Способ защиты пользователя радионавигационного приемника по отношению к аберрантным измерениям псевдорасстояний

Изобретение относится к области радиотехники, а именно к радионавигации, и может быть использовано в спутниковой радионавигационной системе. Технический результат заключается в обеспечении защиты пользователя радионавигационного приемника от аберрантных измерений псевдорасстояний. Для этого погрешность измерения детектируют при помощи статистического метода оценки на основании вычисления остатков измерений, что позволяет, в частности, автономно от любого наземного сегмента (то есть с использованием функции RAIM) повысить эффективность имеющегося в наличии приемника (называемого «первичным») без функции контроля целостности, детектировать возможные погрешности, искажающие входные измерения вычисления положения, за счет использования робастного статистического алгоритма оценки, то есть алгоритма, не подверженного влиянию погрешностей измерений, и с применением динамического критерия, и вычислять робастную коррекцию для положения, выдаваемого первичным приемником, с исключением любой такой детектируемой погрешности. 7 з.п. ф-лы, 1 ил.

 

Область техники

Настоящее изобретение относится к способу защиты пользователя радионавигационного приемника от аберрантных измерений псевдорасстояний.

Предшествующий уровень техники

Погрешность в географическом положении, показываемом приемником спутниковой радионавигационной системы, зависит от погрешностей в измерениях псевдорасстояний, определяемых при помощи алгоритма, используемого этим приемником, и от погрешностей, содержащихся в навигационном сообщении, передаваемом спутником.

Чтобы ограничить эти погрешности и обеспечить защиту пользователей, необходимо располагать средствами, позволяющими идентифицировать такие погрешности с целью их устранения и вычислять предельную погрешность положения в зависимости от имеющихся в наличии измерений с учетом требований целостности и непрерывности, связанных с контекстом использования (посадка летательного аппарата и т.д.). Эти средства лежат в основе устройства, содержащего функцию RAIM (Receiver Autonomous Integrity Monitoring - мониторинг целостности автономного приемника). Современные приемники GNSS (глобальная система спутниковой навигации), используемые в гражданской авиации, невозможно использовать без функции RAIM.

Современное оборудование с функцией RAIM характеризуется двумя проблемами:

- оно является полностью интегрированным, из чего следует, что невозможно выбрать отдельно прибор, который принимает навигационный сигнал, и прибор, который вычисляет положение прибора, обеспечивающего функции контроля целостности,

- оно основано на алгоритмах типа алгоритма наименьших квадратов, которые оказываются нарушенными при наличии ошибочных измерений, причем при любой амплитуде (даже бесконечно малой) погрешности, которая искажает эти измерения, что создает проблемы надежности предложенных решений определения положения.

Краткое описание существа изобретения

Задачей настоящего изобретения является создание способа защиты пользователя радионавигационного приемника от аберрантных измерений псевдорасстояний, причем этот способ можно применять на приборе, независимом от прибора, который принимает навигационный сигнал и который вычисляет положение прибора, обеспечивающего функции контроля целостности, и устойчивая работа которого не нарушается наличием ошибочных измерений при любой амплитуде погрешностей, искажающих эти измерения.

Способ защиты в соответствии с настоящим изобретением в самом общем случае отличается тем, что взвешивают N остатков от оценки вектора состояния во время оценки навигационного решения, при этом взвешивание осуществляют по оцениваемой статистике погрешностей этих измерений, используя робастные статистические оценки (такие как Least Trimmed Squares Estimator (оценка по методу наименьших квадратов), или Minimum Covariance Determinant Estimator (по минимальному ковариантному детерминанту), или M-оценка, или A-, D-, GM-, L-, MM-P, R-, S- или W-оценка, или MSTD, причем это взвешивание может быть полным или частичным. Если оно является полным, учет остатков является полным с весовым коэффициентом, равным 1 или равным 0 для исключения, и если оно является частичным, весовой коэффициент находится между 0 и 1. Случай полного взвешивания охватывает, кроме всего прочего, робастные методы “RAIM-MSTD” и “RAIM-LTS”, а случай частичного взвешивания охватывает робастные методы типа “RAIM-M-оценок”. Робастные статистические оценки сами по себе хорошо известны и описаны, например, в статье «Википедия», которую можно найти по следующему адресу: , а также в ссылках, указанных в конце этой статьи.

