Реактор для получения пульпы фосфатов аммония

Изобретение относится к аппаратурному оформлению химических процессов в газожидкостной среде. Реактор для получения пульпы фосфата аммония содержит реакционную трубу, тангенциально входящую в сепаратор, состоящий из цилиндрической и конической частей, циркуляционную трубу, патрубки ввода фосфорной кислоты, аммиака, острого пара и патрубки вывода пульпы фосфатов аммония и пара. При этом реактор дополнительно содержит патрубок ввода серной или азотной кислоты, установленный в конической части сепаратора ниже патрубка вывода пульпы на расстоянии 0,5-1,5 его диаметра и смещен в сторону горизонтального движения жидкости не менее чем на два диаметра патрубка вывода пульпы. Изобретение обеспечивает увеличение эффективного рабочего времени реактора до 7200 ч/год. 1 ил.

 

Изобретение относится к аппаратурному оформлению химических процессов в газожидкостной среде, а именно к конструкции газожидкостного реактора, используемого, например, при получении пульпы фосфатов аммония

В настоящее время известны газожидкостные реакторы (группа изобретений):

патент РФ №2442643, кл. В01J 10/00, опубл. 20.02.2012 г., патент РФ №2447932, кл. В01J 10/00, опубл. 27.01.2012 г., выложенная заявка РФ №2010130972, кл. В01J 10/00, опубл. 27.01.2012 г.

Однако описанные в выше приведенных источниках реакторы пригодны только для двухкомпонентных потоков.

Известен также аппарат для контактирования газа и жидкости, защищенный патентом РФ №2223841, кл. В01F 5/10, опубл. 20.02.2004 г.

Данный аппарат не может быть использован в производстве минеральных удобрений, а конкретно для получения пульпы фосфатов аммония, из-за наличия в его конструкции насадки (вертикальных и горизонтальных пластин). На них пульпа будет осаждаться и налипать, что ухудшает гидродинамику, а затем приводит к полной остановке аппарата.

В настоящее время в промышленности используются эффективные аппараты.

Так, в авт. свид. СССР №525461, кл. В01J 1/00, опубл. 25.08.1976 г. описана установка для нейтрализации и выпаривания кислот, содержащая реакционную камеру, сепаратор с циркуляционной трубой, устройства для ввода и вывода реагентов. Сепаратор снабжен расположенным в нижней части патрубком для вывода пульпы и переливной камерой, соединенной с циркуляционной трубой и снабженной соплом для совместной подачи кислоты и аммиака и соединена с циркуляционной трубой через теплообменник.

Недостатком этого реактора является совместная подача (в одну точку) кислоты и аммиака, что при использовании двух кислот потребует предварительного смешения их в дополнительном аппарате. Кроме того, кислоты без разбавления пульпой аммонизируются с большим локальным выходом тепла, что приводит к образованию паровых пузырей, нарушающих целостность жидкостного потока и проскок (потери) непрореагировавшего аммиака.

Наиболее эффективным аппаратом для нейтрализации кислот аммиаком и получения пульпы фосфатов аммония является скоростной аммонизатор-испаритель, взятый нами за прототип.(«Технология фосфорных и комплексных удобрений» под редакцией С.Д. Эвенчика и А.А. Бродского. М. «Химия». 1987 г. с.200-201). Данный реактор включает реакционную трубу, тангенциально входящую в сепаратор, состоящий из цилиндрической и конической части, а также циркуляционную трубу. Реактор включает устройства ввода и вывода компонентов, а именно, патрубки ввода фосфорной кислоты, аммиака и пара и патрубки вывода пульпы фосфата аммония и пара.

Недостатком данного реактора для нейтрализации кислот аммиаком является то, что несмотря на высокую часовую производительность, реактор при длительной работе достаточно часто останавливают на чистку.

Это происходит из-за того, что при использовании сильных кислот (серная, азотная) возникает пульсационный режим с выбросом пульпы, которая налипает на стенки сепаратора, что заставляет останавливать аппарат и проводить его чистку. Все это, естественно, делает работу нестабильной и снижает мощность (годовую производительность) технологической системы в целом.

Нами была поставлена задача создать надежный реактор, конструкция которого позволила бы значительно увеличить его межостановочный пробег.

