Управление мощностью восходящей линии связи для терминалов с ограниченной мощностью



Управление мощностью восходящей линии связи для терминалов с ограниченной мощностью
Управление мощностью восходящей линии связи для терминалов с ограниченной мощностью
Управление мощностью восходящей линии связи для терминалов с ограниченной мощностью
Управление мощностью восходящей линии связи для терминалов с ограниченной мощностью

 


Владельцы патента RU 2503151:

ТЕЛЕФОНАКТИЕБОЛАГЕТ ЛМ ЭРИКССОН (ПАБЛ) (SE)

Изобретение относится к беспроводной связи. Техническим результатом является эффективное управление мощностью передачи восходящей линии связи мобильного терминала в LTE и других системах при помощи управления мощностью с обратной связью. Раскрыты способы и устройство управления мощностью передачи. В нескольких вариантах осуществления мобильный терминал (200) сконфигурирован для эффективного игнорирования команд управления мощностью передачи «UP» в тех случаях, когда мобильный терминал (200) работает в режиме ограничения по мощности. В иллюстративном способе управления мощностью передачи мобильного терминала (200) принимается множество команд управления мощностью передачи. Накопленное значение управления мощностью корректируется (350) в ответ на каждую команду управления мощностью передачи, которая управляет отрицательной коррекцией мощности передачи. Однако накопленное значение управления мощностью корректируется (350) в ответ на команду управления мощностью передачи, которая управляет положительной коррекцией мощности передачи только в тех случаях, когда мобильный терминал (200) не находится в режиме ограничения по мощности. Параметры мощности передачи для каждой передачи вычисляются (360) на основе накопленного значения управления мощностью и одного или нескольких параметров линии радиосвязи. 2 н. и 14 з.п. ф-лы. 4 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение имеет отношение, в целом, к системам беспроводной связи, и, в частности, имеет отношение к способам, устройству и системам для управления мощностью передачи в системе беспроводной связи.

Уровень техники

Технологии радиодоступа для сетей сотовой мобильной связи непрерывно развиваются для удовлетворения потребностей в более высоких скоростях передачи данных, улучшенной зоне обслуживания и повышенной пропускной способности сети. Примером последнего развития технологии широкополосного множественного доступа с кодовым разделением каналов (WCDMA) является так называемая технология высокоскоростной пакетной передачи данных (HSPA), разработанная проектом партнерства третьего поколения (3GPP). Кроме того, развитие систем 3G в настоящее время происходит по инициативе технологии долгосрочного развития 3GPP (LTE), которая включает в себя развитие и описание новых технологий доступа, а также новой системной архитектуры. Краткий обзор системы LTE представлен во второй части полного описания «Расширенного универсального наземного радиодоступа (E-UTRA) и сети расширенного универсального наземного радиодоступа (E-UTRAN), (Выпуск 8)», 3GPP TS 36.300, версии 8.2.0, датированного сентябрем 2007 года, информационное содержание которого включено в настоящий документ посредством ссылки.

Одна цель инициативы LTE заключается в том, что технология доступа должна быть разработана для гибкости, так, чтобы она могла быть использована в существующих частотных распределениях, а также в новых частотных распределениях. Этот подход учитывает легкое введение в спектр при помощи существующих развернутых систем. По подобным причинам, технология LTE разработана для использования с несколькими решениями дуплексной передачи. FDD (дуплексная связь с частотным разделением каналов) и TDD (дуплексная связь с временным разделением каналов), где передачи восходящей и нисходящей линии связи разделены по частоте и времени, соответственно, поддерживаются для предоставления возможности использования технологии LTE с парными и непарными распределениями спектра. Кроме того, чтобы учесть еще большую гибкость при использовании доступного спектра, технология доступа LTE основана на технологии OFDMA (множественного доступа с ортогональным частотным разделением каналов) для нисходящей линии связи, а также на технологии множественного доступа с частотным разделением каналов и передачей по одной несущей (SC-FDMA) для восходящей линии связи. Эти технологии предоставляют возможность точно разделенного динамического распределения ресурсов спектра для связи по нисходящей и восходящей линии связи. Следовательно, доступные ресурсы могут быть динамически скорректированы на основе индивидуальных пользовательских требований, а также на основе совокупной потребности.

В системах беспроводной связи, в целом, передача на чрезмерных уровнях мощности (например, на уровнях мощности, больших, чем необходимый для поддержки желательного качества обслуживания) должна предотвращаться. В целом, это желательно для предотвращения интерференции с другими передаваемыми сигналами, и, в особенности, желательно в мобильном терминале для максимального увеличения времени между перезарядками аккумулятора терминала. Следовательно, спецификации LTE поддерживают механизм управления мощностью, где обслуживающая базовая станция (расширенный узел B или eNodeB в терминологии 3GPP) управляет выходной мощностью передатчика мобильного терминала.

Основные элементы механизма управления мощностью для технологии LTE представлены в документе «Расширенный универсальный наземный радиодоступ (E-UTRA); Процедуры физического уровня» 3GPP TS 36.213, версия 8.1.0, датированном 12 декабрем 2007 года, информационное содержание которого включено в настоящий документ посредством ссылки. Определенный механизм обеспечивает то, что мощность, заданная для каждой передачи подкадра мобильного терминала, вычисляется в качестве функции полосы пропускания, распределенной для подкадра, схемы кодирования и модуляции, распределенной для подкадра, и текущей оценки потерь в полосе пропускания. В некоторых режимах работы выходная мощность передатчика дополнительно вычисляется в качестве функции параметра, представляющего накопленные команды управления мощностью передачи (TPC), принятые посредством мобильного терминала.

Этот предварительный механизм управления мощностью, определенный посредством 3GPP, разработан для обращения к динамическому планированию, предусмотренному в системе LTE. Полоса пропускания и схема модуляции, используемые посредством мобильного терминала, могут изменяться среди подкадров для предотвращения передачи на чрезмерных уровнях мощности, уровень выходной мощности передатчика должен изменяться в зависимости от этих изменений в распределениях ресурсов. Уровень выходной мощности передатчика также динамически корректируется для выполнения изменений в распространении, например, потери в полосе пропускания. Однако механизм управления мощностью, описанный в вышеупомянутой спецификации 3GPP, не обрабатывает ситуации с ограниченной мощностью соответствующим образом.

Проблемы, связанные с механизмами управления мощностью передачи в ситуациях с ограниченной мощностью, были выявлены и в других системах беспроводной связи. Например, публикация патента США № 2006/0050798, разработанного посредством Odigie и др., датированного 9 марта 2006 года, описывает работу системы управления мощностью передачи в условиях ограниченной мощности для системы широкополосного множественного доступа с кодовым разделением каналов (W-CDMA). Однако, способы и устройство, раскрытые посредством Odigie, не обращаются к динамическому планированию ресурсов, предусмотренному в системах LTE. Кроме того, системы, раскрытые в Odigie, не используют параметр накопленных команд TPC, как требуется посредством спецификаций LTE.

