Способ раннего обнаружения атмосферных вихрей в облаках некогерентным радаром

Изобретение относится к области радиолокационной метеорологии и может быть использовано на практике для раннего обнаружения таких атмосферных циклонических вихрей, как торнадо и смерчи некогерентным радаром. Достигаемый технический результат - повышение информативности и точности раннего обнаружения атмосферных вихрей. Согласно способу при обнаружении циклонических вихрей в грозоградовых облаках некогерентным радаром осуществляют радиолокационное зондирование облака на длине волны 10 см, определяют значения отражаемости в заданных пространственных точках облачной среды и отображают эти данные на экране персонального компьютера в виде трехмерной радиолокационной картинки облака, полученное изображение облака рассматривают со всех сторон на фоне экрана персонального компьютера в динамическом режиме, снимая предварительно при каждом просмотре с трехмерного изображения внешнюю оболочку, соответствующую перепаду радиолокационной отражаемости в 2 dBZ, затем при обнаружении контура предполагаемой полости атмосферного вихря на поверхности изображения осуществляют визуальный его просмотр на фоне экрана персонального компьютера и при совпадении цвета обнаруженной полости с цветом фона экрана персонального компьютера идентифицируют данную полость как полость атмосферного вихря. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области радиолокационной метеорологии и может быть использовано на практике для раннего обнаружения таких атмосферных вихрей, как торнадо и смерчи некогерентным радаром.

Смерчи и торнадо появляются внезапно и стремительно несутся над континентами, нанося огромный ущерб народному хозяйству.

В настоящее время для обнаружения таких атмосферных вихрей, как торнадо и смерчи, используют метеорологические спутники, которые позволяют обнаруживать их, экстраполировать путь движения и тем самым уменьшать наносимый ими ущерб. Однако, как правило, метеорологические спутники позволяют их обнаружить тогда, когда они уже сформировались и успели нанести значительный ущерб. Достаточно эффективные методы раннего обнаружения до сих пор не разработаны. Большие надежды в этом отношении возлагаются на эффект появления специфического импульсного радиоизлучения в СВЧ-диапазоне частот при зарождении атмосферных смерчей в грозовых облаках (Качурин Л.Г. Физические основы воздействия на атмосферные процессы. - Л.: Гидрометеоиздат, с.385-406.). Однако методы, основанные на данном эффекте, находятся пока на ранней стадии своего развития и не нашли практического применения.

Наиболее близким по технической сущности к заявляемому объекту является способ активных воздействий на облака, включающий радиолокационное зондирование облака на заданной длине волны, прием отраженного сигнала от облака с последующей обработкой сигнала и определением отражаемости в заданных пространственных точках облачной среды, с последующим отображением на экране персонального компьютера двумерного радиолокационного изображения облака и получением сечений изоконтуров радиолокационной отражаемости облака в горизонтальной и вертикальной плоскостях (Руководство по применению радиолокаторов МРЛ-4, МРЛ-5 и МРЛ-6. / М.Т. Абшаев, И.И. Бурцев, С.И. Ваксенбург, Г.Ф. Шевела. - Л.: Гидрометеоиздат, 1980, с.138-139 Прототип).

Данный способ позволяет получить вертикальные и горизонтальные сечения грозоградового облака, и по изоконтурам радиолокационной отражаемости в сечениях выделить в облаке зоны зарождения града и воздействовать на эти зоны реагентом с целью предотвращения градобитий и искусственного стимулирования осадков.

Данный способ позволяет обнаружить также на поверхности двумерного изображения облака различные контуры предполагаемых струйных воздушных течений, идентифицировать которые практически не представляется возможным. Это обусловлено тем, что способ недостаточно информативен и точен, поэтому данный способ применяется на практике только для решения задач, связанных с активными воздействиями на облака с целью предотвращения градобитий и вызывания осадков.

Техническим результатом от использования заявленного способа является повышение информативности и точности раннего обнаружения таких атмосферных вихрей, как торнадо и смерчи некогерентным радаром.