Задача решена в предложенной конструкции реактора, включающей реакционную трубу, тангенциально входящую в сепаратор, состоящий из цилиндрической и конической части, и циркуляционную трубу, а также патрубки ввода фосфорной кислоты, аммиака, острого пара и патрубки вывода пульпы фосфатов аммония и пара. Реактор дополнительно содержит патрубок ввода серной или азотной кислоты, установленный в конической части сепаратора ниже патрубка вывода пульпы на расстоянии 0,5-1,5 его диаметра и смещенный в сторону горизонтального движения жидкости не менее, чем на два диаметра патрубка вывода пульпы.

На рис.1 представлен общий вид реактора.

Реактор состоит из реакционной трубы 1, сепаратора 2, снабженного патрубком вывода пара 3 и выводом пульпы фосфата аммония 4. На коническом днище сепаратора расположен патрубок 5 ввода серной (азотной) кислоты. Реакционная труба соединена с циркуляционной трубой 6, на которой установлены патрубки ввода фосфорной кислоты 7 и острого пара 8. Реакционная и циркуляционные трубы соединены коленом 9, на котором установлен патрубок для ввода аммиака 10.

Реактор работает следующим образом: в циркуляционную трубу 6 через патрубок 7 подается фосфорная кислота, а через установленный на соединительном колене 9 патрубок 10 - аммиак. При взаимодействии этих компонентов образуется пульпа фосфатов аммония и выделяется большое количество тепла, за счет которого часть воды превращается в пар. Парожидкостная эмульсия в реакционной трубе менее плотная, чем жидкость в циркуляционной трубе, за счет чего в аппарате возникает направленное движение обрабатываемых веществ от циркуляционной трубы 6 к реакционной трубе 1 и далее в сепаратор 2. Тангенциальный ввод потока в сепаратор позволяет обеспечить достаточно большую поверхность испарения и высокую скорость таегенциального движения, то есть турбулизацию и перемешивание потока, в которой через патрубок 5 дозируется малое (по сравнению с количеством фосфорной кислоты) количество серной (азотной) кислоты. Образующийся пар выходит через патрубок 3, а избыток пульпы - из патрубка 4. Остальная пульпа смешивается с серной (азотной) кислотой, по циркуляционной трубе поступает на смешение с фосфорной кислотой и далее на смешение с аммиаком.

При получении фосфатов аммония для улучшения химического состава (для балансирования содержания питательных веществ в удобрении) и гранулометрического состава (для стабилизации процесса гранулирования) в продукт добавляется серная (азотная) кислота. Без предварительного смешения в контакт с аммиаком поступает то одна, то другая кислота, то есть происходит неравномерное выделение тепла, что приводит к пульсации и неустойчивому режиму работы аппарата. Для равномерного смешения этих кислот можно использовать отдельный смеситель.

Предложенная конструкция позволяет совместить равномерное перемешивание разных кислот и их аммонизацию в одном аппарате. Это достигается тем, что серную (азотную) кислоту, количество которой значительно меньше, чем количество фосфорной кислоты, дозируют в активно перемешиваемую нейтральную пульпу, с последующим смешением ее с фосфорной кислотой и аммонизацией.

Для этого патрубок серной (азотной) кислоты располагают на коническом днище, где движение жидкости достаточно интенсивно, а высота слоя жидкости больше, чем в сепараторе, под сливным патрубком и на удалении от него по горизонтальному ходу жидкости, во избежание попадания непрореагировавшей с аммиаком кислоты в продукт.

Установка этого патрубка должна быть в строго определенном месте, так как уменьшение заглубления патрубка серной (азотной) кислоты менее 0,5 диаметра сливного патрубка приводит к захвату части кислоты сливающимся продуктом, что недопустимо из-за возрастания его кислотности. Увеличение заглубления более, чем на 1,5 диаметра удаляет ввод серной кислоты от наиболее интенсивного вращательного движения потока, что ухудшает ее перемешивание с пульпой и не обеспечивает равномерной аммонизации кислот. Удаление патрубка ввода серной (азотной) кислоты от сливного патрубка менее, чем на два диаметра не исключает возможности захвата неаммонизированной серной (азотной) кислоты выгружаемой пульпой, что ухудшает качество продукта.

Использование предложенного реактора в промышленности позволяет увеличить эффективный фонд рабочего времени реактора с 6000 ч/год до 7200 ч/год.