Сущность изобретения

Настоящее изобретение обеспечивает способы эффективного управления мощностью передачи восходящей линии связи мобильного терминала в LTE и других системах при помощи управления мощностью с обратной связью. В нескольких вариантах осуществления мобильный терминал сконфигурирован для эффективного игнорирования команд управления мощностью передачи «UP» в случае, когда мобильный терминал работает в режиме ограниченной мощности.

В иллюстративном способе управления мощностью передачи мобильного терминала принимается множество команд управления мощностью, причем каждая команда управления мощностью передачи управляет коррекцией мощности передачи относительно предшествующей передачи, выполненной посредством мобильного терминала. Накопленное значение управления мощностью корректируется в ответ на каждую команду управления мощностью передачи, которая управляет отрицательной коррекцией мощности передачи, то есть, на каждую команду управления мощностью «DOWN». Однако накопленное значение управления мощностью корректируется в ответ на команду управления мощностью «UP», то есть, на команду управления мощностью передачи, которая управляет положительной коррекцией мощности передачи, только в том случае, если мобильный терминал не находится в режиме ограниченной мощности. Следовательно, в некоторых вариантах осуществления накопленное значение управления мощностью увеличивается только в том случае, если временный параметр мощности меньше порога мощности передачи для мобильного терминала. Временный параметр мощности вычисляется из накопленного значения управления мощностью, а также одного или нескольких параметров линии радиосвязи. Способ дополнительно содержит этап вычисления параметров мощности передачи для каждой передачи, выполняемой посредством мобильного терминала, на основе накопленного значения управления мощностью, а также одного или нескольких параметров линии радиосвязи.

Посредством игнорирования команды управления мощностью «UP» в режиме ограниченной мощности, мобильный терминал предотвращает накопление коррекций управления мощностью, которые сгенерированы посредством обслуживающей базовой станции, в то время как мобильный терминал ограничен по мощности. Этот подход упрощает более быструю конвергенцию к оптимальному параметру мощности передачи, когда мобильный терминал выходит из режима ограниченной мощности.

В одном или нескольких вариантах осуществления изобретения временные параметры мощности и параметры мощности передачи вычисляются на основе накопленного значения управления мощностью, а также параметров линии радиосвязи, которые могут включать в себя один или несколько следующих элементов: ширина полосы пропускания, оценка потерь в полосе пропускания и схема кодирования и модуляции. В некоторых вариантах осуществления временный параметр мощности и параметры мощности передачи могут быть дополнительно вычислены в качестве функции одного или нескольких значений смещения, обеспеченных посредством обслуживающей базовой станции. Эти значения смещения могут включать в себя один или оба следующих элемента: смещение мощности передачи, определенное для соты, и смещение мощности передачи, определенное для мобильного терминала. В других вариантах осуществления состояние мобильного терминала отслеживается на предмет возникновения одного или нескольких предварительно определенных критериев сброса управления мощностью передачи, накопленное значение управления мощностью сбрасывается в предварительно определенное значение в ответ на каждое возникновение.

Также раскрыты мобильные терминалы, сконфигурированные для реализации одного или нескольких описанных в настоящем документе способов управления мощностью.

Краткое описание чертежей

Фиг.1 иллюстрирует распределение полосы пропускания между несколькими пользователями в системе LTE.

Фиг.2 изображает систему беспроводной связи, включающую в себя мобильный терминал, в соответствии с одним или несколькими вариантами осуществления изобретения.

Фиг.3 изображает логическую схему последовательности операций, иллюстрирующую иллюстративный способ управления мощностью передачи мобильного терминала в системе беспроводной связи.

Фиг.4 изображает логическую схему последовательности операций, иллюстрирующую иллюстративный способ отслеживания критериев сброса управления мощностью передачи.

Подробное описание

В нижеследующем описании различные аспекты настоящего изобретения описаны относительно стандартизации 3GPP LTE. Специалистам в данной области техники должно быть понятно, что эти технологии могут быть применены к другим системам беспроводной связи, использующим управление мощности. Аналогичным образом способы и устройство могут быть описаны ниже со ссылкой на мобильный терминал LTE; специалистам в данной области техники должно быть понятно, что описанные в настоящем документе технологии могут быть полностью адаптированы к мобильным терминалам, сконфигурированным для использования в одной или нескольких других системах беспроводной связи. В заключение, специалистам в данной области техники должно быть понятно, что используемый в настоящем документе термин «мобильный терминал» предназначен, чтобы включать в себя любой широкий спектр устройств конечного пользователя, включающий в себя, в частности, любое из таких устройств, названных «абонентским оборудованием», «UE» или «мобильной станцией» посредством различных спецификаций, опубликованных посредством партнерства третьего поколения или других групп стандартизации. Кроме того, термин «мобильная станция» включает в себя терминалы беспроводной связи, адаптированные для межмашинных приложений (M2M), а также терминалы беспроводной связи, адаптированные для фиксированной беспроводной связи. Специалистам в данной области техники должно быть понятно, что мобильные терминалы, обсуждаемые в настоящем документе, могут содержать сотовые радиотелефоны с возможностью речевой связи, возможностями передачи данных или обоими вышеперечисленными возможностями; личные цифровые устройства (PDA), включающие в себя возможность беспроводной связи; обычные ноутбуки и/или карманные персональные компьютеры или другие устройства, включающие в себя беспроводной приемопередатчик; и карты беспроводного приемопередатчика и модули, адаптированные для использования в главных вычислительных устройствах, которые могут являться портативными. Следовательно, следующее описание и сопроводительные чертежи должны быть рассмотрены в качестве иллюстрации настоящего изобретения, и не ограничения.

Спецификация LTE поддерживает быстрое планирование и адаптацию линии связи в частотной и временной областях для связи по восходящей и нисходящей линии связи. Это означает, что присваивание ресурсов во времени и частоте может быть скорректировано для требования мгновенного информационного обмена каждого пользователя и изменений канала. В восходящей линии связи LTE возможно одновременно запланировать несколько пользователей (то есть, в одном подкадре) посредством присваивания различных частотных сегментов различным пользователям. Однако, для поддержки структуры SC-FDMA с одной несущей, каждый пользователь может исключительно принимать смежное присваивание частоты. Другими словами, несмотря на то, что пользователю может быть присвоено переменное количество блоков ресурсов (блок ресурса LTE определен равным 12 смежным поднесущим, ширина каждой из которых равна 15 кГц для подкадра, длительность которого равна 1 миллисекунде), эти блоки ресурсов должны быть смежными. Фиг.1 иллюстрирует иллюстративное распределение частотных ресурсов передачи трем пользователям, причем пользователю 1 присваивается значительно больший блок частотных ресурсов, по сравнению с пользователем 2 и пользователем 3. Это частотное присвоение может изменяться среди кадров, так, чтобы, например, пользователю 1 присваивалось меньшее количество блоков ресурсов в последующем подкадре, или же не присваивались вовсе.