Согласно другому отличительному признаку изобретения, выбирают подгруппу из h остатков оценки вектора состояния с наименьшей дисперсией, применяют эту дисперсию, умноженную на коэффициент адаптации, а также среднее значение этой же подгруппы, чтобы усреднить и затем нормализовать N входов, которые после возведения в квадрат сравнивают со статистическим порогом и отбрасывают, если они превышают этот порог, при h=N-1 и/или N-2, при этом N является числом остатков. Сравнение со статистическим порогом предназначено для того, чтобы систематически отделять h остатков от оценки вектора состояния. Это и есть метод “RAIM-MSTD”.

Согласно еще одному отличительному признаку изобретения, выбирают подгруппу из N-h остатков оценки вектора состояния, при которой сумма этих измерений в квадрате является минимальной, оценивают среднее значение и дисперсию этой подгруппы и используют это среднее значение и эту дисперсию (предпочтительно последнюю умножают на коэффициент адаптации, превышающий 1), чтобы усреднить и затем нормализовать N входов, которые после возведения в квадрат сравнивают со статистическим порогом и отбрасывают, если они превышают этот порог. Это является методом “RAIM-LTS”.

Согласно еще одному отличительному признаку изобретения, N остатков оценки вектора состояния взвешивают при помощи итеративного метода, который при каждой итерации состоит в оценке среднего значения и дисперсии остатков оценки вектора состояния, в вычислении весового коэффициента при помощи функции взвешивания, входными данными которой являются усредненные и нормализованные по дисперсии остатки, и остатки умножают на эти весовые коэффициенты, при этом итеративный процесс прекращается, если сумма квадратов разностей между двумя последовательными остатками меньше порогового значения, при этом среднее значение и дисперсию (последнюю умножают на коэффициент адаптации), полученные в результате этого процесса, используют, чтобы усреднить и затем нормализовать N входов, которые после возведения в квадрат сравнивают со статистическим порогом и отбрасывают, если они превышают этот порог. Это является методом “RAIM-М-оценок”.

Более конкретно, способ защиты в соответствии с настоящим изобретением характеризуется тем, что содержит следующие этапы вычисления информации целостности путем вычисления остатков измерений псевдорасстояний, полученных на основании географического положения и временного сдвига, выдаваемых первичным радионавигационным приемником, и на основании измерений, используемых первичным приемником для получений этих значений, на которых:

- формируют все подгруппы остатков с кардиналом h=N-1 и/или N-2, где N является числом остатков,

- вычисляют типовое отклонение для каждой подгруппы и определяют при наименьшем типовом отклонении σmin, используемом для взвешивания остатков, hmin значение кардинала, при котором получают σmin, Ymin вектор соответствующего кардинала hmin, и mmin среднее значение Ymin,

- вычисляют первый вектор, определяемый как: r v e c ,1 = ( Y m min ) 2 σ min

- векторы rvec,1 сортируют в порядке возрастания, чтобы получить: r v e c ,1 с о р т

- вычисляют коэффициент f, определяемый как: f = ( χ 2 ) 1 ( h min N ,1 ) , где (χ2)(.,1) является обратной величиной распределения χ2 при одной степени свободы,

- после этого осуществляют повторное взвешивание σmin следующим образом:

σmin,2= r v e c ,1 с о р т ( h min ) f * σ min

- вычисляют новый вектор остатков: r v e c ,2 = ( Y m min ) 2 σ min ,2

- определяют порог Т: T = ( χ 2 ) 1 ( P ,1 ) , где Р является вероятностью, оптимальное значение которой необходимо определить вероятностным моделированием,

- каждый элемент вектора rvec,2 сравнивают с Т, и если r v e c ,2 ( i ) > T , детектируют неисправность, и спутник i исключают.

