Охлаждаемая лопатка

Охлаждаемая лопатка выполнена из упругопористого нетканого материала металлорезина. В нетканом материале выполнены полости для подвода охлаждающей среды через его поры к внешней поверхности профиля лопатки. Изобретение позволяет реализовать однородную пористость при различных ее величинах в отдельных элементах лопатки, что обеспечивает интенсивный теплоотвод по всей внешней ее поверхности, омываемой высокотемпературными продуктами сгорания. Вследствие высокой стойкости лопатки к разрушению при циклических нагружениях повышается ресурс лопатки. 3 ил.

 

Изобретение относится к области энергетического машиностроения, в частности к охлаждаемым лопаткам, преимущественно высокотемпературных газовых турбин.

В современных охлаждаемых лопатках высокотемпературных газовых турбин широко используется заградительное воздушное охлаждение, которое осуществляется вдувом относительно холодного воздуха на наружную поверхность профиля лопатки через проницаемый (пористый) материал («пористое или эффузионное охлаждение»), (Швец И.Т., Дыбан Е.П. «Воздушное охлаждение деталей газовых турбин», АН УССР, Наукова думка, Киев, 1974, стр.27). Сущность «пористого охлаждения» заключается в том, струи охладителя на выходе из пор сливаются и образуют пограничный слой, существенно уменьшая тем самым конвективный теплообмен между газом и поверхностью профиля.

Известна охлаждаемая лопатка газовой турбины, изготовленная из плотного материала и содержащая в нем полости для прохода охлаждающей среды, передняя кромка которой выполнена в виде проницаемой оболочки из пористого материала, состоящего из проволочных переплетений (патент США №4314442 А, НКИ 60/39.05, МПК3 F01B5/18, приоритет от 11.06.1979, опубл. 09.02.1982).

Известна охлаждаемая лопатка с каналами в виде объемно-сетчатой конструкции и полостью для входа охлаждающей среды (патент RU №2094170 С1, МПК6 B22D 27/04, F01D5/18, приоритет от 28.12.1995, опубл. 27.10.1997).

Известна охлаждаемая лопатка, изготовленная из плотного материала в корпусе, которой выполнены соединенные между собой полости для подвода охлаждающей среды, причем их оси проходят через критическую линию передней кромки, выполненной в виде проницаемой оболочки из пористого материала, поры которого образованы проволочными переплетениями (патент RU №2186223 С2, МПК7 F01D 5/18, приоритет от 26.07.2000, опубл. 27.07.2002).

Известна охлаждаемая лопатка, в которой контактирующая с высокотемпературным набегающим газовым потоком оболочка изготовлена из пористого материала в виде навитой проволоки или сплетенных сеток (Швец И.Т., Дыбан Е.П. «Воздушное охлаждение деталей газовых турбин», АН УССР, Наукова думка, Киев, 1974, стр.96-97).

Основными недостатками предложенных технических решений, является то, что существующие лопатки снабжены либо отдельными накладками, либо оболочками из пористых материалов, закрепляемыми на основе лопатки, изготовленной из плотного материала, что не обеспечивает получение цельной пористой структуры лопатки, изменяющейся в ее объеме по заранее заданному закону с целью создания равномерного температурного поля и эффективного подвода охлаждающей среды к наружной поверхности ее профиля. Невозможность изготовления лопатки полностью из пористого материала вынуждает применять различные материалы для отдельных частей лопатки, имеющих различные температурные нагрузки. При наличии знакопеременных температурных нагрузок это приводит к трещинообразованию и в итоге снижению ресурса лопатки.

Наиболее близким техническим решением к заявляемой конструкции лопатки и выбранной в качестве прототипа, является вариант конструкции, когда корпус лопатки, изготавливается из упругопористого нетканого материала металлорезина (Пористые проницаемые материалы: справ изд. / Под ред. Белова С.В. М.: Металлургия 1987, подраздел 5.2, стр.266-273).

Однако отсутствие в теле, изготовленном из нетканого пористого материала «металлорезина», полостей для рациональной раздачи охлаждающей среды через его пористую часть к поверхности, подвергающейся воздействию высокотемпературного набегающего потока, не позволяет более эффективно обеспечить распределение расхода охлаждающей среды, для создания равномерного температурного поля при охлаждении соответствующих частей поверхности, например, сопловой лопатки газовой турбины.

