Жидкостный теплоноситель-светофильтр твердотельных лазеров


 


Владельцы патента RU 2503043:

Открытое акционерное общество "Пеленг" (BY)

Изобретение относится к лазерной технике, а конкретнее к жидкостным охлаждающим средам (теплоносителям) (ЖТС) твердотельных лазеров (например, неодимовых или гольмиевых), являющимся одновременно светофильтром для ультрафиолетового (УФ) излучения лампы накачки лазера. Оно может применяться везде, где разрабатываются или применяются твердотельные лазеры, имеющие жидкостную систему охлаждения с фильтрацией УФ-излучения лампы накачки. Сущность изобретения заключается в том, что ЖТС содержит 2-окси-4-(С7-С9-алкил)оксибензофенон, бутиловый спирт и октан при следующем содержании компонентов, мас.%: 2-окси-4-(С7-С9)алкоксибензофенон 0,3-0,6 бутиловый спирт 35-45, октан - остальное. Технический результат заключается в обеспечении возможности увеличения ресурса работы лазера.

 

Изобретение относится к лазерной технике, а конкретнее, к жидкостным охлаждающим средам (теплоносителям) твердотельных лазеров (например, неодимовых или гольмиевых), являющихся одновременно светофильтром для ультрафиолетового (УФ) излучения лампы накачки лазера. Оно может применяться везде, где разрабатываются или применяются твердотельные лазеры, имеющие жидкостную систему охлаждения с фильтрацией УФ излучения лампы накачки.

Известен жидкостный теплоноситель-светофильтр (ЖТС), применяющийся для охлаждения лазеров на гранате или стекле с неодимом и фильтрации УФ излучения ламп накачки [1]. Этот ЖТС содержит пропиловый или изопропиловый спирт, 2,2',4,4'-тетраоксибензофенон и уксуснокислый натрий при следующем содержании компонентов, мас.%:

пропиловый или изопропиловый спирт 15-85
2,2',4,4'-тетраоксибензофенон 0,03-0,07
уксуснокислый натрий 0,2-0,7
вода остальное.

Он имеет границу полосы пропускания в УФ диапазоне около 370 мкм и прозрачен вплоть до 1 мкм. Эта спектральная характеристика является оптимальной для накачки твердотельных лазеров на гранате, легированном неодимом.

Практика использования этого ЖТС выявила, что он имеет недостаточную морозостойкость (температура замерзания ниже -18°С), что не позволяет эксплуатировать ЖТС на открытых площадках в холодное время года. Указанный ЖТС имеет также недостаточно высокую температуру кипения (меньше 100°С), при которой происходит существенное фоторазложение ТФ и постепенное осаждение нерастворимых продуктов разложения ТФ на поверхности колбы лампы накачки. При длительной непрерывной работе лазера этот эффект вызывает уменьшение ресурса работы лазера.

Более низкую температуру замерзания ниже минус 60°С имеет один из возможных ЖТС, описанных в [2], в котором содержатся как компоненты краситель 2-окси-4-(С79)-алкоксибензофенон, бутанол и октан, органические эфиры. Однако указанный ЖТС [2] в своем составе может содержать большие доли компонентов вплоть до 100%, что может приводить к уменьшению ресурса работы ЖТС до нуля при 100% содержании, например, красителя, и к недостаточному ресурсу работы в прочих случаях.

Этот ЖТС [2] является наиболее близким по технической сущности и достигаемому результату и выбран в качестве прототипа.

Задачей изобретения является определение оптимального состава ЖТС для увеличения ресурса работы лазера с ЖТС.

Сущность изобретения заключается в том, что ЖТС, включающий 2-окси-4-(С79)-алкоксибензофенон, бутанол и октан, в отличие от прототипа имеет содержание компонентов, мас.%:

2-окси-4-(С79)-алкоксибензофенон 0,3-0,6
бутанол 35-45
октан остальное.

Поставленная задача решается следующим образом.

Применение 2-окси-4-(С79)-оксибензофенона (ОФ) в содержании (0,3-0,6 мас.%) позволяет обеспечить необходимые физические характеристики - ОФ растворим в смеси октана с бутанолом (БС) и обеспечивает границу пропускания ЖТС в УФ диапазоне длин волн излучения около 370 мкм и прозрачность вплоть до длин волн излучения около 1 мкм. Эта спектральная характеристика является оптимальной для ламповой накачки твердотельных лазеров на гранате, легированном неодимом. Излучение накачки с длиной волны более 370 нм практически не вызывает появления наведенного неактивного поглощения в активном элементе лазера, соответственно, не уменьшается энергетика и обеспечивается достаточный ресурс работы лазера. Так как коэффициент экстинкции ОФ в УФ области велик, для фильтрации УФ излучения и обеспечения необходимых спектральных характеристик ЖТС достаточно малой концентрации ОФ (0,3-0,6 мас.%). Увеличивать концентрацию ОФ более 0,6 мас.% нежелательно, так как в этом случае уменьшается толщина слоя ЖТС, в котором поглощается УФ излучение. Соответственно, при этом растет температура ЖТС в этом слое и ухудшается охлаждение лампы накачки, что приводит к уменьшению энергетики и ресурса работы лазера.