Краткое описание чертежей

Настоящее изобретение будет более очевидно из нижеследующего подробного описания варианта выполнения, представленного в качестве не ограничительного примера со ссылками на прилагаемый чертеж, на котором показана упрощенная схема последовательных этапов осуществления способа в соответствии с настоящим изобретением.

Подробное описание предпочтительных вариантов воплощения настоящего изобретения

На схеме по фиг. позицией 1 символически обозначен классический первичный приемник спутниковой радионавигационной системы, выдающий, с одной стороны, через один канал 2 решение, оцениваемое первичным приемником (географическое положение и временной сдвиг), и через другой канал 3 измерения псевдорасстояний, используемые первичным приемником для получения решения.

Если измерения, передаваемые первичным приемником, предварительно не были обработаны, следует произвести их предварительную обработку, которая сама по себе известна, чтобы устранить в них погрешности распространения и измерений, что символично показано пунктирным прямоугольником 4.

Вычисление информации целостности далее содержит следующие этапы, начиная с вычисления остатков (5) измерений псевдорасстояний (обозначаемых Yi, где i является индексом спутника, а N является числом этих остатков), на которых:

1. Формируют все подгруппы остатков с кардиналом h=N-1 и/или N-2,

2. Вычисляют типовое отклонение каждой подгруппы (6). Наименьшее типовое отклонение обозначают σmin. Его используют в качестве опорной величины (7). После этого определяют:

а. hmin значение кардинала, при котором получают σmin,

b. Ymin вектор соответствующего кардинала hmin,

с. mmin среднее значение Ymin.

3. σmin используют для взвешивания остатков. Вычисляют первый вектор: r v e c ,1 = ( Y m min ) 2 σ min

4. Для разных спутников первые векторы rvec,1 сортируют в порядке возрастания, чтобы получить: r v e c ,1 с о р т . Кроме того, вычисляют коэффициент f, определяемый как: f = ( χ 2 ) 1 ( h min N ,1 ) , где (χ2)(.,1) является обратной величиной распределения χ2 при одной степени свободы.

5. После этого осуществляют повторное взвешивание σmin следующим образом: σmin,2= r v e c ,1 с о р т ( h min ) f * σ min

6. Вычисляют новый вектор остатков: r v e c ,2 = ( Y m min ) 2 σ min ,2

7. Определяют порог Т: T = ( χ 2 ) 1 ( P ,1 ) , где Р является вероятностью, оптимальное значение которой необходимо определить методом вероятностного моделирования типа «Монте-Карло».

8. Каждый элемент вектора rvec,2 сравнивают с Т. Если r v e c ,2 ( i ) > T , отмечают детектирование неисправности, и спутник i исключают (8).

9. После осуществления детектирования возможных ошибочных измерений, можно произвести вычисление районов защиты (10) обычным путем с учетом числа произведенных измерений.

Следует отметить, что Р, представляющее собой вероятность исключения неошибочного спутника, вместе с тем нельзя напрямую соотнести с вероятностью исключения, определенной нормами ИКАО. С другой стороны, действие по пункту 8 осуществляют отдельно для каждого спутника: поэтому нет детектирования без исключения.

Таким образом, выходы этого устройства обеспечивают:

- решение положения, в случае необходимости, скорректированное (11), если детектирована погрешность во входных данных измерений,

- значение района защиты (12), которое позволяет обеспечить решение положения устройства, включая, в случае необходимости, тревожный сигнал.

Способ в соответствии с настоящим изобретением позволяет, автономно от любого наземного сегмента (то есть с использованием функции RAIM):

- повысить эффективность приемника (называемого «первичным»), выпускаемого на рынок без функции контроля целостности,

- детектировать возможные погрешности, искажающие измерения на входе вычисления положения, за счет использования робастного статистического алгоритма оценки, то есть реально не подверженного влиянию погрешностей измерений, и с применением динамического критерия,

- вычислять робастную коррекцию для положения, выдаваемого первичным приемником, с исключением такой погрешности при ее детектировании,

- вычислять предельные погрешности положения в зависимости от имеющихся в наличии измерений и с учетом требований целостности и непрерывности, соответствующих контексту использования (например, в фазе посадки летательного аппарата). Этими предельными погрешностями являются пороговые значения, которые не должны быть превышены более одного раза для N измерений расстояний, например, при N=от 105 до 107,

- эффективность превышает эффективность стандартного алгоритма RAIM (использующего метод наименьших квадратов).