Технический результат достигается тем, что в известном способе раннего обнаружения атмосферных вихрей в облаках некогерентным радаром, включающем радиолокационное зондирование облака на заданной длине волны, прием отраженного сигнала от облака с последующей обработкой сигнала, определением отражаемости в заданных пространственных точках облачной среды и отображение на экране специализированного вычислительного устройства структуры эхосигналов облака, по данным радиолокационного зондирования формируют трехмерное изображение структуры эхосигналов облака, ограниченное по внешнему контуру пороговым уровнем эхосигнала Z=0 dB, которую затем рассматривают в динамическом режиме, удаляя предварительно при каждом просмотре с внешней ее поверхности слой, соответствующий перепаду ослабления порогового уровня сигнала в ΔZ dB, затем при обнаружении предполагаемой полости атмосферного вихря на поверхности изображения ее ориентируют в плоскости экрана специализированного вычислительного устройства таким образом, чтобы видимость ее была максимальной, после этого вновь последовательно с трехмерного изображения структуры эхосигналов облака удаляют следующий внешний слой, соответствующий перепаду порогового уровня сигнала ΔZ dB, и при обнаружении в данной полости просвета, совпадающего по цвету с фоном экрана, идентифицируют данную полость как полость атмосферного вихря.

Технический результат достигается также и тем, что в известном способе раннего обнаружения атмосферных вихрей в облаках некогерентным радаром перепад ослабления порогового уровня сигнала ΔZ принимается равным 5 dB.

Сущность изобретения поясняется рисунками, где на фиг.1 представлена фронтальная проекция структуры эхосигналов облака; на фиг.2 представлен вид этой структуры сверху при уровне сигнала на ее поверхности Z=35 dB; на фиг.3 представлена структура радиоэхо облака (вид сверху) после последовательного удаления с внешней его поверхности слоев до уровня сигнала Z=45 dB. На рисунке визуально просматривается полость атмосферного циклонического вихря на фоне экрана компьютера.

Способ раннего обнаружения атмосферного вихря в облаках некогерентным радаром реализуется следующим образом.

С помощью некогерентного радара (не показан) осуществляют периодический обзор пространства (полусферы) с цикличностью 3-5 минут. В каждом цикле обзора регистрируют амплитуды радиолокационных сигналов во всех точках трехмерного пространства полусферы с разрешающей способностью по всем трем координатам не хуже 0,5 км (выбранные значения цикличности и разрешающей способности по координатам являются оптимальными). По данным радиолокационного зондирования в каждом цикле обзора формируют трехмерное изображение структуры эхосигналов облака, ограниченное по внешнему контуру пороговым уровнем эхосигнала Z=0 dB. Затем, рассматривая данное изображение в динамическом режиме, удаляя предварительно при каждом просмотре с внешней ее поверхности слой, соответствующий перепаду ослабления порогового уровня сигнала в ΔZ=5 dB. И при обнаружении предполагаемой полости атмосферного вихря на поверхности изображения ее ориентируют в плоскости экрана таким образом, чтобы видимость ее была максимальной. Затем последовательно вновь с трехмерного изображения удаляют следующий внешний слой, соответствующий перепаду порогового уровня сигнала ΔZ=5 dB. И так продолжается до тех пор, пока в данной полости не обнаружится просвет, совпадающий по цвету с фоном экрана. В этом случае данную полость идентифицируют как полость атмосферного вихря. Выбранное значение ΔZ=5 dB для существующих некогерентных радаров является оптимальным.

Пример конкретного выполнения способа.

На Фиг.1 представлена фронтальная проекция структуры эхосигналов облака, зафиксированная некогерентным радаром (МРЛ-5) в районе Усть-Лабинска Краснодарского края 2 августа 2007 года. Внешняя оболочка рассматриваемой структуры соответствует пороговому уровню сигнала ΔZ=5 dB. За пределами данного уровня радар не видит. Для обнаружения атмосферного вихря в облаке 1 с его внешней поверхности с помощью программного обеспечения радара (МРЛ-5) последовательно удаляли слои, соответствующие перепаду порогового уровня сигнала ΔZ=5 dB. В результате была получена структура эхосигналов облака (Фиг.2), внешняя оболочка которой отвечает уровню сигнала Z=35 dB. При этом было удалено всего семь слоев, каждый из которых соответствовал перепаду порогового уровня сигнала ΔZ=5 dB. При тщательном обзоре трехмерного изображения после удаления последующего слоя, отвечающего уровню сигнала Z=5 dB, не удалось выявить предполагаемую полость атмосферного вихря. И лишь при удалении тринадцатого по счету слоя с уровнем сигнала ΔZ=45 dB (Фиг.3) удалось обнаружить в теле облака 3 канал 4, просвет которого совпал по цвету с цветом экрана специализированного вычислительного устройства, в данном случае персонального компьютера. Таким образом удалось обнаружить полость атмосферного вихря некогерентным радаром в реальных условиях. При автоматическом поиске атмосферных вихрей время их обнаружения резко сокращается.