Реактор для получения пульпы фосфатов аммония, включающий реакционную трубу, тангенциально входящую в сепаратор, состоящий из цилиндрической и конической части, и циркуляционную трубу, а также патрубки ввода фосфорной кислоты, аммиака, острого пара и патрубки вывода пульпы фосфатов аммония и пара, отличающийся тем, что дополнительно содержит патрубок ввода серной или азотной кислоты, установленный в конической части сепаратора ниже патрубка вывода пульпы на расстоянии 0,5-1,5 его диаметра, и смещен в сторону горизонтального движения жидкости не менее, чем на два диаметра патрубка вывода пульпы.



 

Похожие патенты:

Газожидкостный реактор относится к области технологического оборудования для осуществления газожидкостных процессов и может быть использован в химической, нефтехимической и других областях промышленности.

Изобретение относится к области нефтехимии, точнее к устройствам, используемым в производстве мономеров для синтетического каучука. .

Изобретение относится к области химической технологии, а именно к устройствам проведения и интенсификации гетерогенных химических реакций в вихревых центробежных многофазных реакторах, и может быть использовано в химической, нефтедобывающей и нефтеперерабатывающей промышленности.

Изобретение относится к области нефтехимического аппаратостроения, а именно к установкам вторичной переработки нефти, и может быть использовано при получении окисленных нефтяных битумов, применяемых в различных отраслях промышленности.

Изобретение относится к барботажному реактору окисления циклогексана, включающему устройства подачи и распределения воздуха или инертной среды - азота с каналами подачи и поперечные перегородки с отверстиями.

Изобретение относится к способу (варианты) и аппарату эстерификации реакционной среды при производстве сложного полиэфира в расплавленной фазе. .

Изобретение относится к усовершенствованному способу получения композиции ароматической дикарбоновой кислоты, включающему (а) проведение окисления многофазной реакционной среды в реакторе первичного окисления с получением в результате первой суспензии; (b) проведение дополнительного окисления, по меньшей мере, части указанной первой суспензии в реакторе вторичного окисления, где указанный реактор вторичного окисления представляет собой реактор по типу барботажной колонны, причем способ дополнительно включает введение ароматического соединения в указанный реактор первичного окисления, где, по меньшей мере, приблизительно 80% мас.

Изобретение относится к способам получения бикарбоната натрия методом карбонизации аммонизированного рассола и аппаратурному оформлению указанного процесса и может быть широко использовано в производстве кальцинированной соды аммиачным способом.

Изобретение относится к устройствам, специально приспособленным для химического взаимодействия жидкости с газообразной средой, более конкретно к конструкциям реакторов для проведения процесса жидкофазного барботажного окисления циклогексана кислородом воздуха на одной из основных стадий получения капролактама в производстве полиамидных пластмасс.

В изобретении описан реактор, в котором из серы и водорода получают сероводород и который частично или полностью выполнен из стойкого к действию реакционной смеси, содержащихся в ней соединений, соответственно элементов материала, который сохраняет свою стойкость и при высоких температурах. 2н. и 15 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам и способам для распределения пара и жидкости. Устройство содержит вертикальную продолговатую ёмкость с размещенной в ней тарелкой. Тарелка содержит множество продолговатых колпачков, простирающихся над верхней поверхностью тарелки. Колпачки имеют отверстие в крышке или боковое отверстие. При этом первый колпачок имеет самое верхнее отверстие на большей высоте над верхней поверхностью тарелки, по сравнению с самым верхним отверстием второго колпачка. Изобретение позволяет изменять высоту колпачков и/или их отверстий с целью регулирования профиля (распределения) жидкого потока, при повышении уровня жидкости. 2 н. и 11 з.п. ф-лы, 5 ил.

Изобретение относится к способу очистки отработанной щелочи (L) из устройства для получения углеводородов посредством крекинга содержащего углеводороды исходного сырья. Причем способ состоит из по меньшей мере одной стадии, на которой отработанную щелочь (L) при повышенной температуре, при давлении выше атмосферного подвергают окислению с кислородом. При этом окисление осуществляют в реакторе (5) при давлении от 60·105 Па до 200·105 Па, а давление отработанной щелочи поднимают до давления реакции окисления в двух отдельных ступенях давления (1, 4). Причем отработанную щелочь (L) между двумя ступенями давления (1, 4) нагревают с помощью косвенного теплообмена (2) с окисленной щелочью (7) и отработанная щелочь (L) после первой ступени давления (1) и теплообмена (2) с окисленной щелочью (7) поступает в сепаратор (3), где отделяется газовая фаза (12) отработанной щелочи. Способ позволяет уменьшить продолжительность пребывания сырья в окислительном реакторе, улучшить параметры стоков окисленной отработанной щелочи и/или повысить рентабельность способа. 6 з.п. ф-лы, 1 ил.