Поскольку в настоящее время не существует способа, позволяющего добавить функцию контроля целостности в приемник, если она изначально в него не заложена, известные устройства не могут использовать текущие алгоритмы, чтобы получить эквивалентную характеристику целостность/доступность. Для улучшения характеристик можно применять последовательную или фильтрующую обработку, но, поскольку возможность такой обработки исключена при оценке точки местонахождения (слишком длительное время выдачи тревожного сигнала контроля целостности, которое составляет, например, порядка 6 секунд в гражданской авиации, но может составлять и несколько сот секунд при эффективном фильтровании), то для обеспечения контроля целостности на таком уровне эффективности другого полностью автономного решения не существует.

- Способ в соответствии с настоящим изобретением позволяет оптимизировать выбор прибора, принимающего навигационный сигнал, независимо от прибора обработки RAIM.

- Способ RAIM, который благодаря изобретению становится робастным, позволяет повысить надежность оценки точки местонахождения (географического положения) за счет повышения характеристик контроля целостности (детектирование и исключение) по сравнению со стандартным способом RAIM.

- Этот способ обеспечивает возможность детектирования и исключения ошибочных измерений GNSS, более оптимизировано, по сравнению, со стандартным RAIM. В частности, он позволяет повысить степень доступности системы GNSS, совместимой с требованиями в гражданской авиации.

В заключение можно отметить, что изобретение предоставляет намного больше возможностей по сравнению со стандартными алгоритмами как с точки зрения контроля целостности (детектирование), так и с точки зрения готовности (ложные тревоги, оптимизация районов защиты), и может применяться для радионавигационного приемника, изначально не имеющего робастной функции RAIM защиты от погрешностей измерения.

1. Способ защиты пользователя радионавигационного приемника по отношению к аберрантным измерениям псевдорасстояний, отличающийся тем, что он содержит следующие этапы вычисления информации целостности путем вычисления остатков (5) измерений псевдорасстояний, полученных на основании географического положения и временного сдвига (2), выдаваемых первичным радионавигационным приемником, и на основании измерений (3), используемых первичным радионавигационным приемником для получений этих значений, причем упомянутые остатки обозначены Yi, где i является индексом спутника, на которых:
a) формируют подгруппы остатков с кардиналом h=N-1 и/или N-2, где N является числом остатков,
b) вычисляют стандартное отклонение для каждой подгруппы (6) и определяют при наименьшем стандартном отклонении σmin, используемом в качестве опорного значения (7) для взвешивания остатков, hmin - значение кардинала, при котором было получено σmin, Ymin - вектор соответствующего кардинала hmin и mmin - среднее значение Ymin,
c) вычисляют первый вектор остатков, определяемый как
r v e c ,1 = ( Y m min ) 2 σ min ;
d) векторы rvec,1 сортируют в порядке возрастания, чтобы получить
r v e c ,1 c o p m ;
е) вычисляют коэффициент f, определяемый как
f = ( χ 2 ) 1 ( h min N ,1 ) ,
где (χ2)(.,1) является обратной величиной хи-квадратичного статистического распределения χ2 при одной степени свободы;
f) после этого осуществляют повторное взвешивание σmin следующим образом:
σ min ,2 = r v e c ,1 с о р т ( h min ) f σ min ;
g) вычисляют новый вектор остатков r v e c ,1 = ( Y m min ) 2 σ min ;
h) определяют порог Т: Т=(χ2)-1(P,1), где Р является вероятностью, оптимальное значение которой определяют вероятностным моделированием;
i) каждый элемент вектора rvec,2 сравнивают с Т и, если rvec,2(i)>Т, отмечают детектирование неисправности и спутник i исключают.

