Вибрационный датчик избыточного давления



Вибрационный датчик избыточного давления
Вибрационный датчик избыточного давления

 


Владельцы патента RU 2502971:

Ерохов Игорь Феликсович (RU)
Конькин Владимир Федорович (RU)

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды. Вибрационный датчик избыточного давления состоит из герметично перекрываемого корпуса, чувствительного элемента, датчика возбуждения колебаний, датчика съема колебаний, усилителя, преобразователя и регистратора. Чувствительный элемент расположен внутри корпуса и принимает давление измеряемой среды. Чувствительный элемент выполнен в виде первичного преобразователя, состоящего из двух соосных труб разного диаметра, соединенных верхними основаниями друг с другом и нижними основаниями друг с другом посредством верхних и нижних фигурных патрубков соответственно. Нижние фигурные патрубки прикреплены к корпусу через вентильный блок. Внутренняя труба первичного преобразователя выполнена с отверстиями. Во внешнюю трубу первичного преобразователя вкручены датчик съема колебаний и датчик возбуждения колебаний, сдвинутые относительно друг друга на 90 градусов. Усилитель соединен входом с датчиком съема колебаний, а выходом с датчиком возбуждения колебаний и преобразователем. Выход преобразователя подключен к регистратору, отображающему величину избыточного давления измеряемой среды. Техническим результатом изобретения является повышение точности, увеличение диапазона и надежности измерения. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды - жидкости, газа. В частности, изобретение может быть использовано в нефтехимической, пищевой, химической промышленностях, тепловой и атомной энергетике, коммунальном хозяйстве и других производствах, где необходимо измерять избыточное давление различных жидких и газообразных сред.

В настоящее время производятся вибрационные датчики давления типа ДДГ-2-1, ДДГ-2-2, ДЦГ-2-3, ДДГ-2-4 и БДДМ-1 и др. (а.с. №№1825107, 1459409, 988053). Данные датчики имеют разомкнутую систему колебаний и предназначены для измерения давления только газообразных сред. Предельная погрешность 0,01%, диапазон измерения давления 0,5-4500кРа, диапазон рабочих температур -60÷70°С. Данные датчики имеют ряд недостатков: недостаточный диапазон рабочих температур, отсутствие возможности измерять давление жидких сред, отсутствие стойкости к ионизирующему излучению.

Из а.с. №1511605 (МПК G01L 11/00, G01L 1/10. опубл. 30.09.1989) известен вибрационный датчик избыточного давления, являющийся наиболее близким аналогом изобретения. Известный вибрационный датчик избыточного давления состоит из корпуса, чувствительного элемента в виде кольцевых струн (нарезаемых из трубы), расположенных внутри корпуса и принимающих давление измеряемой среды, систем датчиков съема колебаний и датчиков возбуждения колебаний, усилителя, преобразователя и регистратора. Недостатками являются недостаточные точность и надежность измерения, а также недостаточная чувствительность датчика.

Целью настоящего изобретения является создание вибрационного датчика избыточного давления для эксплуатации в объеме гермозоны АЭС в условиях большой и малой течах теплоносителя.

Преимуществами настоящего изобретения являются:

- отсутствие мембранных частей в конструкции вибрационного датчика избыточного давления;

- высокая температура эксплуатации (до 300°С);

- стойкость к ионизирующему излучению;

- большой срок эксплуатации (до 30 лет);

- ремонтопригодность;

- большой межповерочный срок (10 лет и более);

- стойкость к агрессивным средам;

- высокая точность измерения (до 0,01%).

Техническим результатом изобретения является повышение точности, надежности измерения, чувствительности датчика в условиях герметического объема АЭС, увеличение диапазона измеряемых давлений.

Сущность изобретения заключается в том, что вибрационный датчик избыточного давления состоит из герметично перекрываемого корпуса, чувствительного элемента, датчика возбуждения колебаний, датчика съема колебаний, усилителя, преобразователя и регистратора. Чувствительный элемент, образующий замкнутую колебательную систему камертонного типа, расположен внутри корпуса и принимает давление измеряемой среды через вентильный блок. Чувствительный элемент выполнен в виде первичного преобразователя, состоящего из двух соосных труб разного диаметра, соединенных верхними основаниями друг с другом и нижними основаниями друг с другом посредством верхних и нижних фигурных патрубков соответственно. Нижние фигурные патрубки прикреплены к вентильному блоку корпуса. Внутренняя труба выполнена с отверстиями. Во внешнюю трубу первичного преобразователя вкручены датчик съема колебаний и датчик возбуждения колебаний, сдвинутые относительно друг друга на 90 градусов. Усилитель соединен входом с датчиком съема колебаний, а выходом с датчиком возбуждения колебаний и преобразователем. Выход преобразователя подключен к регистратору, отображающему величину избыточного давления среды.