Технической задачей данного изобретения является создание лопатки с увеличенным ресурсом, стойкой к трещинообразованию при циклических тепловых нагрузках, путем создания равномерного температурного поля и эффективного ее охлаждении, вследствие выполнения полостей в пористом материале для рационального подвода охлаждающей среды через ее пористую часть к наружной поверхности профиля.

Для решения поставленной задачи в охлаждаемой лопатке, выполненной из упругопористого нетканого материала металлорезина, дополнительно, в нетканом материале выполнены полости для рационального подвода охлаждающей среды через его поры к внешней поверхности профиля лопатки.

Выполнение в пористом теле лопатки полостей обеспечивает рациональный подвод охлаждающей среды через пористую структуру к внешней поверхности профиля для создания равномерного температурного поля и эффективного ее охлаждения, что исключает трещинообразование лопатки при циклических тепловых нагрузках, в результате чего ресурс лопатки увеличивается.

На фиг.1 представлена охлаждаемая лопатка, общий вид;

на фиг.2 показан вид охлаждаемой лопатки сверху;

на фиг.3 представлены охлаждаемые лопатки из материала «металлорезина» в сборе, расположенные между верхней и нижней частями элемента соплового лопаточного аппарата.

В охлаждаемой лопатке 1 выполнены полости 2 для подвода охлаждающей среды (фиг.1, 2). Лопатка 1 полностью отформована в виде детали требуемого профиля из проницаемого пористого материала, образованного проволочными переплетениями. Пористый материал служит для охлаждения внешней поверхности лопатки 1. Проволочные переплетения пористого материала образованы из упругопористого нетканого материала «металлорезина». Лопатки располагают между верхней 3 и нижней 4 частями элемента соплового лопаточного аппарата над отверстиями 5 и 6, соответственно, служащими для прохода охлаждающей среды (фиг.3). Фиксация лопаток относительно верхней 3 и нижней 4 частей элемента соплового лопаточного аппарата осуществляется, например, с помощью штифтов (на чертеже не показаны). Штифты расположены на верхней 3 и нижней 4 частях соплового лопаточного аппарата и входят в углубления, выполненные в лопатке 1. В качестве исходного элемента для изготовления нетканого материала «металлорезина» может быть взята проволочная спираль, навиваемая вплотную виток к витку. Способ изготовления данной спирали может быть любой известный, например, описанный в а.с. SU №183174, МКИ B21F 21/00, B21F 27/12 А1.

Охлаждение лопатки осуществляется следующим образом.

Охлаждающая среда (воздух) через каналы в нижней 4 части элемента соплового лопаточного аппарата подается во внутренние полости 2 лопатки 1. Затем охлаждающая среда через поры пористого материала, из которого отформована лопатка 1, выходит на ее наружную поверхность, омываемую высокотемпературными продуктами сгорания газовой турбины. Выполнение полостей в пористой лопатке 1 для рациональной подачи охлаждающей среды к наружной поверхности профиля с целью создания равномерного температурного поля обеспечивает интенсивный теплоотвод на всей внешней ее поверхности, а за счет упругих свойств «металлорезины» исключается образование трещин в элементах лопатки 1, что увеличивает ее ресурс.

Получение пористой структуры, реализующей заданные законы ее распределения в различных элементах объема лопатки, достижение необходимых упругих свойства материала «металлорезина» обеспечивается выбором материала проволоки с соответствующими пределом текучести и модуля ее упругости при рабочих температурах, обеспечивается в соответствии с рекомендациями, приведенными в книге (Пористые проницаемые материалы: справ изд. / Под ред. Белова С.В. М.: Металлургия 1987, подраздел 5.2, стр.266-273). В качестве примера упругих свойств материала «металлорезина» в процессе циклической деформации приведены соответствующие характеристики для стали 12Х18Н10Т (см. там же, стр.270-271).

Жесткость «металлорезины» практически не меняется в диапазоне 3-5 млн. циклов в интервале температур от 20 до 350°C уменьшается от начального значения лишь на 10-20%. При предельной для данного материала температуре эксплуатации 700°C упругие свойства данного материала, вычисленные на основании механических свойств стали 12Х18Н10Т, приведенных в «Марочник сталей и сплавов / М.М. Колосков, Е.Т. Долбенко, Ю.В. Каширский и др. Под общей ред. А.С. Зубченко - М.: Машиностроение, 2001, стр.529, 579» уменьшатся не более чем на 25% относительно температуры 20°C, т.е. «металлорезина» практически полностью сохранит свои упругие свойства во всем диапазоне температур.