Предлагаемый способ отличается от известных высокой точностью, информативностью и простотой в реализации.

Способ может быть использован на практике для раннего обнаружения с помощью некогерентных радаров таких опасных атмосферных явлений, как торнадо и смерчи.

1. Способ раннего обнаружения атмосферных вихрей в облаках некогерентным радаром, включающий радиолокационное зондирование облака на заданной длине волны, прием отраженного сигнала от облака с последующей обработкой сигнала и определением отражаемости в заданных пространственных точках облачной среды и отображение на экране специализированного вычислительного устройства структуры эхо-сигналов облака, отличающийся тем, что по данным радиолокационного зондирования формируют трехмерное изображение структуры эхо-сигналов облака, ограниченное по внешнему контуру пороговым уровнем эхо-сигнала Z=0 dB, которую затем рассматривают в динамическом режиме, удаляя предварительно при каждом просмотре с внешней ее поверхности слой, соответствующий перепаду ослабления порогового уровня сигнала ΔZ dB, затем при обнаружении предполагаемой полости атмосферного вихря на поверхности изображения ее ориентируют в плоскости экрана специализированного вычислительного устройства таким образом, чтобы видимость ее была максимальной, после этого вновь последовательно с трехмерного изображения структуры эхо-сигналов облака удаляют следующий внешний слой, соответствующий перепаду порогового уровня сигнала ΔZ dB, и при обнаружении в данной полости просвета, совпадающего по цвету с фоном экрана, идентифицируют данную полость как полость атмосферного вихря.

2. Способ раннего обнаружения атмосферных вихрей в облаках некогерентным радаром по п.1, отличающийся тем, что перепад ослабления порогового уровня сигнала ΔZ принимается равным 5 dB.



 

Похожие патенты:

Использование: изобретение относится к методам определения параметров волнения водной поверхности и может быть использовано в метеорологии и океанологии для мониторинга состояния приповерхностного слоя Мирового океана.

Изобретение относится к метеорологии и может быть использовано в автоматизированных системах определения опасных для авиации явлений погоды, а также в других областях человеческой деятельности.

Изобретение относится к измерительной технике и может быть использовано в качестве переносного дистанционного измерителя толщины слоя нефти на поверхности воды. .

Изобретение относится к радиотехнике и может быть использовано в аэрологических радиозондах (АРЗ) систем радиозондирования атмосферы для измерения дальности до радиозонда импульсным методом, пеленгации по угловым координатам и передачи телеметрической информации на одной несущей частоте, также может быть использовано для построения высокостабильных и экономичных сверхрегенеративных приемо-передающих устройств систем радиолокации и связи.
Изобретение относится к области морской гидрометеорологии и может быть использовано при определении дрейфа морских льдов. .

Изобретение относится к радиолокации, а именно к радиолокационным методам определения параметров морского волнения, и может быть использовано в метеорологии и океанологии для дистанционного мониторинга состояния приповерхностного слоя океанов со спутника.

Изобретение относится к мониторингу природных сред и предназначено для определения состояния ионосферы. .

Устройство определения дальности до ионосферы может быть использовано в загоризонтных радиолокаторах и для исследования состояния воздушного слоя Земли. Достигаемый технический результат - увеличение точности определения дальности без уменьшения достоверности обнаружения. Указанный результат достигается благодаря использованию синхронизатора, импульсного передатчика, антенного переключателя, антенны, приемника, тактового генератора, дешифратора, блока вторичной обработки, индикатора, амплитудного селектора, переменной линии задержки, блока фиксации определенной длительности передней части сигнала, анализатора наименьшей дальности, сумматора, панели выдачи кода задержки, соединенных между собой определенным образом. 1 ил.

Изобретение относится к измерительной технике и может быть использовано в метеорологии, навигации, океанографических исследованиях, мореходных испытаниях судов и гидросамолетов для оценки силы волнения морских волн, в автоматизированных системах посадки самолетов-амфибий на водную поверхность в ночное и дневное время. Устройство содержит последовательно включенные антенну 1, приемопередатчик 2, усилитель 3 доплеровского сигнала, аналого-цифровой преобразователь 4 и вычислитель 5, второй вход которого соединен с входом 6 устройства, а первый выход - с управляющим входом приемопередатчика. Кроме того, устройство оснащено индикатором (дисплеем) 7, вход которого соединен со вторым выходом вычислителя 5. Технический результат: сокращение аппаратурной части, упрощение, повышение надежности, повышение быстродействия и точности расчета. 1 ил.