Фиг.2 обеспечивает упрощенное представление системы беспроводной связи, включающей в себя иллюстративный мобильный терминал 200, сконфигурированный в соответствии с одним или несколькими вариантами осуществления изобретения, и базовую станцию 250. Мобильный терминал 200 включает в себя радиоприемопередатчик 210, который в некоторых вариантах осуществления может быть сконфигурирован в соответствии со спецификациями LTE. В этом случае, обслуживающая базовая станция 250 может содержать расширенный узел B, или eNodeB, сконфигурированный в соответствии со спецификациями LTE. Радиоприемопередатчик 210 также может быть совместим с одним или несколькими дополнительными стандартами беспроводной связи, включающими в себя стандарты глобальной сети беспроводной связи, такие как широкополосный CDMA или GSM, или стандарты локальной сети беспроводной связи, такие как один или несколько стандартов из семейства стандартов IEEE 802.11. Мобильный терминал 200 дополнительно включает в себя контроллер 220; функции контроллера 220 могут включать в себя обработку планирования информации о предоставлении и команд управления мощностью передачи (TPC), принятых от базовой станции, а также определение параметров выходной мощности для передач посредством радиоприемопередатчика 210 для базовой станции 250. В частности, как будет более подробно описано ниже, в некоторых вариантах осуществления контроллер 220 может быть сконфигурирован для коррекции накопленного значения управления мощностью, в ответ на каждую команду TPC, которая управляет отрицательной коррекцией мощности передачи, то есть команды TPC «DOWN», а также для коррекции накопленного значения управления мощностью в ответ на каждую команду TPC, которая управляет положительной коррекцией мощности передачи (команды TPC «UP») только в тех случаях, когда временный параметр мощности, вычисленный из одного или нескольких параметров линии радиосвязи, а также нескорректированное накопленное значение управления мощностью указывают то, что мобильный терминал не имеет ограничения по мощности. Контроллер 220 дополнительно сконфигурирован для вычисления параметров мощности передачи для каждой передачи, выполняемой посредством радиоприемопередатчика 210, на основе накопленного значения управления мощностью, а также на основе одного или нескольких параметров линии радиосвязи.

Мобильный терминал 200 также включает в себя память 230, которая может содержать программные средства и программные данные для конфигурирования контроллера 220 в соответствии с одним или несколькими вариантами осуществления изобретения. Память 230 также может сохранять один или несколько параметров линии радиосвязи, используемых посредством контроллера 220 при определении параметров выходной мощности; некоторые из этих параметров управления мощностью могут быть сконфигурированы статически, то есть сохранены в памяти 230 на этапе изготовления, в то время как другие могут быть сконфигурированы полустатически, то есть сконфигурированы посредством сигнальной информации, принятой от базовой станции 250. Память 230 дополнительно может быть использована для сохранения накопленного значения управления мощностью в соответствии с одним или несколькими вариантами осуществления изобретения. Память 230 может содержать одно или несколько запоминающих устройств, включающих в себя, в числе прочего, флэш-память, ROM, RAM (например, SRAM и/или DRAM), один или несколько дисководов или другие энергозависимые или энергонезависимые запоминающие устройства.

Как было отмечено выше, основной механизм управления мощностью для LTE определен в документе «Расширенный универсальный наземный радиодоступ (E-UTRA); Процедуры физического уровня» 3GPP TS 36.213, версия 8.1.0, датированном 12 декабрем 2007 года. Определенная процедура управления мощностью обеспечивает то, что мощность, заданная для каждой передачи подкадра мобильного терминала, вычисляется в качестве функции полосы пропускания, распределенной для подкадра, схемы кодирования и модуляции, распределенной для подкадра, и текущей оценки потерь в полосе пропускания. В некоторых режимах работы выходная мощность передатчика дополнительно вычисляется в качестве функции параметра, представляющего накопленные команды управления мощностью передачи (TPC), принятые посредством мобильного терминала. Если вычисленный параметр выходной мощности передатчика превышает максимальную выходную мощность для мобильного терминала, то мобильный терминал выполняет передачу на максимальном уровне. Следовательно, мощность передачи, заданная для передач по физическому распределенному каналу восходящей линии связи LTE (PUSCH), вычисляется следующим образом:

P T ( i ) = min { P M A X 10 log ( B W [ i ] ) + Δ M C S ( M C S [ i ] ) + α P L + P O F F S E T + T P C a c c u m }          (1) Где РТ(i) является параметром мощности для подкадра i, измеряемая в дбмвт, PMAX является максимальной выходной мощностью, разрешенной для мобильного терминала, BW[i] является распределенной полосой пропускания для подкадра i в контексте блоков ресурсов LTE (ширина блока ресурсов LTE равна 180 кГц), ΔMCS (MCS[i]) является элементом таблицы, представляющим смещение уровня мощности для заданной схемы модуляции/кодирования MCS[i]. PL является оценкой потерь в полосе пропускания нисходящей линии связи, α является определенным для соты параметром, предоставленным мобильному терминалу при помощи сигнализации старшего уровня. POFFSET является параметром смещения, вычисленным из параметра смещения, определенного для соты, и параметра, определенного для мобильного терминала, переданного с узла eNodeB, а TPCaccum является накопленным значением управления мощностью, представляющим накопление команд мощности передачи, принятых от обслуживающего узла eNodeB. Подобная формула используется для вычисления мощности передачи, заданной для передачи по физическому каналу управления восходящей линии связи (PUCCH).

Накопленное значение управления мощностью TCPaccum постоянно поддерживается посредством обновления на основе недавно принятых команд TPC. Эти команды TPC принимаются по каналу управления нисходящей линии связи в одном, по меньшей мере, из двух форматов. В первом формате команда TPC принимается в предоставлении планирования от узла eNodeB. В этом формате команда TPC может принять значения либо [-1, 0, 1, 3] дБ, либо [-3, -1, 1, 3] дБ, в зависимости от параметров полустатической конфигурации, определенных посредством сигнализации старшего уровня. Во втором формате команда TPC для мобильного терминала совместно кодируется с другими командами управления мощностью передачи на канале управления нисходящей линии связи, и можно предположить значения в соответствии с одним из следующих наборов значений, снова в соответствии с параметрами полустатической конфигурации, определенными посредством сигнализации старшего уровня: [-1, 1] дБ, [-1, 0, 1, 3] дБ или [-3, -1, 1, 3] дБ. Накопленное значение управления мощностью для заданного подкадра i задается посредством:

(2)

где f(0)=0, а ΔTPC(i-4) представляет значение команды TPC, принятой четырьмя подкадрами ранее.

Как видно в уравнении (1), мобильный передатчик может быть ограничен по мощности в заданном подкадре. В соответствии с уравнением (1), если параметр мощности, вычисленный в соответствии с полосой пропускания, схемой кодирования и модуляции, и т.д., превышает максимальную мощность, разрешенную для мобильного терминала, то для терминала используется максимальный уровень мощности. Однако накопление определенных выше команд TPC не обеспечивает исключение для случаев с ограничением по мощности. В результате чего, команды управления мощностью накапливаются даже в случаях, когда мобильный терминал ограничен по мощности.