Изобретение относится к способу взаимодействия одной или нескольких текучих сред. Способ включает прохождение одной или нескольких текучих сред в камеру из расположенной выше тарелки, при этом камера имеет одну или несколько боковых стенок, содержащих отверстие, а расположенная выше тарелка имеет слив, и создание канала наружу из камеры, соединяющий соответствующий слив с соответствующим отверстием, для увеличения времени и площади контакта внутри канала и камеры. Изобретение обеспечивает эффективное смешивание различных фаз. 9 з.п. ф-лы, 7 ил.

Изобретение относится к реактору для проведения газожидкостных двухфазных химических реакций. Вертикальный реактор для получения мочевины с помощью прямого синтеза, начинающегося с аммиака и диоксида углерода, в газожидкостной двухфазной смеси, включает полую конструкцию, ограниченную внешней стенкой, имеющей цилиндрическую форму, закрытую на концах полукруглыми крышками и содержащую отверстия для впуска и выпуска технологических жидкостей, так чтобы обеспечить возможность попутного протекания газовой и жидкой фаз внутри реактора, множество наложенных друг на друга перфорированных тарелок, проходящих горизонтально внутри конструкции до внутренней поверхности цилиндрической стенки и подходящим образом разнесенных вдоль вертикальной оси таким образом, что между каждой парой соседних тарелок имеется сектор, находящийся в гидравлическом соединении с сектором, расположенным соответственно выше и/или ниже него, при этом по меньшей мере один сектор содержит разделительную перегородку, расположенную между двумя соседними тарелками и перпендикулярно им и закрепленную на поверхности тарелок и на внутренней поверхности футеровки внешней стенки, так чтобы разделить сектор на две секции, объемы которых находятся в отношении друг к другу, составляющем от 1/3 до 3/1, предпочтительно от 0,95 до 1,05, более предпочтительно равном 1. Изобретение обеспечивает эффективность и экономичность газожидкостных реакций, а также увеличение производственной мощности реактора. 3 н. и 12 з.п. ф-лы, 5 ил.

Изобретение относится к области промышленного органического синтеза, точнее к реактору для получения гидропероксида кумола, используемому для получения фенола и ацетона кумольным способом, а также фенола, метилэтилкетона и циклогексанона. Предложенный реактор для получения гидропероксида кумола окислением алкилароматических углеводородов кислородсодержащим газом включает распределительное устройство с каналами для пропускания кислородсодержащего газа внутри потока реакционной среды, при этом диаметр отверстий канала распределительного устройства составляет не более 0,9 мм и длина - от 2 мм до 100 мм. Кроме того, изобретение относится к способу окисления алкилароматических углеводородов в проточном реакторе кислородсодержащим газом, подаваемым через распределительное устройство, при повышенной температуре, избыточном давлении в слабокислой либо щелочной среде. При этом кислородсодержащий газ проходит через цилиндрические каналы распределительного устройства с диаметром каналов распределительного устройства менее 0,9 мм и длиной от 2 мм до 100 мм, при времени контактирования кислородсодержащего газа с окисляющимся углеводородом 1-200 с. Технический результат изобретения: оптимизация способа получения алкилароматических гидропероксидов, снижение энергетических затрат. 2 н. и 9 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к способу и устройству для окисления реагентов в водной реакционной среде с использованием газообразного молекулярного кислорода. Способ окисления материала в окислительном реакторе, включающем внешний циркуляционный контур, имеющий приспособление для увеличения давления во внешнем контуре, включает стадии: a) измерение концентрации кислорода в реакторе, b) выведение объема водной среды из реактора и измерение концентрации кислорода в этом объеме, c) введение кислорода в объем в растворенном виде и обеспечение достаточным временем пребывания для достижения желательного концентрации кислорода, где количество введенного кислорода определяют путем измерения растворенного кислорода в реакторе и его давления и измерения плотности объема и концентрации кислорода в незаполненном объеме, d) введение объема обратно в реактор при повышенном давлении и через устройство Вентури в жидкостный распределитель, e) образование циркуляционной схемы в реакторе, в результате чего повышенная концентрация кислорода поддерживается в водной среде в нижней части реактора, и где внешний циркуляционный контур поддерживают под давлением во время проведения стадий c), d) и е). Устройство включает окислительный реактор, приспособление для перемешивания, приспособление для выведения водной среды из реактора, приспособление для введения кислорода в водную среду и приспособление для введения водной среды обратно в реактор. Изобретение обеспечивает увеличение концентрации кислорода в реакционной среде и повышение эффективности реакционного процесса. 5 н. и 28 з.п. ф-лы, 1 ил.