2. Способ по п.1, отличающийся тем, что метод вероятностного моделирования, применяемый для определения порога Т, является методом типа «Монте-Карло».

3. Способ по п.1, отличающийся тем, что когда измерения, переданные первичным приемником, не проходят предварительную обработку, их подвергают предварительной обработке, устраняя из них погрешности распространения и измерений (4).

4. Способ по п.1, отличающийся тем, что при детектировании погрешности во входных данных измерений вычисляют скорректированное положение (9).

5. Способ по п.1, отличающийся тем, что при детектировании погрешности во входных данных измерений вычисляют скорректированное значение времени (11).

6. Способ по п.1, отличающийся тем, что районы защиты (10), связанные с измерениями, вычисляют известным способом.

7. Способ по п.1, отличающийся тем, что при детектировании погрешности во входных данных измерений передают тревожный сигнал (12).

8. Способ по п.1, отличающийся тем, что способ применяют для радионавигационного приемника, изначально не имеющего источника робастной защиты от погрешностей измерения.



 

Похожие патенты:

Изобретение относится к области радиотехники, а именно к спутниковым навигационным системам, и может быть использовано для предоставления средства оценки индикации целостности (11) спутниковой навигационной системы.

Изобретение относится к области радиотехники, а именно к определению местоположения, и может быть использовано для определения опорного местоположения базовой станции в дифференциальной глобальной навигационной спутниковой системе (ГНСС).

Изобретение относится к области радиотехники, а именно к области спутниковых навигационных систем, и может быть использовано в сети для расчета и выдачи ионосферных коррекций пользователям.

Изобретение относится к области систем мониторинга смещения инженерных сооружений и может быть использовано для ведения непрерывного контроля смещений и колебаний элементов конструкций мостов, плотин, башен и других инженерных сооружений с целью ранней диагностики целостности сооружения, а также оперативного обнаружения потери устойчивости сооружения.

Изобретение относится к области радиотехники, а именно к спутниковой навигации с помощью системы ГЛОНАСС, и может быть использовано для позиционирования приемника.

Изобретение относится к области радиотехники, а именно к позиционированию с использованием сигналов от региональных спутниковых систем, и может быть использовано в навигационном приемнике.

Изобретение относится к технике связи и может использоваться для определения местоположения подвижных объектов. .

Изобретение относится к области радиотехники, а именно к системе и способу для разрешения неоднозначностей, ассоциированных с сигналами, принимаемыми от космических аппаратов (SV) в спутниковой навигационной системе, и может быть использовано для определения местоположения на основе сигналов, принимаемых от геолокационных спутников.

Изобретение относится к области радионавигации и может быть использовано в системах определения местоположения и слежения за траекторией перемещающихся в надземном пространстве объектов по сигналам глобальных навигационных спутниковых систем.
Изобретение относится к области радиотехники, а именно к навигации воздушных судов (ВС), и может быть использовано для содействия указанным ВС, а также другим движущимся объектам, таким как морские суда и т.п.

Изобретение относится к области радиотехники, а именно к определению местоположения, и может быть использовано в глобальной системе определения местоположения. Технический результат заключается в обеспечении информации о местоположении без ухудшения точности даже в местоположении, где невозможно принимать радиоволны от спутника, который излучает сигналы для определения местоположения, и в снижении времени, требуемого для получения информации о местоположении. Для этого передатчик (200-1) внутренней установки приспособлен для обеспечения информации о местоположении путем использования второго сигнала определения местоположения, совместимого с первым сигналом определения местоположения, который является сигналом расширенного спектра от каждого из множества спутников. Передатчик (200-1) внутренней установки содержит память EEPROM (243), которая хранит данные местоположения для идентификации его местоположения установки, FPGA (245), действующую для генерации второго сигнала, включающего в себя данные местоположения, в виде сигнала расширенного спектра, и передающий блок (251-258), действующий для передачи сигнала расширенного спектра. Второй сигнал определения местоположения генерируется для повторения того же самого содержания в цикле, более коротком, чем у первого сигнала определения местоположения. 3 н. и 7 з.п. ф-лы, 26 ил.