Например, когда мобильному терминалу распределена большая полоса пропускания, то есть, когда BW[i] в вышеупомянутой формуле является большим, и/или когда потери PL в полосе передачи являются большими, компонент управления мощностью 10 log(BW[i])+ΔMCS (MSC[i])+a PL+POFFSET+TCPaccum может быть больше максимальной мощности передачи. Следовательно, мобильный терминал ограничен по мощности. Узел eNodeB может определить, что мобильный терминал не достиг требуемого отношения сигнал-шум (SNR) или отношения сигнал-смесь помехи с шумом (SINR), и, следовательно, проинструктировать мобильный терминал об увеличении мощности посредством передачи команды TCP, то есть, ΔTPC>0. Если ситуация с ограничением по мощности длится в течение долгого времени, то накопленное значение управления мощностью может продолжить расти без ограничений. Пока мобильный терминал запланирован для передачи с использованием большой полосы пропускания, или пока потери в полосе пропускания остаются высокими, мобильный терминал может фактически нуждаться в максимальном уровне мощности передачи. (В некоторых сценариях мощность передачи не может быть ограничена до такого уровня, с которым узел eNodeB не может принять передачи мобильного терминала полностью). Однако если планировщик изменяет распределение полосы пропускания на меньшую полосу пропускания, или если условия распространения радиосигнала изменяются в значительной степени, то максимальная мощность мобильного терминала может быть слишком большой, а принятое отношение SINR превысит требуемое. Несмотря на то, что компонент обратной связи формулы управления мощностью корректируется для нового распределения полосы пропускания посредством компонента 10 - log10 (BW[i]), накопленные команды в компоненте с обратной связью (то есть, TPCaccum) могут вызвать проблему. Если накопленное значение управления мощностью, TPCaccum является большим, то мобильный терминал продолжает передачу на максимальной мощности до тех пор, пока накопленное значение управления мощностью не сократится посредством последовательных команд TPC «DOWN». Это может занять несколько подкадров; в течение этого времени мобильный терминал будет выполнять передачу на излишне высоких уровнях мощности, вызывая интерференцию с другими сигналами передатчика мобильного терминала и излишний разряд аккумулятора мобильного терминала.

Один подход к решению этой проблемы должен изменить процессы управления мощностью узла eNodeB. Например, узел eNodeB может быть сконфигурирован для прекращения передачи команд «UP» в случаях, когда отношение SINR не увеличивается в ответ на предшествующие команды «UP». Альтернативно, узел eNodeB может быть сконфигурирован для предотвращения передачи команд «UP» в случаях, когда распределение полосы пропускания является большим. Однако, ни один из этих подходов, вероятно, не приведет к оптимальной результативности, в связи с тем, что требуемое отношение SINR изменится из-за изменений интерференции и частотной селективности канала. Это является особенностью (специальным условием) для узкополосных распределений. Альтернативно, узел eNodeB может потребовать от мобильного терминала многократной передачи отчетов о мощности передачи для того, чтобы узел eNodeB мог определить, ограничен ли мобильный терминал по мощности. Однако этот подход приводит к значительным сигнальным потерям в восходящей линии связи.

Улучшенный подход, в соответствии с одним или несколькими вариантами осуществления настоящего изобретения, должен изменить процедуры управления мощностью, предварительно определенные посредством инициативы LTE для мобильного терминала. В этой измененной процедуре для эксплуатационных режимов, в которых параметр мощности передачи основан на накопленном значении управления мощностью, сначала, при помощи основной формулы уравнения (1), вычисляется временный параметр мощности. Этот временный параметр мощности вычисляется на основе текущих значений для каждого из нескольких параметров линии радиосвязи. Однако временный параметр мощности вычисляется на основе предшествующего значения для накопленного значения управления мощностью. Следовательно:

P P R O V ( i ) = 10 log ( B W [ i ] ) + Δ M C S ( M C S [ i ] ) + α P L + P O F F S E T + T P C a c c u m ( i 1 ) .           ( 3 )

Обновление накопленного значения управления мощностью TCPaccum (i-1) основано на вычисленном временном параметре мощности. Короче говоря, положительные команды TPC, то есть «команды UP», не накапливаются в тех случаях, когда мобильный терминал уже ограничен по своей максимальной выходной мощности. Таким образом, если PPROV≤PMAX, то TPCaccum(i)=TPCaccum(i-1)+min {0, ΔTPC (i-4)}. В противном случае накопленное значение управления мощностью обновляется при помощи любой принятой команды TPC. Таким образом, если PPROV≤PMAX, то TPCaccum(i)=TPCaccum(i-1)+ΔTPC(i-4).

Предыдущая процедура управления мощностью является непосредственно применимой к определению параметров мощности передачи для передач посредством мобильного терминала LTE, такого как мобильный терминал 200, по физическому каналу управления восходящей линии связи (PUSCH). Разумеется, подобные модификации могут быть выполнены для определения параметров мощности передачи для передач по физическому каналу управления восходящей линии связи LTE (PUCCH). Разумеется, специалистам в данной области техники должно быть понятно, что описанные в настоящем документе технологии могут быть применены в других системах беспроводной связи, а также могут быть изменены различными способами. Следовательно, более общее краткое описание способа управления мощностью передачи мобильного терминала в системе беспроводной связи представлено в схеме последовательности операций, изображенной на Фиг.3.

Каждый цикл логической последовательности операций, изображенной на Фиг.3, начинается с приема команды управления мощностью передачи (TPC) от обслуживающей базовой станции, как изображено на этапе 310. В вышеописанной системе LTE команда TPC может принять любое из нескольких значений, в зависимости от текущей конфигурации мобильного терминала. В некоторых системах команды TPC могут быть ограничены командами «UP» и «DOWN», где «UP» и «DOWN» указывает фиксированную возрастающую коррекцию, как например, 1 дБ, для предшествующей мощности передачи. В других, команды TPC могут принять более широкий диапазон значений. Специалистам в данной области техники также должно быть понятно, что в некоторых системах может иметь место небольшая задержка между фактическим приемом команды TPC и ее использованием при вычислении параметров мощности передачи. Например, в вышеобсужденных процедурах, основанных на LTE, вычисление параметра мощности передачи для подкадра i основано на команде TPC, принятой на подкадре i-4. В других системах задержка может быть длиннее или короче этой.

Как обсуждалось выше относительно LTE, команды TPC могут быть приняты от обслуживающей базовой станции по каналу управления. В некоторых вариантах осуществления команды TPC могут быть переданы в соответствии с форматом планирования присваивания или форматом команд управления мощностью; следовательно, некоторые варианты осуществления настоящего изобретения могут потребоваться для извлечения команд управления мощностью передачи из канала управления или в соответствии с одним или обоими этими форматами.