Изобретение иллюстрируется фиг.1 и 2. На фиг.1 изображена конструкция вибрационного датчика избыточного давления, на фиг.2 - регистрирующая часть вибрационного датчика избыточного давления. При этом: 1 - корпус; 2 - вентильный блок; 3 - внешняя труба первичного преобразователя; 4 - внутренняя дырчатая труба первичного преобразователя; 5 - датчик возбуждения колебаний; 6 - датчик съема колебаний; 7 - усилитель; 8 - преобразователь; 9 - регистратор.

Вибрационный датчик избыточного давления состоит из корпуса 1, выполненного в виде вертикального цилиндра (см. фиг.1). Нижнее основание корпуса 1 герметично перекрывается вентильным блоком 2. Внутри корпуса 1 закреплен чувствительный элемент в виде первичного преобразователя, выполненного в виде двух соосных труб одинаковой высоты и разного диаметра (внешней 3 и внутренней 4), в результате чего внешняя и внутренняя трубы расположены с зазором друг относительно друга. Верхние основания внешней 3 и внутренней 4 труб первичного преобразователя, также как и нижние основания внешней 3 и внутренней 4 труб первичного преобразователя, соединены друг с другом фигурными патрубками (соответственно, верхними и нижними), образуя в сечении замкнутый цилиндрический камертон. Нижние фигурные патрубки прикреплены к вентильному блоку 2 корпуса. Внутренняя труба 4 первичного преобразователя является дырчатой, выполнена с отверстиями. Отверстия можно высверлить круглыми. Во внешнюю трубу 3 первичного преобразователя вкручены датчик съема колебаний 6, равноудаленный от верхнего и нижнего оснований внешней трубы 3 первичного преобразователя, и датчик возбуждения колебаний 5, равноудаленный от верхнего и нижнего оснований внешней трубы 3 первичного преобразователя (см. фиг.2). При этом датчик съема колебаний 6 и датчик возбуждения колебаний 5 сдвинуты относительно друг друга на 90 градусов. Датчик съема колебаний 6 подсоединен к входу усилителя 7, датчик возбуждения колебаний 5 подсоединен к выходу усилителя 7. Усилитель 7 подключен к преобразователю 8, который в свою очередь подключен к регистратору 9. Регистратор Р отображает выходной сигнал, характеризующий величину избыточного давления измеряемой среды.

Вибрационный датчик избыточного давления работает следующим образом.

Первичный преобразователь, состоящий из внешней трубы 3 и внутренней дырчатой трубы 4, соединяется с измеряемой средой через нижний вентильный блок 2. Образуется замкнутая механическая колебательная система камертонного типа. Измеряемое давление Р воздействует на первичный преобразователь, который с помощью датчика съема колебаний 6 и датчика возбуждения колебаний 5 возбуждается на собственной резонансной частоте. Частота колебаний определена конструкцией вибрационного датчика и величиной подаваемого давления. Сигнал с датчика съема колебаний 6 поступает на вход усилителя 7, сигнал с датчика возбуждения колебаний 5 - на выход усилителя 7. После усиления сигнала на усилителе 7 он подается на преобразователь 8. Преобразователь 8 преобразует данные сигналы в сигнал, характеризующий давление измеряемой среды, и передает его на регистратор 9, отображающий величину избыточного давления измеряемой среды.

Точность измерения и диапазон измеряемых давлений повышается потому, что оси колебаний проходят по стенкам труб, и узлы колебаний удалены от точек крепления на расстояние не более половины величины зазора между трубами. Кроме того, внутренняя труба выполнена с отверстиями, что позволяет более точно сбалансировать и настроить работу первичного преобразователя.

Использование предлагаемого устройства обеспечивает по сравнению с существующими устройствами возможность расположения вибрационного датчика избыточного давления в помещениях герметичного объема АЭС, исключает протяженные импульсные линии, повышает точность, увеличивает диапазон и надежность измерения давления в технологических системах АЭС.

Устройство готовится к использованию на АЭС для измерения давления в технологических системах.