Концентрация ОФ менее 0,3 мас.% не позволяет обеспечить достаточную фильтрацию УФ излучения накачки лазера, соответственно, при этом за счет появления наведенного неактивного поглощения в активном элементе лазера уменьшаются энергетика и ресурс работы лазера.

ОФ малореакционноспособен, кроме того у него малая концентрация, что приводит к малой коррозионной активности ЖТС, а соответственно, малой скорости появления продуктов коррозии в ЖТС и образования налета на оптических элементах системы накачки лазера. При этом обеспечивается ресурс работы лазера.

Наличие БС создает возможность растворения ОФ, обеспечения высокой температуры кипения (у БС она составляет 117,5°С) и условия для обеспечения морозоустойчивости ЖТС (температура замерзания БС составляет -79,9°С).

Наличие бутилового спирта (БС) обеспечивает также фотоустойчивость ЖТС и его ресурс работы из-за увеличения фотоу стойкости ОФ при наличии водородных связей молекул ОФ и БС.

Кроме того, наличие БС устраняет появление в ЖТС налетов биологического происхождения,

Содержание БС ограничено сверху 45 мас.%, иначе при отрицательных температурах (от 0°С до -50°С) ЖТС будет иметь большую вязкость (вязкость БС составляет 34,7 сПз при -50°С), соответственно, малую скорость прокачивания в системе охлаждения лампы накачки, что ведет к ухудшению охлаждения лампы накачки, уменьшению ее ресурса и ресурса работы лазера.

Содержание БС ограничено снизу 35 мас.% в связи с необходимостью обеспечения расворимости ОФ в ЖТС, при меньшем содержании БС ОФ не будет полностью растворяться в ЖТС.

Наличие октана создает возможность растворения БС, обеспечения высокой температуры кипения (у октана она составляет 124,7°С) и условия для обеспечения морозоустойчивости ЖТС (температура замерзания октана составляет - 56,8°С).

Наличие октана позволяет получить ЖТС с малой вязкостью (1,8 сПз) при низких температурах около - 50°С (вязкость октана при -50°С составляет 1,8 сПз). Содержание октана определяется содержанием БС и ОФ.

Таким образом, предлагаемый ЖТС имеет температуру кипения 104°С и температуру замерзания -62°С. Спектральные характеристики предлагаемого ЖТС близки к оптимальным.

В конкретном исполнении ЖТС был изготовлен при следующем содержании компонентов, мас.%:

2-окси-4-(С79-алкил)оксибензофенон 0,5
бутиловый спирт 40
октан 59,5.

ЖТС позволяет получить повышенную температуру кипения, и соответственно, повышенный ресурс работы лазера (уменьшается скорость осаждения нерастворимых продуктов разложения ОФ на поверхности колбы лампы накачки).

Этот ЖТС использовался для охлаждения непрерывных лазеров на гранате с неодимом, активные элементы которых нельзя подвергать воздействию УФ излучения, в диапазоне температур окружающей среды от -50°С до +50°С. Накачка лазеров осуществлялась излучением криптоновой газоразрядной лампы ДНП2-5/38А при электрической мощности накачки 1200÷1400 Вт. Мощность непрерывного излучения лазера составляла при этом не менее 10 Вт. Система охлаждения включала в себя бак из нержавеющей стали, корпус излучателя и конструктивные элементы излучателя, изготовленнные из нержавеющей стали и титана. Толщина слоя между лампой накачки и активным элементом составляла не менее 2 мм.

Лазер работал циклами непрерывной работы до закипания ЖТС на колбе лампы накачки. После этого он выключался, ЖТС остывал до температуры окружающей среды, и опять происходило включение накачки лазера. Стабильность характеристик ЖТС обеспечивалась в течение 30 часов работы.

Предложенный ЖТС обеспечивает повышенную температуру кипения, оптимальные спектральные характеристики, возможность эксплуатации в в диапазоне температур окружающей среды от -50°С до +50°С, ресурс работы лазера в течение 30 часов.

Таким образом, ЖТС с оптимальным составом позволяет увеличить ресурс работы лазера с ЖТС.

Источники информации.

1. Патент BY №4241 C1 1999.04.29, весь документ.

2. Патент DD №301029 A7 1983.10.27, весь документ. - Прототип.

Жидкостный теплоноситель-светофильтр твердотельных лазеров, включающий 2-окси-4-(С79)-алкоксибензофенон, бутанол и октан, отличающийся тем, что содержание компонентов составляет, мас.%:

2-окси-4-(С79)-алкоксибензофенон 0,3-0,6
бутанол 35-45
октан остальное



 

Похожие патенты:

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам накачки и системам их охлаждения. Оптическая усилительная головка с диодной накачкой состоит из размещенных в корпусе активного элемента в виде стержня, матриц лазерных диодов, расположенных на держателях вдоль активного элемента, и системы охлаждения, содержащей стеклянную трубку, охватывающую активный элемент с образованием радиального канала δ.