В любом случае, если команда TPC указывает нисходящую коррекцию, то есть, если направленная коррекция предшествующей мощности передачи является отрицательной, как определено на этапе 320, то обработка продолжается на этапе 350, на котором накопленное значение управления мощностью корректируется в соответствии с командой TPC. Затем на этапе 360 для текущей передачи вычисляется параметр мощности передачи на основе накопленного значения управления мощностью и одного или нескольких параметров линии радиосвязи. В параметре LTE эти параметры линии радиосвязи включают в себя распределение ширины полосы пропускания, параметры схемы модуляции/кодирования и оценку потерь в полосе пропускания. В других системах параметры линии радиосвязи могут включать в себя один или несколько этих параметров линии радиосвязи и/или один или несколько других параметров линии радиосвязи. В некоторых вариантах осуществления вычисление параметра мощности передачи, выполняемое на этапе 360, также может быть основано на одном или нескольких значениях смещения. Эти значения смещения могут включать в себя смещение мощности передачи, определенное для соты, смещение мощности передачи, определенное для мобильного терминала, или оба вышеперечисленных варианта. Одно или несколько этих значений смещения могут быть приняты от обслуживающей базовой станции.

Специалистам в данной области техники должно быть понятно, что параметр мощности передачи, вычисляемый на этапе 360, при некоторых обстоятельствах может отражать ситуацию ограничения по мощности, даже если накопленное значение управления мощностью было только что сокращено. Однако каждое сокращение накопленного значения управления мощностью делает ограничение по мощности мобильного терминала несколько «слабее» чем было. После нескольких таких коррекций накопленного значения управления мощностью мобильный терминал может выйти из состояния ограничения по мощности, чтобы последующие команды TPC фактически вызвали сокращение мощности передачи.

С другой стороны, если принятая команда TPC указывает на увеличение предшествующей мощности передачи, как определено на этапе 320, то на этапе 330 вычисляется временный параметр мощности. Временный параметр мощности вычисляется на основе одного или нескольких вышеобсужденных параметров линии радиосвязи, и основан на предшествующем параметре для накопленного значения TPC, например, ближайшего предшествующего значения. Следовательно, вычисление временного параметра мощности отражает параметр мощности передачи, предполагая, что накопленное значение TPC не увеличено в соответствии с текущей командой TPC. Разумеется, временный параметр мощности не должен в обязательном порядке вычисляться «на пустом месте» - в некоторых случаях временный параметр мощности может быть вычислен посредством простой коррекции предшествующего временного параметра мощности для любых изменений в параметрах линии радиосвязи.

На этапе 340 мобильный терминал определяет, ограничен ли он по мощности, на основе временного параметра мощности. В некоторых вариантах осуществления мобильный терминал ограничивается по мощности в случаях, когда временный параметр мощности больше предела мощности для мобильного терминала. В других, мобильный терминал считается ограниченным по мощности в случаях, когда временный параметр мощности больше или равен пределу мощности мобильного терминала. В любом случае, если мобильный терминал ограничен по мощности, то накопленное значение управления мощностью не корректируется, и процесс обработки переходит на этап 360, на котором вычисляется параметр мощности передачи. В этом случае, разумеется, параметр мощности передачи будет являться максимально разрешенным для мобильного терминала, поскольку мобильный терминал ограничен по мощности.

С другой стороны, если временный параметр мощности меньше предела мощности мобильного терминала, то на этапе 350 корректируется накопленное значение управления мощностью для отражения принятой команды TPC «UP». Параметр мощности передачи вычисляется на этапе 360; параметр мощности передачи в этом случае отражает текущие параметры линии радиосвязи и обновленное накопленное значение управления мощностью.

В способе, изображенном на Фиг.3, косвенно предполагается, что существует предшествующее накопленное значение управления мощностью; то есть, что предшествующее значение для накопленного значения управления мощностью может быть обновлено на основе принятой команды TPC. В ранее упомянутой спецификации LTE накопленное значение управления мощностью передачи устанавливается равным нулю; однако, никакие критерии для сброса накопленных значений управления мощностью не определяются. На практике различные критерии для сброса накопленных значений управления мощностью могут являться необходимыми. Например, как будет понятно специалистам в данной области техники, различные соты могут иметь различные несоответствия потерь в полосе пропускания восходящей/нисходящей линии связи из-за потерь в фидере и других аспектах, связанных с развертыванием. Когда мобильный терминал входит в новую соту, любые значения смещения, определенные для соты, используемые при вычислении параметров мощности передачи, могут быть обновлены для отражения новой конфигурации соты. Это может быть выполнено, например, посредством приема новых значений смещения, определенных для соты, переданных мобильной станции по каналу управления. Эти новые значения смещения, определенные для соты, затем могут быть использованы посредством мобильного терминала в последующих вычислениях параметров мощности. Однако, если накопленные значения управления мощностью не были сброшены в такой ситуации, то коррекция параметров мощности передачи до соответствующего уровня может быть излишне отсрочена. Более того, поскольку команды TPC в LTE, как правило, передаются исключительно в случаях, когда мобильный терминал имеет данные для передачи, а не заранее, это может привести к ненужным повторным передачам гибридного автоматического запроса на повторную передачу (HARQ) и отказам HARQ. Кроме того, если новая сота не знает команд TPC, посланных от первой соты, то новый узел eNodeB не может отследить мощность передачи мобильного терминала. Могут возникнуть и другие ситуации, в которых сброс накопленных значений TPC является выгодным, как, например, когда оборудование UE осуществляет попытку синхронизации восходящей линии связи после потери синхронизации восходящей линии связи.

Соответственно, в некоторых вариантах осуществления изобретения мобильный терминал обеспечивается критериями для сброса накопления TPC. Например, мобильный терминал LTE может быть сконфигурирован с критериями для сброса накопления TPC, соответствующего передачам по восходящей линии связи по физическому распределенному каналу восходящей линии связи (PUSCH). В некоторых вариантах осуществления одни и те же критерии могут быть использованы для сброса отдельного накопления команд ТСР физического канала управления восходящей линии связи (PUCCH). В других, отдельные критерии могут быть обеспечены для сброса накопленного значения TCP для PUCCH.

Примеры таких критериев включают в себя, в числе прочего: обнаружение изменения в обслуживающей соте; попытку приобретения синхронизации восходящей линии связи после потери синхронизации; длинные периоды режима прерывистого приема DRX - например, если время от передачи по PUSCH или PUCCH превышает конфигурируемый порог; вход или выход из активного состояния; прием команды TPC, указывающей на то, что при вычислении параметра мощности передачи должно быть использовано абсолютное смещение мощности, в отличие от накопленного значения управления мощностью; и изменение в одном или нескольких параметрах управления мощностью, управляемых системой, таких как масштабный коэффициент а потерь в полосе пропускания или параметр POFFSET смещения , из уравнения (1). Специалистам в данной области техники должно быть понятно, что различные критерии также могут быть сформированы посредством комбинирования двух или более вышеупомянутых критериев (или других критериев) при помощи операции логического «И» и/или «ИЛИ».