Предлагаемое изобретение может быть использовано для радиозондирования ионосферы, определения интенсивности ионосферных неоднородностей и пеленгации искусственных ионосферных образований. Достигаемый технический результат - повышение точности определения полного электронного содержания в условиях диффузности и получение информации о состоянии ионосферы в заданном направлении. Указанный результат достигается тем, что принимают электромагнитные сигналы от каждого навигационного спутника (НС), при этом в двухчастотном приемнике формируются вектора оценки цифровых сигналов, соответствующие каждому из j=1…m видимых навигационных спутников, затем на основе фазовых времен распространения τф1,2(tk) вычисляют фазовые пути сигнала Дф1,2(tk)=сτф1,2(tk) для каждого из j=1…m видимых НС, определяют полное электронное содержание ионосферы I, математическое ожидание полного электронного содержания ионосферы и среднеквадратическое отклонение полного электронного содержания ионосферы σΔI, затем определяют значение интенсивности неоднородностей ионосферы, затем сравнивают полученные значения интенсивности неоднородностей ионосферы βи j с пороговым βи пор значением, определяют все линии прохождения сигнала, на которых определена повышенная (βи j≥βи пор) интенсивность неоднородностей ионосферы, формируют признак наличия искусственного ионосферного образования, по информации, содержащейся в навигационных сообщениях и координатам размещения двухчастотного приемника определяют пеленги на начало и конец искусственного ионосферного образования. 3 ил.

Изобретение предназначено для систем радиозондирования с ускоренной передачей телеметрической информации с борта аэрологического радиозонда (АРЗ) на наземную радиолокационную станцию (РЛС). Достигаемый технический результат - повышение надежности приема телеметрической информации, передаваемой с борта АРЗ на наземную РЛС, повышение точности измерения информации, передаваемой с борта АРЗ на наземную РЛС, получение дополнительных характеристик измеряемых параметров атмосферы, например турбулентности атмосферы, снижение времени передачи информации. Указанный результат достигается за счет того, что система содержит АРЗ и базовую станцию - РЛС, при этом в состав АРЗ введен блок предполетной подготовки АРЗ, состоящий из пульта предполетной подготовки и блока контроля и записи параметров АРЗ, причем пульт предполетной подготовки АРЗ через блок контроля и записи параметров АРЗ соединен двунаправленной шиной Ml со входами микроконтроллера АРЗ; в состав РЛС введены блок декодирования пакетной телеинформации и блок вторичной обработки телеинформации и выдачи сигналов метеопараметров атмосферы, причем однонаправленная шина М2 приемопередающего устройства РЛС соединена через блок декодирования пакетной телеинформации с блоком вторичной обработки телеинформации и выдачи метеопараметров атмосферы, выход которого является выходом системы. 2 з.п. ф-лы, 4 ил.

Изобретение относится к радиофизическим методам исследования ионосферы и предназначено для определения пространственного распределения ионосферных неоднородностей радарным методом с помощью ЛЧМ ионозонда-радиопеленгатора. Технический результат состоит в повышении точности определения пространственного распределения мелкомасштабных неоднородностей электронной концентрации, обеспеченном повышением частоты зондирования до величины, превышающей критическую частоту ионосферного F-слоя, для детектирования сигналов, рассеянных ионосферными неоднородностями с высоким частотно-временным разрешением, и позиционирования места расположения неоднородностей. Для этого способ включает зондирование ионосферы широкополосным ЛЧМ-сигналом, прием излученного ЛЧМ-сигнала синхронно с его передачей, измерение дистанционно-частотных (ДЧХ) и угловых частотных (УЧХ) характеристик всех принятых сигналов (прямых и рассеянных неоднородностями ионосферы), затем на основе ионосферной модели и измеренных ДЧХ и УЧХ проводят расчеты характеристик прямого сигнала, распространяющегося по дуге большого круга между передатчиком и приемником, корректируют ионосферную модель до совпадения измеренных и расчетных характеристик прямого сигнала, после чего для скорректированной ионосферной модели и данных измерений ДЧХ и УЧХ рассеянного сигнала проводят расчеты характеристик рассеянного сигнала до совпадения измеренных и расчетных данных и по ним определяют пространственное распределение ионосферных неоднородностей. 4 ил.

