Способ измерения фактора шума микроканальной пластины

Изобретение относится к области измерительной техники и касается способа измерения фактора шума микроканальной пластины. Способ включает снятие сигнала со всей площади люминесцентного экрана, который осуществляется в процессе изготовления МКП, регистрацию сигнала каждого импульса с выхода МКП, его усиление и подачу на многоканальный амплитудный анализатор импульсов. Сигналы анализируют по амплитудам и определяют коэффициент вариации усиления микроканальной пластины, пропорциональный фактору шума. Технический результат заключается в повышении точности измерений и обеспечении возможности контроля фактора шума микроканальной пластины в процессе ее изготовления. 2 ил.

 

Изобретение относится к измерительной технике и может быть использовано для измерения фактора шума микроканальной пластины (МКП) в производстве МКП, используемой для техники ночного видения.

Известен способ измерения отношения сигнал/шум ЭОП, который является аналоговым, т.к. регистрируется усредненный за время т сигнал, равный постоянной времени измерительного оборудования. Принцип измерения отношения сигнал/шум заключается в измерении значений среднего (сигнал) и среднего квадратического отклонения (шум) электрического сигнала фотоприемника, пропорционального световому потоку на выходе ЭОП, с последующим вычислением их отношения при заданных значениях освещенности на входе ЭОП и площади анализируемого участка входа ЭОП (см. ГОСТ 21815.90.19).

Недостатками данного способа является то, что сигнал снимается с достаточно маленького участка, а не со всей площади, а также имеется сильное влияние величины входного сигнала на получаемый результат, что приводит к большим погрешностям и длительности измерения.

Наиболее близким к заявляемому техническому решению является способ измерения фактора шума методом амплитудного анализа выходного сигнала ЭОП, включающий снятие сигнала с люминесцентного экрана с помощью фотометра и анализ сигнала при помощи многоканального амплитудного анализатора [см. Ю.З. Мацковская, Савенчук Н.А. «Измерение шумов электронно-оптических преобразователей», журнал «Оптико-механическая промышленность», 1981, №12, с.6-8].

Недостатками прототипа являются то, что способ оценивает фактор шума ЭОП, а не отдельно МКП, кроме того, сигнал снимается с ограниченной площади, что приводит к погрешности измерения.

Задачей технического решения является возможность контроля шумовых параметров в процессе изготовления МКП и снижение погрешности измерений.

Решение технического результата достигается тем, что в способе измерения фактора шума микроканальной пластины, включающем снятие сигнала с люминесцентного экрана с помощью фотометра, согласно изобретению, снятие сигнала осуществляют в процессе изготовления микроканальной пластины со всей площади люминесцентного экрана, регистрируют каждый импульс с ее выхода, усиливают и подают на многоканальный анализатор импульсов, затем сигнал анализируют по амплитудам, определяют коэффициент вариации усиления микроканальной пластины и фактор шума определяют по формуле:

F М К П = 1 ω ( 1 + δ 2 ( М ) ) ,

где ω - коэффициент прозрачности входного торца микроканальной пластины,

δ(М) - коэффициент вариации усиления микроканальной пластины, при этом коэффициент вариации усиления определяют по полученному распределению выходного сигнала.

Сущность способа поясняется чертежами, где на фиг.1 изображена схематично установка измерения фактора шума микроканальной пластины, на фиг.2 - амплитудное распределение выходного сигнала МКП.

Установка состоит из вакуумной камеры 1, электронно-оптической системы 2 (ЭОС), микроканальной пластины 3, экрана 4, фотометра 5, блока переноса изображения 6, зеркала 7, окуляра 8, вспомогательного источника света 9, ограничивающей диафрагмы 10, установленной перед фото-электронным умножителем 11, блок питания 12 фото-электронного умножителя 11, предварительного усилителя 13, частотомера 14, многоканального амплитудного анализатора 15, персонального компьютера (ПК) 16 с программным обеспечением (ПО).

Способ измерения фактора шума МКП реализуют следующим образом.

МКП 3 располагали между ЭОС 2 и люминесцентным экраном 4 в вакуумной камере 1. МКП 3, на которую подавали напряжение питания (на фиг. не показано), облучали электронным потоком ЭОС 2. Величину электронного потока оценивали по количеству импульсов с выхода МКП 3 по частотомеру 14 (см. фиг.1). При установлении требуемой частоты на выходе, сигнал снимали со всей площади люминесцентного экрана 4, регистрировали при помощи фотометра 5 с последующим его усилением, подавали на многоканальный амплитудный анализатор 15 и набирали распределение на экране ПК 16 при помощи ПО в течение 1 минуты, (см. фиг.2)

На экране ПК сигнал анализировали по амплитудам: по оси Х откладывали амплитуду выходного сигнала МКП 3, а по оси Y - количество событий в каждом канале, соответствующих числу импульсов выходного сигнала данной амплитуды (см. фиг.2).

