтаноламин 0,48-0,55, оксиалкиленметилсилоксановый блок-сополимер 0,36-0,40, трихлорэтилфосфат 6,80-7,47, полиизоцианат 33,33-35,56, опилки 20-25, после перемешивания компонентов композиционную массу направляют в обогреваемую до температуры 50-60°C форму и выдерживают 15-20 мин. Технический результат - получение теплоизоляционного материала с пониженной плотностью и теплопроводностью. 1 ил., 2 табл., 12 пр.

Изобретение относится к строительным материалам и может быть использовано в строительстве, судостроении, вагоностроении, аэрокосмической промышленности в качестве сверхлегкого негорючего теплозвукоизоляционного материала для тепловой изоляции корпусных конструкций различного назначения, а также трубопроводов, воздуховодов и энергетических установок и систем в объектах гражданского назначения. Технический результат заключается в улучшении эксплуатационных характеристик: повышение механической прочности и экологической безопасности при сохранении негорючести. Сырьевая смесь содержит следующие компоненты, масс. на сухое вещество: асбест хризолитовый - 13-20, ультратонкое базальтовое волокно диаметром 0,5-3,0 мкм - 40-50, поверхностно-активное вещество - 20-25, гидрофобизирующую жидкость - 6-13, коллоидный кремнезем - 10-15, причем соотношение содержания асбеста и базальтового волокна равно 1:3. 2 табл.

Наверх