Таким образом, предложенная конструкция охлаждаемой лопатки вследствие выполнения полостей в пористом материале для подвода охлаждающей среды через ее пористую часть к наружной поверхности позволяет увеличить ее ресурс.

Охлаждаемая лопатка, выполненная из упругопористого нетканого материала металлорезина, отличающаяся тем, что в нетканом материале выполнены полости для подвода охлаждающей среды через его поры к внешней поверхности профиля лопатки.



 

Похожие патенты:

Система жидкостного охлаждения лопаток, по меньшей мере, одной высокотемпературной ступени газовой турбины, закрепленных хвостовой частью на ободе несущего диска указанной ступени ротора турбины, содержит с одной из сторон несущего диска осесимметричный ему открытый вниз кольцевой желоб, по меньшей мере, две неподвижные форсунки, а также расположенные по периметру профиля лопатки в ее подповерхностном слое продольные охлаждающие каналы.

Изобретение относится к изготовлению лопаток для газотурбинного двигателя. В способе изготавливают лопатки из алюминиевого сплава для газотурбинных двигателей путем выполнения каналов в заготовке лопатки, размещения в каналах вставок из медного сплава, осуществления ковки заготовки и последующего удаления вставок химическим растворением.

Лопатка лопаточного колеса газотурбинного двигателя содержит аэродинамический профилированный элемент, имеющий нижнюю поверхность и платформу, проходящую от одного из концов аэродинамического профилированного элемента в направлении, в целом перпендикулярном продольному направлению аэродинамического профилированного элемента.

Колесо компрессора с облегченными лопатками включает в себя диск и приваренные к нему облегченные лопатки. Облегченная лопатка состоит из двух частей, соединенных между собой сваркой.

Изобретение относится к системам охлаждения турбин двухконтурных газотурбинных двигателей воздушной средой. .

Изобретение относится к детали газотурбинного двигателя, содержащей основную часть и ребро атаки. .

Изобретение относится к нанесению алюминиевого покрытия на металлическую деталь, а именно на полую деталь, содержащую внутреннюю рубашку, а также к рубашке для циркуляции охлаждающего воздуха, алюминированной полой лопатке газотурбинного двигателя и направляющему сопловому аппарату газотурбинного двигателя.

Изобретение относится к охлаждению газотурбинного двигателя и, в частности, к усовершенствованию охлаждения профильной части и полок лопатки турбины высокого давления.

Изобретение относится к области двигателестроения, точнее к осевым турбинам и компрессорам газотурбинных двигателей, а конкретно к способу изготовления биметаллических блисков с охлаждаемыми лопатками, в том числе высокотемпературных газотурбинных двигателей большого ресурса.

Лопатка турбины простирается радиально между хвостовиком лопатки и венцом лопатки. В венце лопатки выполнена открытая полость, которая образована замкнутой концевой стенкой и боковым ободом. Боковой обод полости несет на себе, по меньшей мере, одно ребро, проходящее между передним краем и задним краем лопатки. Упомянутое ребро при работе вызывает возникновение турбулентной структуры, которая имеет три уровня газового потока в радиальном направлении. Изобретение направлено на структурирование потока горячего газа в полости так, чтобы уменьшить теплообмен между горячим газом и стенками полости. 3 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к газотурбостроению, а именно к производству рабочих лопаток турбины газотурбинных двигателей. Охлаждаемая рабочая лопатка газовой турбины содержит хвостовик и перо, выполненные с внутренним трактом охлаждения в виде продольного канала от хвостовика к торцу пера и связанным с этим каналом комплексом поперечных каналов, ориентированных в направлении выходной кромки пера. Перо выполнено в виде центрального несущего стержня, имеющего наружный рельеф в виде поперечных канавок, и содержит накладные пластинчатые элементы, соединенные с центральным несущим стержнем таким образом, что формируют своей внешней стороной конфигурацию пера рабочей лопатки, а своей внутренней стороной - конфигурацию каналов внутреннего тракта охлаждения. Изобретение обеспечивает упрощение конструкции и технологии изготовления охлаждаемой рабочей лопатки, повышает рабочие характеристики и надежность, снижает массогабаритные характеристики устройства. 2 ил.