Фиг.4 соответственно иллюстрирует способ оценки того, должно ли накопленное значение управления мощностью быть сброшено. В некоторых вариантах осуществления накопленное значение управления мощностью сбрасывается в нуль, несмотря на то, что возможны другие значения инициализации. Специалистам в данной области техники должно быть понятно, что способ, иллюстрированный на Фиг.4, или его варианты могут быть объединены в некоторых вариантах осуществления изобретения со способом, иллюстрированным на Фиг.3.

В любом случае, каждый цикл способа, изображенного на Фиг.4, начинается с оценки того, изменилась ли обслуживающая сота, как изображено на этапе 410. (Разумеется, изображенные оценки на этапах 410-460 могут быть выполнены в любом порядке). Если это так, то управление переходит на этап 470, на котором сбрасывается накопленное значение управления мощностью. В противном случае подобным способом оцениваются дополнительные критерии для сброса накопленного значения управления мощностью. Следовательно, на этапе 420 мобильная станция определяет, была ли потеряна синхронизация восходящей линии связи, на этапе 430 мобильная станция определяет, превышает ли время от последней передачи предварительно определенный порог, а на этапе 440 мобильная станция определяет, был ли принят от обслуживающей базовой станции новый параметр управления мощностью. Подобным образом на этапе 450 мобильная станция оценивает, вышла или вошла ли она из/в активное состояние, а на этапе 460 мобильная станция оценивает, приняла ли она от базовой станции команду абсолютного смещения мощности. Если любой из этих критериев сброса был удовлетворен, то на этапе 470 накопленное значение управления мощностью сбрасывается. В противном случае критерии продолжают переоцениваться.

Различные вышеописанные способы, а также их варианты могут быть реализованы на мобильных терминалах, таких как мобильный терминал 200, изображенный на Фиг.2, сконфигурированных для работы в системе беспроводной связи с использованием управления мощностью с обратной связью. Разумеется, настоящее изобретение может быть выполнено другими способами, отличными от четко изложенных в настоящем документе, не отступая от существенных параметров изобретения. Следовательно, настоящие варианты осуществления должны рассматриваться во всех отношениях в качестве иллюстративных, а не ограничивающих, а все изменения, возникающие в пределах описания и диапазона эквивалентности приложенной формулы изобретения, предназначены для охвата.

1. Способ управления мощностью передачи мобильного терминала (200) в системе беспроводной связи, содержащий этап, на котором принимают (310) множество команд управления мощностью передачи посредством того, что принимают канал управления от обслуживающей базовой станции и извлекают множество команд управления мощностью передачи из канала управления, причем каждая команда управления мощностью передачи предписывает коррекцию мощности передачи относительно предшествующей передачи, выполненной мобильным терминалом (200), отличающийся тем, что дополнительно содержит этапы, на которых:
корректируют (350) накопленное значение управления мощностью в ответ на каждую команду управления мощностью передачи, которая предписывает положительную коррекцию мощности передачи, только если мобильный терминал (200) не ограничен по мощности, с тем чтобы в случае, когда мобильный терминал является ограниченным по мощности, накопленное значение управления мощностью оставалось нескорректированным, когда команда управления мощностью передачи предписывает положительную коррекцию мощности передачи; и
вычисляют (360) параметры мощности передачи для каждой передачи, выполняемой мобильным терминалом (200), на основе накопленного значения управления мощностью и одного или более параметров линии радиосвязи.

2. Способ по п.1, отличающийся тем, что мобильный терминал (200) не ограничен по мощности в тех случаях, когда компонент управления мощностью меньше предела мощности передачи для мобильного терминала (200).

3. Способ по п.1, отличающийся тем, что мобильный терминал (200) не ограничен по мощности в тех случаях, когда компонент управления мощностью меньше или равен пределу мощности передачи для мобильного терминала (200).

4. Способ по п.1, отличающийся тем, что при извлечении команд управления мощностью передачи из канала управления команды управления мощностью передачи извлекают в соответствии с форматом планирования присваивания или форматом команд управления мощностью.

5. Способ по п.1, отличающийся тем, что упомянутые один или более параметров линии радиосвязи содержат по меньшей мере одно из ширины полосы частот передачи, оценки потерь на трассе передачи пропускания и схемы кодирования и модуляции.

6. Способ по п.1, отличающийся тем, что дополнительно содержит этапы, на которых:
отслеживают (410, 420, 430, 440, 450, 460) возникновение одного или более предварительно определенных критериев сброса управления мощностью передачи; и
сбрасывают (470) накопленное значение управления мощностью в предварительно определенное значение в ответ на каждое упомянутое возникновение.

7. Способ по п.6, отличающийся тем, что упомянутые предварительно определенные критерии сброса управления мощностью передачи включают в себя по меньшей мере одно из изменения в обслуживающей соте для мобильного терминала (200), потери синхронизации восходящей линии связи, истечения предварительно определенного периода без передач со стороны мобильного терминала (200), приема измененного параметра управления мощностью от обслуживающей соты и приема команды управления мощностью передачи, определяющей абсолютное смещение мощности вместо относительной коррекции мощности.

8. Способ по п.1, отличающийся тем, что дополнительно содержит этап, на котором корректируют (350) накопленное значение управления мощностью в ответ на команду управления мощностью передачи, которая предписывает отрицательную коррекцию мощности передачи.

9. Мобильный терминал (200) для использования в сети беспроводной связи, содержащий радиоприемопередатчик (210), сконфигурированный для приема канала управления от обслуживающей базовой станции и для извлечения множества команд управления мощностью передачи из канала управления, и контроллер (220), сконфигурированный для приема множества команд управления мощностью передачи через радиоприемопередатчик (210) посредством приема канала управления от обслуживающей базовой станции и для извлечения команд управления мощностью передачи из канала управления, причем каждая команда управления мощностью передачи предписывает коррекцию мощности передачи относительно предшествующей передачи, выполненной мобильным терминалом (200), отличающийся тем, что контроллер (220) дополнительно сконфигурирован для:
коррекции накопленного значения управления мощностью в ответ на каждую команду управления мощностью передачи, которая предписывает положительную коррекцию мощности передачи, только если мобильный терминал (200) не ограничен по мощности, с тем чтобы в случае, когда мобильный терминал является ограниченным по мощности, накопленное значение управления мощностью оставалось нескорректированным, когда команда управления мощностью передачи предписывает положительную коррекцию мощности передачи; и
вычисления параметров мощности передачи для каждой передачи, выполняемой мобильным терминалом (200), на основе накопленного значения управления мощностью и одного или более параметров линии радиосвязи.

10. Мобильный терминал (200) по п.9, отличающийся тем, что мобильный терминал (200) не ограничен по мощности в тех случаях, когда компонент управления мощностью меньше предела мощности передачи для мобильного терминала (200).

11. Мобильный терминал (200) по п.9, отличающийся тем, что мобильный терминал (200) не ограничен по мощности в тех случаях, когда компонент управления мощностью меньше или равен пределу мощности передачи для мобильного терминала (200).