Изобретение относится к усовершенствованной системе для производства терефталевой кислоты путем контакта суспензии, содержащей пара-ксилол, с газофазным окислителем, содержащим воздух, причем указанная система включает первичный окислительный реактор, включающий первый суспензионный выход; и вторичный окислительный реактор, включающий вход суспензии и второй суспензионный выход, в которой указанный вход суспензии находится ниже по потоку в гидравлическом соединении с указанным первым выходом суспензии; в которой указанный вторичный окислительный реактор представляет собой вторичную реакционную зону, имеющую максимальную длину Ls и максимальный диаметр Ds, причем указанная вторичная реакционная зона имеет соотношение Ls:Ds в диапазоне от 14:1 до 28:1, в которой расстояние до указанного входа от дна указанной вторичной реакционной зоны находится в интервале от 0,3 Ls до 0,9 Ls; причем указанный первичный окислительный реактор представляет собой барботажный колоночный реактор, и где указанный вторичный окислительный реактор представляет собой барботажный колоночный реактор; причем указанный вторичный окислительный реактор содержит по меньшей мере один нормально нижний вход окислителя и по меньшей мере один нормально верхний вход окислителя. Изобретение также относится к способу изготовления композиции терефталевой кислоты, причем указанный способ включает: (а) направление первой многофазной реакционной среды, содержащей окисляемое соединение, на окисление в первичной реакционной зоне, находящейся в первичном окислительном реакторе, в результате чего получается первая суспензия, причем окисляемое соединение содержит пара-ксилол; и (b) контакт по меньшей мере части указанной первой суспензии с газофазным окислителем во вторичной реакционной зоне, находящейся во вторичном окислительном реакторе, в результате чего получается вторая суспензия, причем газофазный окислитель содержит воздух, где первую часть указанного газофазного окислителя вводят в указанную вторую реакционную зону через нормально верхний вход окислителя, тогда как вторую часть указанного газофазного окислителя вводят через нормально нижний вход окислителя, причем указанная вторичная реакционная зона имеет максимальную длину Ls и максимальный диаметр Ds, где указанная вторичная реакционная зона имеет соотношение Ls:Ds в диапазоне от 14:1 до 28:1, в котором по меньшей мере часть указанной первой суспензии поступает в указанную вторичную реакционную зону в области входа суспензии на расстоянии от дна указанной вторичной реакционной зоны в интервале от 0,3 Ls до 0,9 Ls; и где указанный первичный окислительный реактор представляет собой барботажный колоночный реактор, и вторичный окислительный реактор представляет собой барботажный колоночный реактор. Такое устройство и способ могут способствовать уменьшению содержания кислорода во всем реакторе дополнительного окисления. 2 н. и 11 з.п. ф-лы, 6 ил.