Вибрационный датчик избыточного давления, состоящий из герметично перекрываемого корпуса, чувствительного элемента, расположенного внутри корпуса и принимающего давление измеряемой среды, датчика съема колебаний и датчика возбуждения колебаний, усилителя, преобразователя и регистратора, отличающийся тем, что чувствительный элемент образует замкнутую механическую колебательную систему камертонного типа и выполнен в виде первичного преобразователя, состоящего из двух соосных труб разного диаметра, соединенных верхними основаниями друг с другом и нижними основаниями друг с другом посредством верхних и нижних фигурных патрубков соответственно, нижние фигурные патрубки прикреплены к корпусу через вентильный блок, при этом внутренняя труба первичного преобразователя выполнена с отверстиями, а во внешнюю трубу первичного преобразователя вкручены датчик съема колебаний и датчик возбуждения колебаний, сдвинутые относительно друг друга на 90°, усилитель соединен входом с датчиком съема колебаний, а выходом с датчиком возбуждения колебаний и с преобразователем, выход которого подключен к регистратору, отображающему величину избыточного давления измеряемой среды.



 

Похожие патенты:
Изобретение относится к акустической диагностике и может быть использовано в магистральных нефтегазопроводах. .

Изобретение относится к области измерительной техники, в частности к преобразователям давлений, и может быть использовано в разработке и изготовлении малогабаритных полупроводниковых датчиков давлений.

Изобретение относится к измерительной технике и может быть использовано для измерения давления контролируемой среды - жидкости, суспензии, газа. .

Изобретение относится к пищевой промышленности, а именно представляет собой прибор для одновременного мониторинга нескольких физико-химических параметров молока в процессе его свертывания, например температуры, вязкости, активной кислотности, активности ионов кальция (или других ионов в зависимости от выбора ион-селективных электродов).

Изобретение относится к способам измерения давления газа и предназначено для неразрушающего контроля давления газа в тепловыделяющих элементах ядерного реактора в процессе их массового изготовления.

Изобретение относится к способу и системе обогащения аудиосигнала в соответствии с выделенными характеристиками указанного звукового сигнала. .

Изобретение относится к области ядерной энергетики и может быть использовано для контроля и измерения давления газов в газосборнике твэлов и количества выделившихся газообразных продуктов деления (ГПД).

Изобретение относится к измерительной технике и предназначено для метрологического обеспечения контроля при изготовлении частотных датчиков давления. .

Изобретение относится к измерительной технике и может быть использовано для измерения давления жидкости и газов. Резонансный сенсор давления содержит измерительную мембрану с возбуждающим электродом и резонансной полостью, к краям которой с двух сторон жестко закреплен резонансный элемент в форме балки с прямоугольным сечением, в теле которого сформированы тензорезисторы, при этом размер сечения балки в ортогональном направлении к плоскости колебаний постоянен, а в направлении колебаний возрастает по линейному закону, достигая максимального значения по середине балки, причем отношение максимального размера сечения к минимальному в указанном направлении лежит в интервале от 1 до 6. Техническим эффектом является уменьшение нелинейности преобразовательной характеристики резонансного сенсора давления. 4 ил.

Изобретение относится к области измерительной техники. Устройство для измерения давления и скорости его изменения состоит из проточного пневматического канала 1, содержащего два анемочувствительных элемента 2, 3 измерения скорости изменения давления и сообщающего глухую камеру 4 с газодинамическим объектом, микронагнетателя 5 с электроприводом, измерительного 6 анемочувствительного элемента, компенсационного 7 анемочувствительного элемента, первого 8 и второго 9 формирующих сопел, канала 10 измерения давления, канала 11 измерения скорости изменения давления, микроконтроллера 12 и средства 13 отображения информации. Измерительный 6 анемочувствительный элемент размещен в пневматическом канале, объединяющем выходы микронагнетателя 3 по отрицательному избыточному давлению с проточным пневматическим каналом 1. Компенсационный 7 анемочувствительный элемент размещен в непроточной полости 14, сообщенной с проточным пневматическим каналом 1. Первое 8 и второе 9 формирующие сопла, в створе которых расположены первый 2 и второй 3 анемочувствительные элементы измерения скорости изменения давления соответственно, расположены в проточном пневматическом канале 1 встречно друг другу. Первый вход канала 10 измерения давления подсоединен к измерительному 6 анемочувствительному элементу, а второй вход - к компенсационному 7 анемочувствительному элементу. Первый вход канала 11 измерения скорости изменения давления подсоединен ко второму 3 анемочувствительному элементу измерения скорости изменения давления, а второй вход - к первому 2 анемочувствительному элементу. Первый вход микроконтроллера 12 подключен к выходу канала 10 измерения давления, второй вход - к выходу канала 11 измерения скорости изменения давления, а выходами микроконтроллера являются первый выход, являющийся выходным сигналом устройства по давлению, второй выход, являющийся выходным сигналом устройства по скорости изменения давления, подсоединенные к входу системы 13 отображения информации, и третий выход микроконтроллера подсоединен к входу блока 15 управления, выход которого подсоединен к управляющему входу микронагнетателя 3. Технический результат заключается в повышении точности. 3 з.п. ф-лы, 1 ил.