Кольцевой неподвижный элемент для использования с паровой турбиной (100). Неподвижный элемент содержит радиально наружное первое кольцо (228), радиально внутреннее второе кольцо (226) и, по меньшей мере, одну аэродинамическую поверхность (212). Первое кольцо (228) содержит первую полость (262), образованную в нем, и множество каналов (264) первого кольца, соединенных с первой полостью (262) и продолжающихся радиально от первой полости (262). Второе кольцо (226) содержит вторую полость (242) и, по меньшей мере, одно выпускное отверстие (244), образованные в нем. Вторая полость (242) связана по потоку с выпускным отверстием (244). Второе кольцо (226) расположено радиально внутри первого кольца (228). По меньшей мере, одна аэродинамическая поверхность (212) продолжается между первым кольцом (228) и вторым кольцом (226). Аэродинамическая поверхность содержит проходное отверстие (280), продолжающееся сквозь нее. Проходное отверстие (280) аэродинамической поверхности соединено с, по меньшей мере, одним каналом (264) первого кольца и второй полостью (242). Диаметр (D0) канала (264) первого кольца больше диаметра (DA) проходного отверстия (280). Облегчается охлаждение вращающегося элемента в паровой турбине без изменения внешних геометрий элемента, материалов элемента, и/или температуры, и/или давления пара для обеспечения надежной долгосрочной эксплуатации ротора паровой турбины с лопатками. 2 н. и 8 з.п. ф-лы, 3 ил.

Охлаждаемая турбина содержит рабочее колесо с установленными на нем рабочими лопатками с двумя контурами охлаждения, последовательно соединенными с воздушными каналами в рабочем колесе, с независимыми кольцевыми диффузорными каналами, образованными на поверхности рабочего колеса, соединенными с сопловыми аппаратами закрутки и транзитными воздуховодами на их входе, сопловые лопатки, теплообменник, транзитные воздуховоды. Каждая сопловая лопатка выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера сопловой лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке сопловой лопатки - с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с воздушным коллектором и раздаточной полостью. Охлаждаемая турбина снабжена раздаточным коллектором для охлаждающего воздуха, охлаждающим дефлектором и двумя транзитными дефлекторами, установленными в раздаточной полости вдоль ее оси с зазором относительно друг друга и с зазором между вогнутой и выпуклой стенками пера сопловой лопатки с образованием вдоль стенок охлаждающих каналов. Охлаждающий дефлектор выполнен с перфорационными отверстиями на двух его противоположных стенках, установлен в раздаточной полости на стенке раздаточного коллектора входной кромки и направлен стенками с перфорационными отверстиями в направлении вогнутой и выпуклой стенок пера сопловой лопатки. В верхней и нижней полках сопловой лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Раздаточный коллектор для охлаждающего воздуха соединен с источником воздуха, с входом воздуховода верхней полки и с входом охлаждающего дефлектора. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Воздушный коллектор соединен с входом транзитных дефлекторов, а транзитные воздуховоды - с выходом транзитных дефлекторов и сопловыми аппаратами закрутки, соединенными с кольцевыми диффузорными каналами. Раздаточная полость соединена с проточной частью турбины. Изобретение позволяет увеличить ресурс и надежность двигателя, улучшить экономичность турбины за счет охлаждения сопловой лопатки турбины воздухом другого термодинамического уровня (по температуре и давлению), что приводит к понижению температуры газа перед турбиной и обеспечивает оптимальный расход и температуру охлаждающего воздуха, подаваемого для охлаждения пера сопловой лопатки турбины. 6 з.п. ф-лы, 5 ил.

Охлаждаемая турбина содержит сопловые лопатки, каждая из которых выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости с транзитным дефлектором, образующим вдоль внутренних поверхностей стенок пера охлаждающие каналы, сообщенные с проточной частью турбины, теплообменник. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке лопатки с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с транзитным дефлектором раздаточной полости, с транзитным воздуховодом, сопловым аппаратом закрутки, каналами охлаждения рабочего колеса и рабочей лопатки турбины. Охлаждаемая турбина снабжена раздаточным коллектором для охлаждающего воздуха и охлаждающим дефлектором, выполненным с перфорационными отверстиями на двух его противоположных стенках. Охлаждающий дефлектор установлен в раздаточной полости на стенке раздаточного коллектора входной кромки с зазором относительно транзитного дефлектора и с зазором между вогнутой и выпуклой стенками пера лопатки и стенками охлаждающего дефлектора с перфорационными отверстиями. В верхней и нижней полках лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Раздаточный коллектор для охлаждающего воздуха соединен с источником воздуха, с входом воздуховода верхней полки и с входом охлаждающего дефлектора. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Изобретение позволяет повысить эффективность и экономичность турбины. 6 з.п. ф-лы, 5 ил.