12. Мобильный терминал (200) по п.9, отличающийся тем, что радиоприемопередатчик (210) сконфигурирован для извлечения команд управления мощностью передачи из канала управления в соответствии с форматом планирования присвоения или форматом команд управления мощностью.

13. Мобильный терминал (200) по п.9, отличающийся тем, что упомянутые один или более параметров линии радиосвязи содержат по меньшей мере одно из ширины полосы частот передачи, оценки потерь на трассе передачи и схемы кодирования и модуляции.

14. Мобильный терминал (200) по п.9, отличающийся тем, что контроллер (220) дополнительно сконфигурирован для:
отслеживания возникновения одного или более предварительно определенных критериев сброса управления мощностью передачи; и
сброса накопленного значения управления мощностью в предварительно определенное значение в ответ на каждое упомянутое возникновение.

15. Мобильный терминал (200) по п.16, отличающийся тем, что упомянутые предварительно определенные критерии сброса управления мощностью передачи включают в себя по меньшей мере одно из изменения в обслуживающей соте для мобильного терминала (200), потери синхронизации восходящей линии связи, истечения предварительно определенного периода без передач со стороны мобильного терминала (200), приема измененного параметра управления мощностью от обслуживающей соты и приема команды управления мощностью передачи, определяющей абсолютное смещение мощности вместо относительной коррекции мощности.

16. Мобильный терминал (200) по п.9, отличающийся тем, что контроллер (220) дополнительно сконфигурирован для коррекции накопленного значения управления мощностью в ответ на команду управления мощностью передачи, которая предписывает отрицательную коррекцию мощности передачи.



 

Похожие патенты:

Изобретение относится к беспроводной связи. Техническим результатом является уменьшение взаимных помех вследствие одноранговой (P2P) связи.

Изобретение относится к системам связи. Технический результат заключается в повышении эффективности определения местоположения.

Изобретение относится к системам связи. Описанное здесь изобретение обеспечивает форму макроразнесения нисходящей линии связи в сетях сотовой связи с коммутацией пакетов.

Изобретение относится к мобильной связи. Технический результат заключается в том, что после переключения от первой сети доступа на вторую сеть доступа, многорежимное пользовательское оборудование (UE) в режиме передачи обслуживания с одной радиочастотой (RF) способно быстро передаваться на обслуживание обратно на первую сеть доступа.

Изобретение относится к мобильной связи. Техническим результатом является обеспечение возможности пресечь нецелесообразную сигнализацию и предотвратить резервирование ненужных ресурсов, когда в макросоте присутствуют две ли более соты CSG, которые используют один и тот же PCI.

Изобретение относится к технике связи и может быть использовано для измерения и сообщения относительно соты. Технический результат - повышение точности и скорости измерения и сообщения относительно соты.

Изобретение относится к области беспроводных сетей связи, а именно к управлению сетевым трафиком мобильной связи. Технический результат заключается в обеспечении гибкого ограничения вызовов при решении проблемы повторных вызовов, осуществляемых отклоненной мобильной станцией в случае перегрузки в сетях мобильной связи.

Изобретение относится к технике связи и может использоваться в системах беспроводной связи. Технический результат состоит в повышении пропускной способности передачи.

Изобретение относится к технике связи. Технический результат заключается в устранении конфликтной ситуации из-за сигналов запроса доступа, одновременно передаваемых от терминальных устройств связи в локальной ячейке, предотвращении образования мешающего сигнала в соседней ячейке и улучшении пропускной способность в локальной ячейке.

Изобретение относится к системам мобильной связи. Технический результат заключается в усовершенствовании процедур авторизации.

Изобретение относится к области связи и, в частности, к способу и устройству синхронизации восходящей линии связи. Техническим результатом является уменьшение задержки и увеличение производительности системы. Указанный технический результат достигается тем, что способ синхронизации восходящей линии связи, применяемый в случае объединения несущих множества составляющих восходящей линии связи, включает в себя этапы, на которых получают опережение второй несущей составляющих восходящей линии связи в соответствии с опережением первой несущей составляющих восходящей линии связи, при этом опережение второй несущей составляющих восходящей линии связи равно опережению первой несущей составляющих восходящей линии связи; и посылают данные в момент времени посылки восходящей линии связи, соответствующий опережению второй несущей составляющих восходящей линии связи. 3 н. и 2 з.п. ф-лы, 9 ил.

Изобретение раскрывает способ, который включает накопление в пользовательском устройстве (UE), работающем в режиме связи «устройство-устройство» (D2D), набора значений уровней помех по меньшей мере от одного соседнего сотового пользовательского устройства, по меньшей мере частично на основе информации о выделении ресурсов указанного по меньшей мере одного соседнего сотового пользовательского устройства в декодированном первом сообщении управления радиоресурсами (RRM) восходящей линии связи, вычисление первого набора средних значений уровней помех соседних пользовательских устройств. Способ также включает декодирование второго сообщения RRM от указанной базовой станции, предсказание по меньшей мере одного помехового сценария, по меньшей мере частично на основе первого набора средних значений уровней помех соседних сотовых пользовательских устройств и указанного декодированного второго сообщения RRM, выбор ресурса для передачи данных в парное пользовательское устройство D2D, по меньшей мере частично на основе указанного предсказанного помехового сценария, и передачу данных в парное пользовательское устройство D2D с использованием выбранного ресурса. Технический результат - возможность совместного использования ресурсов набором устройств D2D UE и соседними сотовыми UE. 3 н. и 15 з.п. ф-лы, 6 ил.

Группа изобретений относится к системам связи. Технический результат заключается в уменьшении вероятности ложной сигнализации. В способе мобильной связи в соответствии с настоящим изобретением мобильная станция (UE) принимает нисходящие данные, передаваемые из базовой станции радиосвязи, путем использования ресурса радиосвязи нисходящей линии связи, назначаемого мобильной станции посредством заданной информации планирования, в заданном цикле. Способ включает шаг (А) передачи в мобильную станцию (UE) заданного цикла и информации о ресурсе радиосвязи нисходящей линии связи, шаг (В) передачи в мобильную станцию (UE) заданной информации планирования и шаг (С) приема нисходящих данных в заданном цикле путем использования ресурса радиосвязи нисходящей линии связи, назначенного посредством заданной информации планирования, при этом прием начинают в конкретный момент, определяемый на основании принятой заданной информации планирования. На шаге (С) заданную информацию планирования отбрасывают, когда информация о ресурсе радиосвязи нисходящей линии связи и информация, переданная посредством заданной информации планирования, противоречат друг другу. 8 н. и 9 з.п. ф-лы, 5 ил.