Представив полученное распределение в виде массива данных, находили коэффициент вариации амплитуд выходных импульсов δ(М) и определили фактор шума микроканальной пластины по формуле:

F М К П = 1 ω ( 1 + δ 2 ( М ) ) ,

где ω - коэффициент прозрачности входного торца МКП,

δ(М) - коэффициент вариации усиления МКП.

Таким образом, предложенный способ позволит контролировать фактор шума в процессе изготовления МКП 3, а не после изготовления ЭОП.

Использование предлагаемого способа позволит по сравнению с прототипом дать возможность контроля шумовых параметров МКП до ее установки в ЭОП, а также снизить погрешность измерений, за счет снятия сигнала со всей площади люминесцентного сигнала.

Способ измерения фактора шума микроканальной пластины, включающий снятие сигнала с люминесцентного экрана с помощью фотометра, отличающийся тем, что снятие сигнала осуществляют в процессе изготовления микроканальной пластины со всей площади люминесцентного экрана, регистрируют каждый импульс с ее выхода, усиливают его и подают на многоканальный амплитудный анализатор импульсов, сигнал анализируют по амплитудам и определяют фактор шума микроканальной пластины по формуле
F М К П = 1 ω ( 1 + δ 2 ( М ) ) ,
где ω - коэффициент прозрачности входного торца микроканальной пластины, δ(М) - коэффициент вариации усиления микроканальной пластины, при этом коэффициент вариации усиления определяют по полученному распределению выходного сигнала.



 

Похожие патенты:

Изобретение относится к области твердотельных умножителей частоты электромагнитного излучения, работающих в гигагерцовом-терагерцовом диапазонах частот. .

Изобретение относится к вакуумной электронике и может быть использовано в клистронах, мощных СВЧ лампах и устройствах защиты от мощных СВЧ импульсов. .

Изобретение относится к электронной технике и может быть использовано для регистрации слабых световых сигналов в исследованиях по физике высоких энергий, ядерной физике и может применяться в радиационной медицине, оптике и в других различных технических приложениях.

Изобретение относится к области измерительной техники. .

Изобретение относится к вакуумной электронике и может быть использовано в электронно-оптических преобразователях (ЭОП). .

Изобретение относится к электронной оптике и может быть использовано в электронно-оптических преобразователях (ЭОП). .

Изобретение относится к ядерной физике и физике высоких энергий, в частности к фотоэлектронным умножителям (ФЭУ). .

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с перестраиваемыми параметрами, вход которой соединен с генератором шума посредством центрального проводника в виде отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума.

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с элементами с перестраиваемыми параметрами, вход которой соединен с генератором шума отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума.

Изобретение относится к области контрольно-измерительной техники и решает задачу выделения исследуемого сигнала из смеси с помехой. .

Изобретение относится к области радиоизмерений, а именно к измерению шумов полупроводниковых изделий, и может быть использовано для лабораторных и цеховых измерений параметра шума .

Изобретение относится к области радиотехники и может быть использовано в адаптивных радиоприемных устройствах, адаптивных системах радиосвязи, адаптивных антенных системах, радиоприемных устройствах систем радиомониторинга и радиолокационных систем.

Изобретение относится к области гидроакустики и производит определение отношения сигнал/помеха при одновременном присутствии и сигнала, и помехи на входе приемного устройства.

Изобретение относится к системам передачи данных и может быть использовано в измерительной технике, для измерения среднего значения, дисперсии, средневыпрямленного значения, максимального значения и кажущейся частоты помехи, действующей в канале связи.

Изобретение относится к области электронных измерений, к измерениям в технике радиоприема. .

Изобретение относится к радиотехнике и может быть использовано в радиолокации, радионавигации и системах связи для измерения отношения сигнала/шум, повышения точности и достоверности получаемой информации и контроля качества канала связи.

Изобретение относится к пассивной радиолокации и может использоваться для измерения мощности шумовых сигналов в широком диапазоне высоких частот. .
Изобретение относится к области оптической техники, в частности к оптотехническим измерениям. .
Наверх