Изобретение относится к области радиотехники, а именно к оценке положения космического аппарата (6), и может быть использовано, в частности, для оценки положения спутника, вращающегося вокруг Земли. Технический результат заключается в обеспечении отсутствия необходимости отправки шаблона опорного сигнала, излучения космическим аппаратом какой-либо последовательности запуска и необходимости адаптации космического аппарата и, таким образом, в улучшении оценки положения космического аппарата. Для этого система включает в себя принимающие станции (4) для приема сигналов, переданных от космического аппарата (6), и обрабатывающую станцию (2) для приема данных от принимающих станций (4), где каждая принимающая станция (4) записывает во время окна (8) записи сигналы, переданные от космического аппарата (6), и передает в обрабатывающую станцию (2) данные, представляющие упомянутые записанные, причем окна (8) записи, ассоциированные с каждой из принимающих станций (4), сдвинуты и/или имеют различный размер по отношению друг к другу. Обрабатывающая станция (2) коррелирует записанные сигналы для оценки разности расстояний между космическим аппаратом (6) и каждой из множества принимающих станций и для оценки положения космического аппарата (6). 5 н. и 17 з. п. ф-лы, 10 ил., 1 табл.

Изобретение относится к области радиотехники, а именно к коррекции предсказаний значений изменяющихся во времени сигналов, и может быть использовано для приема навигационных сообщений, посылаемых глобальными навигационными спутниковыми системами. Технический результат заключается в обеспечении возможности коррекции предсказания значений изменяющихся во времени сигналов, возмущаемых различными неконтролируемыми систематическими явлениями без ограничений существующих решений. Для этого способ содержит следующие этапы коррекции предсказаний параметра, включенного в принимаемый и изменяющийся во времени сигнал: оценка ошибки предсказания на основании первого набора значений, оцениваемых в течение определенного промежутка времени, сравнивая эти значения со значениями, ранее предсказанными для этого же определенного промежутка времени, анализ предсказанных временных рядов ошибок предсказания при помощи способа обработки сигнала и выделение долей систематических влияний, экстраполяция поведения долей систематических влияний в течение рассматриваемого промежутка времени и коррекция предсказаний при помощи экстраполированных таким образом значений. 2 з.п. ф-лы, 3 ил.

Изобретение относится к позиционированию летательного аппарата. Сущность изобретения заключается в том, что устройство (10) трехмерного позиционирования с базовой станцией (12) вторичного радара, которая предназначена для измерения дальности до ретрансляторов (14) и имеет по меньшей мере одну радарную антенну (16), содержит GNSS-приемник (18), который предназначен для измерения GNSS-сигналов, и имеет GNSS-приемную антенну (20), инерциальный измерительный блок (22), который предназначен для определения положения GNSS-приемной антенны, а также по меньшей мере одну радарную антенну в общей системе координат относительно нулевой точки, и интегрирующий процессор (24, 30, 31), в который подводятся измерения псевдодальности GNSS-приемника, радарные измерения дальности, и измеренные инерциальным измерительным блоком (22) перемещения устройства относительно осей общей системы координат, и который определяет трехмерную позицию общей опорной точки путем объединения подведенных измерений и данных, при этом с учетом измеренных перемещений производится компенсация плеча. Достигаемый технический результат - повышение точности позиционирования. 2 н. и 11 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники, а именно к навигации летательных аппаратов (ЛА), и может быть использовано при осуществлении навигации ЛА, включая посадку на взлетно-посадочную полосу (ВПП). Технический результат заключается в повышении надежности и точности определения координат ЛА. Для этого комплексный способ навигации объединяет спутниковый и радиотехнический дальномерный способы навигации на основе наземных радиомаяков (НРМ), при этом прием сигналов спутников проводят как на борту ЛА, так и на ряде наземных НРМ, в том числе на НРМ у ВПП. На НРМ непрерывно уточняют базовые координаты, определяют дифференциальные поправки (ДП) к координатам и ДП к псевдодальностям, формируют пакет корректирующей информации (КИ) с упомянутыми ДП, погрешностями их определения, вычисленными данными тропосферной рефракции и уточненными базовыми координатами НРМ. По запросу с ЛА НРМ излучает по дальномерному каналу сигнал с КИ, включающей ДП только в виде ДП к координатам. На ЛА вычисляют навигационные параметры с учетом КИ, производят комплексную обработку данных и непрерывную сравнительную оценку погрешностей. При достижении зоны аэродрома и посадке, в случае меньшего значения погрешности по спутниковому способу, режим формирования последовательности запросных дальномерных сигналов ряда НРМ переводят в режим запроса только одного НРМ, расположенного у ВПП, при этом на ЛА в составе КИ передают ДП только в виде ДП к псевдодальностям. По откорректированным псевдодальностям вычисляют уточненные координаты ЛА. 8 з.п. ф-лы, 2 ил., 2 прил.