Изобретение относится к конструкции оптической накачки для оптического квантового генератора, которая содержит активную среду в виде цилиндрического стержня (1), имеющего круглое сечение, причем концы стержня введены в два кольца (11), выполненные из теплопроводного материала, по меньшей мере, три пакета (21, 22) небольших стержней диодов накачки, расположенных звездой вокруг стержня, опору (5) с регулировкой температуры посредством модуля (8) на основе эффекта Пельтье, причем кольца (11) находятся в контакте с опорой (5).

Изобретение относится к лазерной технике, а именно к импульсно-периодическим твердотельным лазерам. .

Изобретение относится к твердотельным оптическим квантовым генераторам, в частности к системам их охлаждения, и может быть использовано при изготовлении лазерной техники.
Изобретение относится к способу ограничения мощного лазерного импульсно-периодического излучения и может найти применение для защиты органов зрения и чувствительных приемников излучения от разрушающего действия высокоинтенсивного падающего излучения.

Изобретение относится к ограничителям интенсивности электромагнитного излучения, и может найти применение для защиты глаз, оптических систем и приемников излучения от мощного оптического, в том числе лазерного, излучения.

Изобретение относится к области оптической техники, а именно к светофильтрам. .

Изобретение относится к устройствам управления параметрами оптического излучения , а именно к устройствам управления интенсивностью оптического измерения, и позволяет повысить точность, измерений и упростить конструкцию.

Изобретение относится к поглощающим светофильтрам и может быть использовано для предотвращения нагрева от ИК-излучений, например, при получении рельефонесущего слоя видеодиска.

Изобретение относится к оптическим элементам с переменнь М светопропусканием и позволяет повысить эффективность измерения оптической плотности жидкостного светофильтра, включающего хлориды кобальта и лития, спирт и воду.

Изобретение относится к лазерной технике. Оптическая усилительная головка с контротражателем диодной накачки состоит из размещенных в корпусе активного элемента в виде стержня, элементов диодной накачки, расположенных равномерно вокруг и вдоль активного элемента на держателях, и системы охлаждения, содержащей трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, каналы в корпусе, каждом держателе и элементах накачки и входной и выходной коллекторы. Каждый держатель содержит отражающую поверхность, обращенную к активному элементу, торцы активного элемента закреплены в прижимах, установленных в корпусе, система охлаждения выполнена в виде единого контура. В качестве элементов диодной накачки используются линейки лазерных диодов, каждая из которых снабжена цилиндрической линзой, а отражающие поверхности держателей расположены вдоль поверхности активного элемента и охватывают его диаметрально. Технический результат заключается в обеспечении возможности снижения гидравлического сопротивления системы охлаждения. 6 ил.

Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы. Квантрон снабжен световодами, расположенными параллельно оси активного элемента, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках. В качестве элементов термостабилизации используются нагреватели и элементы охлаждения. Технический результат заключается в обеспечении возможности упрощения системы охлаждения активного элемента. 2 ил.

Изобретение относится к лазерной технике. Излучатель твердотельного лазера без жидкостного охлаждения с термостабилизацией диодной накачки содержит активный элемент, установленный в кольцах, термоинтерфейс и блок диодной накачки, состоящий из теплораспределителя с выступами, установленного жестко на посадочной поверхности, термоэлектрического модуля, расположенного между теплораспределителем и посадочной поверхностью, и линеек лазерных диодов, размещенных на выступах теплораспределителя равномерно относительно активного элемента и обращенных к нему излучающей частью. Излучатель снабжен жестко закрепленным на посадочной поверхности резонатором, в корпусе несущей части которого расположен активный элемент. Блок диодной накачки снабжен нагревателем, расположенным в теплораспределителе, и ограничительной рамкой, в которой установлен термоэлектрический модуль с воздушным зазором по периметру. Резонатор и блок диодной накачки не имеют контактов. Технический результат заключается в обеспечении возможности увеличения КПД лазера. 6 ил.

Изобретение относится к лазерной технике. Универсальный излучатель твердотельного лазера с безжидкостным охлаждением содержит резонатор, установленный жестко на основание, устройство накачки и теплообменный блок, содержащий термоэлектрические модули и теплообменники. Устройство накачки выполнено в виде квантрона, жестко закрепленного на основании, теплообменный блок снабжен нагревательным элементом, контурной тепловой трубой с пластиной конденсатора, термоинтерфейсом и термодатчиками, установленными в теплообменниках пластине конденсатора. Конструкция резонатора выполнена деформационно-устойчивой, при этом оптическая схема выполнена на базе неустойчивого резонатора. Технический результат заключается в обеспечении возможности повышения устойчивости конструкции к внешним воздействующим факторам. 4 ил.
Наверх