Охлаждаемая турбина содержит сопловые лопатки, теплообменник. Каждая из сопловых лопаток выполнена в виде конструктивного элемента, ограниченного верхней и нижней полками, и пространства между ними, ограниченного вогнутой и выпуклой стенками пера лопатки, в виде расположенных вдоль ее оси раздаточного коллектора входной кромки и раздаточной полости с транзитным дефлектором. Транзитный дефлектор образует вдоль внутренних поверхностей стенок пера охлаждающие каналы, сообщенные с проточной частью турбины. Раздаточный коллектор входной кромки соединен на входе с воздушной полостью камеры сгорания, а на выходе через перфорационные отверстия во входной кромке лопатки с проточной частью турбины. Теплообменник соединен на входе с воздушной полостью камеры сгорания, а на выходе последовательно сообщен с воздушным коллектором, транзитным дефлектором раздаточной полости, транзитным воздуховодом, сопловым аппаратом закрутки, каналами охлаждения рабочего колеса и рабочей лопатки турбины. Охлаждаемая турбина снабжена охлаждающим дефлектором, выполненным с перфорационными отверстиями на двух его противоположных стенках. Охлаждающий дефлектор установлен в раздаточной полости на стенке раздаточного коллектора входной кромки с зазором относительно транзитного дефлектора и с зазором между вогнутой и выпуклой стенками пера лопатки и стенками охлаждающего дефлектора с перфорационными отверстиями. В верхней и нижней полках лопатки выполнены воздуховоды, соединенные на выходе с проточной частью турбины. Вход воздуховода верхней полки и вход охлаждающего дефлектора соединены с воздушным коллектором. Вход воздуховода в нижней полке соединен с выходом охлаждающего дефлектора. Изобретение направлено на повышение эффективности и экономичности турбины. 4 з.п. ф-лы, 5 ил.

Узел турбины содержит первое устройство (200) направляющих лопаток, второе устройство (210) направляющих лопаток, и отражатель (100), образованный из пластинчатого элемента. Отражатель содержит первую область (101) отверстия с первой формой отверстия и вторую область (102) отверстия со второй формой отверстия. Первая область (101) отверстия содержит конфигурацию впускных отверстий (104), образующих первую форму отверстия. Вторая область (102) отверстия содержит дополнительную конфигурацию впускных отверстий (104), образующих вторую форму отверстия. Отражатель (100) является пространственно закрепляемым на первом устройстве (200) направляющих лопаток и на втором устройстве (210) направляющих лопаток таким образом, что охлаждающая текучая среда (106) способна протекать через впускные отверстия (104) первой области (101) отверстия в первое устройство (200) направляющих лопаток, и охлаждающая текучая среда (106) способна протекать через впускные отверстия (104) второй области (102) отверстия во второе устройство (210) направляющих лопаток. Первая форма отверстия отличается от второй формы отверстия для достижения заданного первого потока массы охлаждающей текучей среды (106) в первое устройство (200) направляющих лопаток и заданного второго потока массы охлаждающей текучей среды (106) во второе устройство (210) направляющих лопаток в заданных установочных положениях первого устройства (200) направляющих лопаток и второго устройства (210) направляющих лопаток. Изобретение направлено на обеспечение подходящей охлаждающей системы для турбины. 12 з.п. ф-лы, 4 ил.