Изобретение относится к области метеорологии и может быть использовано для определения прозрачности атмосферы. Сущность: осуществляют посылку в неоднородную атмосферу световых импульсов малой длительности. Принимают эхо-сигналы. Обеспечивают коррекцию эхо-сигналов на геометрический фактор лидара. Накапливают скорректированные сигналы в течение заданного промежутка времени в зависимости от общей протяженности исследуемого участка. При этом световые импульсы отклоняют не менее чем в двух точках трассы зондирования в обратном направлении. Для определения прозрачности атмосферы измеряют эхо-сигналы импульсов в одной и той же точке трассы зондирования до и после отклонения. Определяют коэффициент ослабления атмосферы по принятым и накопленным эхо-сигналам. Технический результат: повышение точности определения коэффициента ослабления атмосферы. 1 ил.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения скорости ветра над морской поверхностью. Технический результат - обеспечение возможности учитывать вклад поверхностного течения в уровень отраженных водной поверхностью радиосигналов, что повышает точность определения скорости ветра. Сущность: установленным на космическом аппарате радиоальтиметром облучают водную поверхность, регистрируют отражённый назад сигнал, по фронту радиоимпульса определяют значимую высоту поверхностных волн, по времени прохождения сигнала до поверхности и обратно определяют крупномасштабный рельеф поверхности, по нему рассчитывают поле поверхностного течения, и определяют скорость ветра по величине отраженного назад сигнала с учётом значимой высоты волн и влияния поля течения на величину отражённого назад сигнала.

Изобретение относится к области океанографических измерений и преимущественно предназначено для определения уровня морской поверхности вдоль трассы космического аппарата. Технический результат - повышение точности определения уровня морской поверхности за счет увеличения числа определяемых параметров, характеризующих состояние водной поверхности. Сущность: на расположенном на космическом аппарате радиолокаторе формируют короткие радиоимпульсы постоянной длительности, облучают морскую поверхность в надир и регистрируют отраженный радиоимпульс. По наклону переднего фронта отраженного радиоимпульса определяют значимую высоту волн и расчетным путем определяют расстояние от источника облучения до уровня невозмущенной морской поверхности. Дополнительно морскую поверхность зондируют при ненулевых углах падения, регистрируют отраженный сигнал и определяют скорость приводного ветра. С помощью волновой модели определяют длину и фазовую скорость доминантных волн. Определяют асимметрию и эксцесс распределения возвышений морской поверхности. С учетом значимой высоты волн, асимметрии и эксцесса корректируют полученное значение расстояния от источника облучения до уровня невозмущенной морской поверхности. 1 ил.

Изобретение относится к области георадиолокационных исследований и может быть использовано для прогнозирования гидрологической обстановки на затороопасных участках реки. Сущность: строят модель исследуемого разреза на основе электрофизических данных. На выбранных затороопасных участках реки в летний период проводят георадарное исследование геометрии дна и распределения мощности донных отложений. В предпаводковый период георадарными исследованиями определяют мощность снежного покрова бассейна реки, а также строение и толщину ледяного покрова реки. Путем совмещения полученных георадарных данных прогнозируют гидрологическую обстановку на затороопасных участках реки. Технический результат: прогнозирование гидрологической обстановки на затороопасных участках реки.

Изобретение предназначено для измерения толщины льда и основано на принципе радиолокации с периодической дискретной частотной модуляцией зондирующих радиоволн. Достигаемый технический результат - уменьшение погрешности измерения толщины льда и увеличение достоверности определения свойств среды подо льдом при одновременном уменьшении времени определения толщины льда и увеличении допустимой скорости перемещения по льду. Сущность изобретения заключается в измерении времени распространения электромагнитных волн (ЭВ) до поверхности и в слое льда и сравнении амплитуд и фаз слагаемых спектра сигнала разностной частоты, соответствующих верхней и нижней поверхностям с учетом толщины слоя льда и затухания ЭВ. Различие в коэффициентах затухания ЭВ в слоях льда на разных водоемах учитывают предварительной калибровкой устройства, которую выполняют при неподвижном начальном положении носителя устройства и наличии воды подо льдом, путем подбора частотно-зависимой функции преобразования сигнала разностной частоты (СРЧ) в устройстве, до выравнивания амплитуд пиков спектра СРЧ, соответствующих отражению ЭВ от верхней и нижней поверхностей льда, при этом число дискретных отсчетов частоты и СРЧ дискретно уменьшают пропорционально измеренной толщине льда при сохранении неизменным диапазона частотной модуляции. Устройство, реализующее способ, выполнено на основе радиодальномера. Особенностями устройства является регулируемая частотно-зависимая функция преобразования СРЧ и наличие устройства получения эталонного сигнала. 3 н. и 20 з.п. ф-лы, 8 ил.
Наверх