Способ определения потерь нефти и нефтепродуктов применим как в процессе сбора, подготовки, транспортировки и хранения нефти на промыслах, так и при транспортировке нефти по магистральным нефтепроводам, а также может быть использован на предприятиях, занимающихся переработкой нефти, хранением, транспортировкой и распределением нефтепродуктов. Способ заключается в том, что объем потерь нефти и нефтепродуктов от испарений углеводородов и изменения термодинамического состояния паровоздушной смеси в процессе «большого» или «малого» дыханий, определяется по формулам: или где VГП - объем газового пространства резервуара, м3; C0М, C1М, - массовая концентрация углеводородов в парах до и после дыхания, кг/м3; C0П, C1П - объемная концентрация углеводородов в парах до и после дыхания, объемные доли; Ro - универсальная газовая постоянная, Дж/(моль·K); Мп - молекулярная масса паров углеводородов, кг/моль; Pa, - атмосферное давление, кПа; T0, Т1 - температура паров углеводородов до и после дыхания, K. Техническим результатом является повышение точности определения потерь нефти и нефтепродуктов при хранении и транспортировке, а также расширение функциональности за счет возможности его применения как для «больших», так и для «малых дыханий».

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления. Способ измерения разности давлений датчиком с частотно-модулированным выходным сигналом заключается в том, что используют две идентичные мембраны с эпитаксиально выращенными на них резонаторами, разделенные вакуумированным промежутком. Датчик измерения разности давлений с частотно-модулированным выходным сигналом содержит полый корпус, две идентичные мембраны с эпитаксиально выращенными на них резонаторами, систему возбуждения колебаний резонаторов с постоянным магнитом и систему формирования выходного сигнала, разделенные вакуумированным промежутком. Техническим результатом изобретения является упрощение конструкции датчика и повышение технологичности его изготовления. 2 н.п. ф-лы, 3 ил.

Изобретение относится к приборостроению, может быть использовано самостоятельно или в составе измерительно-вычислительных комплексов и систем управления, работающих в широком диапазоне механических и тепловых воздействий и предназначенных для получения информации о разности давлений исследуемых жидких и газообразных сред. Способ измерения разности давлений с частотно-модулированным выходным сигналом характеризуется тем, что используют две идентичные мембраны с эпитаксиально выращенными на них резонаторами, возбуждают собственные колебания резонаторов и формируют частотно-модулированный выходной сигнал. Способ также характеризуется тем, что для возбуждения собственных колебаний используют силу Ампера, возникающую в результате взаимодействия магнитного поля тока, текущего по проводнику с током, текущим по резонаторам, при этом проводник и резонаторы размещают внутри вакуумированной полости между мембранами. Датчик разности давлений с частотно-модулированным выходным сигналом содержит полый корпус, две идентичные мембраны с эпитаксиально выращенными на них резонаторами, систему возбуждения колебаний резонаторов и систему формирования выходного сигнала. Внутри вакуумированной полости расположены токонесущий напыленный проводник, создающий магнитное поле для возбуждения собственных колебаний резонаторов, и резонаторы. Техническим результатом изобретения является упрощение конструкции и повышение технологичности изготовления датчика. 2 н.п. ф-лы, 3 ил.

Предлагаемое изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано при измерении динамического давления совместно с пьезоэлектрическими датчиками динамического давления. Устройство измерения динамического давления содержит пьезоэлемент 1 и измерительный блок 2, который состоит из генератора переменного тока 3, усилителя широкополосного 4, полосового фильтра 5, выпрямителя 6, фильтра нижних частот 7 и микроконтроллера 8. Выход пьезоэлемента 1 подключен к выходу генератора переменного тока 3, а выход генератора переменного тока 3 - к усилителю широкополосному 4. Усилитель широкополосный 4 соединен с полосовым фильтром 5 и фильтром нижних частот 7. Полосовой фильтр 5 через выпрямитель 6 соединен с первым входом микроконтроллера 8, второй вход которого подключен к фильтру нижних частот 7. Технический результат заключается в повышении быстродействия устройства путем одновременного измерения температуры и динамического давления, повышении точности устройства при измерении динамического давления путем коррекции температурной погрешности измерения динамического давления. 1 ил.