Изобретения относятся к вычислительной технике и могут быть использованы для обнаружения неисправностей спутников и корректировки таких неисправностей. Техническим результатом является возможность определения типа неисправности. Способ реализован при помощи устройства гибридизации, содержащего банк фильтров Калмана, каждый из которых формирует гибридное навигационное решение на основе инерциальных измерений, рассчитанных виртуальной платформой, и необработанных измерений сигналов, переданных группой спутников и полученных от системы спутникового позиционирования (GNSS), и включает этапы, на которых определяют для каждого из спутников, по меньшей мере, одно отношение правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности, констатируют наличие у спутника неисправности определенного типа на основе отношения правдоподобия, соответствующего неисправности определенного типа, и порогового значения, оценивают влияние констатированной неисправности на каждое из гибридных навигационных решений, и корректируют гибридные навигационные решения в соответствии с оценкой влияния констатированной неисправности. 2 н. и 12 з.п. ф-лы, 3 ил.

Изобретение относится к спутниковым радионавигационным системам позиционирования. Техническим результатом является получение более качественных данных положения с точки зрения безопасного радиуса и доступности, непрерывность контроля достоверности предоставляемых данных. Упомянутый технический результат достигается тем, что определяют: поддерживаемое положение в данный момент, поддерживаемый безопасный радиус, связанный с поддерживаемым положением, наилучшее положение на данный момент, при этом наилучшим положение является: когда данные, поступающие от устройства промежуточного позиционирования, доступны, - положением, связанным с наилучшим безопасным радиусом, при этом наилучший безопасный радиус выбирают посредством сравнения, в зависимости от заранее определенного критерия выбора, промежуточного безопасного радиуса с поддерживаемым безопасным радиусом, и когда данные, поступающие от устройства промежуточного позиционирования, недоступны, - поддерживаемым положением. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к технике радиоэлектронного подавления и может быть использовано в средствах радиоэлектронной борьбы для активного подавления навигационных приемников высокоточного оружия (ВТО) и беспилотных летательных аппаратов (БПЛА). Достигаемый технический результат - возможность постановки активных помех в основной диаграмме направленности антенных систем навигационных приемников ВТО и БПЛА. Указанный результат достигается за счет того, что в способе радиомаскировки стационарных объектов, регистрирующем информационные сигналы от спутниковых навигационных систем, распределенных в пространстве, помеховые сигналы формируют в главном лепестке диаграммы направленности навигационного приемника с помощью средств постановки помех, ориентированных в пространстве в верхней полусфере и выведенных на высоту H=tg(α)·D, где α - угол между краем главного лепестка диаграммы направленности и горизонтом; D - расстояние от отдельного конкретного средства постановки помех до навигационного приемника, при этом помеховый сигнал модулируют по линейно-частотному закону в полосе частот, равной диапазону изменения допплеровских частот регистрируемого сигнала. 1 ил.