Охлаждаемая турбина газотурбинного двигателя содержит наружный корпус, установленные в нем надроторную вставку и сопловой аппарат с периферийными отверстиями, соединенными с системой подвода охлаждающего воздуха, ротор с рабочими лопатками с каналами охлаждения и выступом по периметру торцевой поверхности, образующим открытую торцевую полость. В надроторной вставке и торцевой поверхности каждой рабочей лопатки выполнены выпускные отверстия, лопатки снабжены внутренней перегородкой с входными отверстиями, а ее торцевая полость - разделительным ребром. Перегородка установлена с зазором относительно торцевой поверхности с образованием суммирующей полости. Разделительное ребро установлено в торцевой полости в плоскости вращения лопатки на расстоянии (0,3…0,7) осевого размера профиля лопатки от входной кромки с образованием открытых передней и задней полостей. Выпускные отверстия в торцевой поверхности рабочей лопатки выполнены в задней полости. Суммирующая полость соединена через входные отверстия во внутренней перегородке с каналами охлаждения лопаток и соединена через выпускные отверстия в торцевой поверхности с задней полостью и с газовоздушным трактом через отверстия в выходной кромке лопатки. Выпускные отверстия в надроторной вставке выполнены над передней полостью. Суммарная площадь выпускных отверстий из суммирующей полости равна 3…6 суммарной площади входных отверстий во внутренней перегородке. Изобретение позволяет снизить температуры материала периферийного участка рабочей лопатки до рабочей температуры материала, уменьшить температурные напряжения в периферийной зоне лопатки, повысить запас прочности рабочей лопатки и увеличить ее ресурс работы, позволяет уменьшить перетечки газа через радиальный зазор и увеличить КПД турбины. 2 з.п. ф-лы, 7 ил.

Теплотрубный контур охлаждения турбины включает расположенную в радиальном направлении между хвостовиком и торцом лопатки по крайней мере одну полость охлаждения, соединенную с полостью подвода воздуха и выпускными отверстиями, стенки которой снабжены размещенными в шахматном порядке полусферическими углублениями. Полусферические углубления противоположных стенок полости охлаждения расположены друг против друга, в них расположены верхние и нижние полусферы бисферических тепловых трубок. Каждая из бисферических тепловых трубок состоит из верхней и нижней сфер. Сферы выполнены из термостойкого материала с высокой теплопроводностью, соединены между собой через отверстие, в котором пропущен транспортный фитиль. Фитиль выполнен из пористого материала и примыкает к противоположным участкам внутренних поверхностей верхней и нижней сфер бисферической тепловой трубки, покрытых решеткой, выполненной из полос пористого материала. Нижняя и верхняя полусферы верхней и нижней сфер бисферических тепловых трубок расположены в полости охлаждения. Поры пористого материала фитиля и решетки заполнены рабочей жидкостью. Изобретение направлено на повышение эффективности теплотрубного контура охлаждения лопатки турбины. 4 ил. .

Устройство для охлаждения рабочих лопаток турбины двухконтурного газотурбинного двигателя, у которых внутренняя полость каждой лопатки разделена перегородкой на полость у входной кромки и остальную полость и содержит последовательно установленные воздухо-воздушный теплообменник, управляющие клапаны, воздуховод, аппарат закрутки статора турбины, воздушные каналы в рабочем колесе, соединенные с остальными полостями рабочих лопаток, дополнительный воздуховод, дополнительный аппарат закрутки статора турбины, дополнительные воздушные каналы в рабочем колесе. Воздухо-воздушный теплообменник размещен в наружном контуре, соединен своим входом с воздушной полостью камеры сгорания, а выходом с воздушным коллектором. Воздуховод проходит через внутренние полости сопловых лопаток. Полости у входных кромок лопаток соединены с источником воздуха через дополнительные управляющие клапаны. Дополнительный воздуховод проходит через дополнительные внутренние полости сопловых лопаток. В качестве источника воздуха для охлаждения полостей у входных кромок лопаток выбран воздушный коллектор. Входы управляющих и дополнительных управляющих клапанов соединены с воздушным коллектором. Выходы дополнительных управляющих клапанов сообщены с дополнительным аппаратом закрутки через дополнительный воздуховод, проходящий через внутренние полости сопловых лопаток и дополнительный воздуховод статора турбины. При снижении оборотов двигателя и температуры газа перед турбиной уменьшают расход охлаждающего воздуха путем уменьшения площади проходного сечения управляющих клапанов и дополнительных управляющих клапанов. Вследствие этого расход охлаждающего воздуха, проходящего через воздухо-воздушный теплообменник, уменьшается и при сохранении расхода воздуха, идущего через наружный контур, увеличивается эффективность воздухо-воздушного теплообменника, вследствие чего дополнительно уменьшается температура охлаждающего воздуха, идущего на охлаждение рабочей лопатки. Изобретение позволяет снизить температуру охлаждающего воздуха, идущего на охлаждение внутренних полостей рабочих лопаток турбины и, в частности, полостей, расположенных у входных кромок рабочих лопаток. 2 н. и 1 з. п. ф-лы, 2 ил.
Наверх