Изобретение относится к области мобильной коммуникации, и в частности, к системе осуществления видеовызова. Техническим результатом является обеспечение видеовызова, так чтобы вызывающие и вызываемые пользователи могли изменить видимый другой стороной или самому/самой видеоконтент, которые предоставляют возможность активно управлять видеоконтентами для вызывающих и вызываемых пользователей услуги видеовызова и улучшают интерактивную возможность пользователей во время видеовызова. Указанный технический результат достигается тем, что способ осуществления видеовызова включает в себя этапы, на которых по приему инициализированного вызывающей стороной видеовызова выполняют согласование среды с вызывающей стороной и инициализируют видеовызов к вызываемой стороне, после того как вызываемая сторона отвечает, выполняют согласование среды с вызываемой стороной и завершают установление видеоголосового канала между вызывающей стороной и вызываемой стороной, и по приему указания вызывающей стороны и/или вызываемой стороны, в течении периода выполнения видеовызова между вызывающей стороной и вызываемой стороной, обрабатывают видео в соответствии с указанием. 4 н. и 2 з.п. ф-лы, 5 ил.

Изобретение относится к беспроводной связи. Технический результат - определение приоритетности экстренных вызовов. Предлагаются способы и устройства для передачи полезных данных, связанных с высокоприоритетным вызовом, например экстренным вызовом. В одном варианте осуществления указанные данные содержат данные (например, блок MSD или блок FSD), внедренные в один или большее количество пакетов протокола передачи в реальном времени, например пакетов протокола управления передачей в реальном времени (RTCP), которые проходят перемежение с потоком голосовых данных или данных пользователя (передаваемых, например, в пакетах протокола RTP) экстренного вызова. Описанные устройства и способы предназначены для надежной передачи части данных из инициирующего терминала (например, системы, установленной в транспортном средстве) в пункт обеспечения общественной безопасности (PSAP) путем использования того же транспортного соединения, что и для данных пользователя. 4 н. и 35 з.п.ф-лы, 12 ил.

Настоящее изобретение раскрывает способ и устройство для обработки состояния канала хэндовера. Технический результат изобретения заключается в эффективном решении проблемы, связанной с помехами в восходящей линии связи, переходными помехами в нисходящей линии связи и "зависаниями" пользовательских терминалов, вызванными конфликтами при выполнении хэндовера базовой пикостанцией глобальной системы для мобильной связи (GSM), что позволяет значительно повысить вероятность успешных попыток хэндовера, благодаря чему система базовых пикостанций GSM может применяться в большем объеме, что обеспечивает более высокий уровень качества обслуживания пользователей. К набору состояний конечного автомата канала хэндовера добавляют состояние 4; при этом если канал хэндовера находится в состоянии 1 и пользовательский терминал передает в базовую станцию сообщение о доступе к хэндоверу, то канал хэндовера переходит в состояние 2, а если в это время принимается сообщение о доступе к хэндоверу, переданное другими пользовательскими терминалами, то канал хэндовера переходит в состояние 4, причем в состоянии 4 базовая станция предотвращает предоставление пользовательским терминалам, вызывающим конфликты, доступа к каналу хэндовера. 2 н. и 8 з.п. ф-лы, 5 ил.

Изобретение относится к беспроводной связи и предназначено для уведомления о качестве приема для выполнения высокоскоростной пакетной связи с использованием адаптивной модуляции и планирования. Технический результат - повышение информационной емкости, которая может быть передана, уменьшение потребляемой мощности посредством уменьшения величины управляющего сигнала и повышение пропускной способности системы посредством уменьшения перекрестных помех. Устройство содержит секцию извлечения управляющей информации, которая извлекает информацию, указывающую количество CQI-индикаторов, содержащихся в управляющей информации, секции измерения качества приема, которые измеряют качество приема каждой поднесущей в пределах полосы частот передачи, секцию формирования CQI, которая вырабатывает CQI-индикаторы для некоторых из поднесущих высшего качества приема в пределах полосы частот связи, мультиплексор, который мультиплексирует CQI-индикаторы, информацию номера поднесущих, формирующих CQI-индикаторы, сигналы ACK или сигналы NACK, секцию выбора SC, которая выбирает число поднесущих, из устройства базовой станции, высшего качества приема, назначенных с использованием информации обозначения качества CQI. 3 н. и 2 з.п.ф-лы, 15 ил.

Изобретение относится к беспроводной связи и, более конкретно, к облегчению связности сети передачи пакетных данных для трафика локального доступа согласно интернет-протоколу для беспроводной связи в развертывании сети. Технический результат - расширение мобильности пользовательского оборудования даже в недостаточно оптимальной среде для макросетей и более гибкое управление персональным доступом к таким сетям. Согласно конкретным аспектам настоящего раскрытия, обеспечиваются механизмы для идентификации запроса установления соединения сети с коммутацией пакетов как запроса контекста LIPA. После идентификации идентифицируется локальный шлюз, ассоциированный с UE или с развернутой абонентом базовой станцией, и устанавливается контекст пакета, чтобы поддерживать трафик LIPA для UE. Дополнительные механизмы поддерживают мобильность UE от одной базовой станции к другой, включающей в себя идентификацию и завершение неактивных контекстов LIPA. Дополнительно описывается UE, которое может распознать и облегчить установление контекста LIPA для выполнения приложений в UE. 10 н. и 27 з.п. ф-лы, 17 ил.

Изобретение относится к вычислительной технике. Технический результат заключается в эффективности и надежности передачи контактной информации. Способ передачи контактной информации включает хранение документа совместного доступа к контактам для пользователя и управление этим документом в сервере управления документами XML (XDM) предпочтений и политики пользователя (UPP), при этом упомянутый документ совместного доступа к контактам представляет собой документ управления документами XML (XDM), с помощью которого пользователь может указать, кому должна быть предоставлена контактная информация; прием уведомления о необходимости предоставить получателю контактную информацию для контакта в адресной книге отправителя, при этом упомянутое уведомление включает адрес получателя и адрес отправителя, предоставляемую контактную информацию указывают с помощью адреса отправителя, прием уведомления осуществляется в ответ на обновление документа совместного доступа к контактам; извлечение контактной информации для упомянутого контакта из сервера персональных карт контактов или сетевого хранилища адресной книги; и инициирование доставки контактной информации получателю. 3 н. и 14 з.п. ф-лы, 10 ил.

Изобретение относится к способу и системе для аутентификации порядковой взаимосвязи и системе мобильного мультимедийного вещания с условным доступом. Технический результат заключается в повышении надежности и производительности системы мобильного мультимедийного вещания с условным доступом за счет сокращения синхронизируемого объема данных между системами MMB-CAS. Способ содержит получение посещаемой системой мобильного мультимедийного вещания с условным доступом (MMB-CAS) рабочей и управляющей информации от соответствующей системы обеспечения управления бизнесом (BOSS); получение посещаемой MMB-CAS запроса для доступа к сервисному ключу от пользователя и запуск аутентификации порядковой взаимосвязи; запрос посещаемой MMB-CAS домашней MMB-CAS на выполнение аутентификации порядковой взаимосвязи относительно пользователя; получение посещаемой MMB-CAS результата аутентификации порядковой взаимосвязи пользователя, возвращаемого домашней MMB-CAS, и выполнение соответствующей обработки. 3 н. и 12 з.п. ф-лы, 3 ил.
Наверх