Изобретение относится к области радиотехники, а именно к области навигационных измерений, и может быть использовано в наземном комплексе управления орбитальной группировкой навигационных космических аппаратов (НКА). Технический результат заключается в расширении функциональных возможностей и повышении помехоустойчивости, надежности дуплексной радиосвязи между наземным пунктом контроля и спутником навигационной системы ГЛОНАСС и точности измерения радиальной скорости и местоположения указанного спутника. Для этого наземный пункт контроля содержит задающий генератор 1, регистр 2 сдвига, фазовый манипулятор 3, гетеродины 4, 11 и 33, смесители 5, 12, 17, 34, 43 и 44, усилитель 6 первой промежуточной частоты, усилители 7, 10, 41 и 42 мощности, дуплексер 8, приёмопередающую антенну 9, усилители 13, 35, 45 и 46 третьей промежуточной частоты, удвоитель 14 фазы, делитель 15 фазы на два, узкополосные фильтры 16 и 18, измеритель 19 частоты Доплера, корреляторы 20, 36, 47 и 48, перемножители 21, 49 и 50, фильтры 22, 51 и 52 нижних частот, экстремальные регуляторы 23, 53 и 54, блоки 24, 55 и 56 регулируемой задержки, индикатор 26 дальности, ключ 38, приемные антенны 39 и 40, а спутник содержит приемопередающую антенну 26, дуплексер 27, усилители 28 и 32 мощности, гетеродины 29 и 59, смесители 30 и 60, усилитель 31 второй промежуточной частоты, усилитель 61 третьей промежуточной частоты, коррелятор 62, пороговый блок 63 и ключ 64. 2 н.п. ф-лы, 6 ил.

Устройство автоматизированного управления многоопорной дождевальной машиной фронтального действия для точного полива включает установленные на тележках с электроприводом трубопроводы правого и левого крыльев машины, блок синхронизации движения по курсу с направляющим тросом и блок управления скоростью движения машины. Вдоль оросительного канала установлена на стойках контактная сеть, взаимодействующая с токосъемником, который через телескопический механизм закреплен на тележке, движущейся по противоположной стороне оросительного канала. Выход токосъемника соединен с входом щита управления, выход которого соединен с входом счетчика электрической энергии, выходы которого соединены с входами микропроцессорного блока управления и частотного преобразователя. Входы микропроцессорного блока управления соединены с таймером, системой стабилизации курса, системой синхронизации тележек в линию, датчиками пути, задатчиком нормы полива, задатчиком длины участка полива, расходомером и манометром, установленным на трубопроводе, а выходы микропроцессорного блока управления соединены с электрогидрозадвижкой, частотным преобразователем, контактором, приборами синхронизации тележек в линию и приборами стабилизации курса левого и правого крыла, через вакуум-насос с входом насоса, выход которого через электрогидрозадвижку и расходомер соединен с трубопроводом. Микропроцессорный блок управления соединен с входом-выходом интерфейсного устройства. Сигнал с выхода частотного преобразователя подается на электропривод левого и правого крыла машины, а выход контактора соединен через электродвигатель с входом насоса. Сигнал, полученный с измерителей влажности, установленных на орошаемом участке поля, поступает на систему управления поливом через GLONASS-спутник, сигнал с системы управления поливом через GLONASS-спутник передается на вход-выход GLONASS-приемника, выход которого через блок анализа сигналов соединен с микропроцессорным блоком управления, выход которого соединен с GLONASS-приемником. Вход-выход микропроцессорного блока управления электрически соединен с сенсорным экраном, а выход частотного преобразователя соединен с входом контактора. Выход блока анализа сигналов соединен с входами блока управления поливом, выходы которых на крайних ведущих опорных тележках соединены с входом прибора стабилизации курса, а на промежуточных опорных тележках соединены с входом прибора синхронизации тележек в линию, как правого, так и левого крыльев машины. Техническим результатом изобретения является снижение затрат оросительной воды, удобрений, электроэнергии, устранение недополива и переполива. 3 ил.
Наверх