Изобретение относится к области измерительной техники, в частности к области волоконно-оптических средств измерений давления, и применимо в нефтяной и газовой промышленности, медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления. Датчик давления включает корпус с закрепленной в нем упругой мембраной, оптический канал, содержащий фиксируемый и подвижный световоды. Подвижный световод соединен через штангу с мембраной. Подвижный и фиксируемый световоды установлены с возможностью поперечного перемещения относительно своих осей, причем фиксируемый световод установлен с возможностью перемещения и фиксации в корпусе с помощью винта и гайки. По торцам входа и выхода световодов расположен сальник. Технический результат - расширение диапазона применения датчика во взрывоопасных средах при сохранении его малых габаритов. 2 ил.

Изобретение относится к испытаниям металлических конструкций и может быть использовано в кабельной технике для оценки работоспособности муфт кабельных погружных электродвигателей. Стенд испытаний кабельных муфт содержит термокамеру с крышкой, в которой размещают испытываемую муфту. Термокамера разделена поршнем на верхнюю и нижнюю полости, к верхней полости подведен трубопровод для закачки соленого раствора, а к нижней полости и к внутренней полости испытываемой муфты подключены трубопроводы для подачи масла. Трубопровод для закачки соленого раствора и трубопровод для подачи масла, подключенный к внутренней полости испытываемой муфты, соединены через распределитель и оснащены индивидуальными манометрами и общим дифференциальным манометром. Кабельная муфта вмонтирована в пробку, закрепленную в крышке. Техническим результатом изобретения является возможность проведения испытания кабельных муфт на перепад давлений при высоких температурах и при наличии агрессивной среды. 2 з.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике, в частности к средствам измерения давления, и может быть использовано в датчиках давления. Устройство для измерения давления состоит из штока, первого, второго и третьего пьезоэлементов. Шток неподвижно соединен с первым и третьим пьезоэлементами, первой мостовой измерительной схемой, образованной дифференциальным емкостным преобразователем, состоящим из первого конденсатора C1 и второго конденсатора С2, а также резисторов R1 и R2, первого режекторного фильтра, первого усилителя заряда, второго режекторного фильтра, второго усилителя заряда, генератора высокой частоты, первого усилителя сигнала разбаланса мостовой измерительной цепи, выпрямителя, источника питания постоянного тока, образованной терморезисторами R3 и R4, а также резисторами R4 и R5, второго усилителя сигнала разбаланса мостовой измерительной цепи и микроконтроллера. Выходы первого и третьего пьезоэлементов соединены с первым входом A1 микроконтроллера через первый режекторный фильтр и первый усилитель заряда. Выходы второго пьезоэлемента соединены со вторым входом микроконтроллера А2 через второй режекторный фильтр и второй усилитель заряда. Выходы генератора высокой частоты соединены с третьим входом А3 микроконтроллера через первую мостовую измерительную цепь. первый усилитель сигнала разбаланса мостовой измерительной цепи и выпрямитель. Выходы источника постоянного тока соединены через вторую мостовую измерительную цепь с четвертым входом А4 микроконтроллера через второй усилитель разбаланса мостовой измерительной цепи. Технический результат заключается в повышении точности измерения, а также увеличении функциональных возможностей. 4 ил.

Изобретение относится к области сенсорной электроники и может быть использовано для измерения параметров технологических сред, в медицине. Заявленный амплитудный волоконно-оптический сенсор давления содержит кремниевый мембранный упругий элемент с жестким центром, оптическое волокно, передающее излучение от внешнего источника и закрепленное на мембранном упругом элементе с возможностью перемещения только вместе с его жестким центром пропорционально измеряемому давлению, и один фотоприемник. При этом в заявленное устройство введены дополнительный фотоприемник, зеркало и две параллельные кремниевые пластины, расположенные перпендикулярно мембранному упругому элементу. Кроме того, оба фотоприемника включены по дифференциальной схеме и расположены на одной кремниевой пластине, а на другой пластине размещено зеркало, которое представляет собой плоскую отражающую поверхность кристаллографической ориентации типа (100) с углублениями пирамидальной формы, стенки углублений сходятся в одной точке, а кристаллографическая ориентация стенок типа (111). Технический результат - повышение чувствительности и снижение нелинейности преобразовательной характеристики. 1 ил.
Наверх