Изобретение относится к усовершенствованным системам для производства терефталевой кислоты, в частности, путем контакта суспензии, содержащей пара-ксилол, с газофазным окислителем, содержащим воздух, причем указанная система включает первичный окислительный реактор, включающий первый суспензионный выход; и вторичный окислительный реактор, включающий вход суспензии, второй суспензионный выход, нормально нижний вход окислителя, и нормально верхний вход окислителя, в которой указанный вход суспензии находится ниже по потоку в гидравлическом соединении с указанным первым выходом суспензии, в которой указанный вторичный окислительный реактор представляет собой вторичную реакционную зону, имеющую максимальную длину Ls и максимальный диаметр Ds, в которой расстояние до указанного нормально нижнего входа окислителя от дна указанной вторичной реакционной зоны составляет менее чем 0,5 Ls, в которой расстояние до указанного нормально верхнего входа окислителя от дна указанной вторичной реакционной зоны составляет по меньшей мере 0,5 Ls, в которой расстояние до указанного входа от дна указанной вторичной реакционной зоны находится в интервале от 0,3 Ls до 0,9 Ls; причем указанный первичный окислительный реактор представляет собой барботажный колоночный реактор, и где указанный вторичный окислительный реактор представляет собой барботажный колоночный реактор. Изобретение также относится к способу изготовления композиции терефталевой кислоты, причем указанный способ включает: (a) направление первой многофазной реакционной среды, содержащей окисляемое соединение, на окисление в первичной реакционной зоне, находящейся в первичном окислительном реакторе, в результате чего получается первая суспензия, где окисляемое соединение содержит пара-ксилол; и (b) контакт по меньшей мере части указанной первой суспензии с газофазным окислителем во вторичной реакционной зоне, находящейся во вторичном окислительном реакторе, в результате чего получается вторая суспензия, где газофазный окислитель содержит воздух, в котором указанная вторичная реакционная зона имеет максимальную длину Ls и максимальный диаметр Ds, в котором первая часть указанного газофазного окислителя поступает в указанную вторичную реакционную зону в первой области входа окислителя на расстоянии от дна указанной вторичной реакционной зоны, составляющем по меньшей мере 0,5 Ls, в котором указанная первая часть указанного газофазного окислителя составляет от приблизительно 5 до приблизительно 49% полного объема указанного газофазного окислителя, введенного в указанную вторичную реакционную зону, в котором по меньшей мере часть указанной первой суспензии поступает в указанную вторичную реакционную зону в области входа суспензии на расстоянии от дна указанной вторичной реакционной зоны в интервале от 0,3 Ls до 0,9 Ls; причем указанный первичный окислительный реактор представляет собой барботажный колоночный реактор, и где указанный вторичный окислительный реактор представляет собой барботажный колоночный реактор; и где указанный вторичный окислительный реактор содержит нормально нижний вход окислителя. Такие устройства и способ могут способствовать уменьшению содержания кислорода во всем реакторе дополнительного окисления. 3 н. и 12 з.п. ф-лы, 6 ил.

Изобретение относится к усовершенствованной системе для производства терефталевой кислоты путем контакта суспензии, содержащей п-ксилол с газофазным окислителем, содержащим воздух, причем указанная система включает: первичный окислительный реактор, включающий первый суспензионный выпуск, и вторичный окислительный реактор, включающий впуск суспензии, второй суспензионный выпуск, нормально нижний впуск окислителя и нормально верхний впуск окислителя, в которой указанный впуск суспензии находится ниже по потоку в гидравлическом соединении с указанным первым выпуском суспензии, в которой указанный вторичный окислительный реактор представляет собой вторичную реакционную зону, имеющую максимальную длину Ls, в которой расстояние до указанного нормально нижнего впуска окислителя от дна указанной вторичной реакционной зоны составляет менее чем 0,5 Ls, в которой расстояние до указанного верхнего впуска окислителя от дна указанной вторичной реакционной зоны составляет, по меньшей мере, 0,5 Ls; и где первичный окислительный реактор представляет собой барботажный колоночный реактор и указанный вторичный окислительный реактор представляет собой барботажный колоночный реактор. Изобретение также относится к способу изготовления композиции терефталевой кислоты, причем указанный способ включает: (a) направление первой многофазной реакционной среды, содержащей окисляемое соединение, на окисление в первичной реакционной зоне, находящейся в первичном окислительном реакторе, в результате чего получается первая суспензия, причем окисляемое соединение содержит п-ксилол; и (b) контакт, по меньшей мере, части указанной первой суспензии с газофазным окислителем во вторичной реакционной зоне, находящейся во вторичном окислительном реакторе, в результате чего получается вторая суспензия, причем газофазный окислитель содержит воздух, в котором указанная вторичная реакционная зона имеет максимальную длину Ls, в котором первая часть указанного газофазного окислителя поступает в указанную вторичную реакционную зону в первой области впуска окислителя на расстоянии от дна указанной вторичной реакционной зоны, составляющем, по меньшей мере, 0,5 Ls, в котором указанная первая часть указанного газофазного окислителя составляет от 5 до 49% полного объема указанного газофазного окислителя, введенного в указанную вторичную реакционную зону, и указанный первичный окислительный реактор представляет собой барботажный колоночный реактор, в котором указанный вторичный окислительный реактор представляет собой барботажный колоночный реактор и где указанная вторичная реакционная зона содержит вторую область впуска окислителя. Такое устройство и способ могут способствовать уменьшению содержания кислорода во всем реакторе дополнительного окисления. 2 н. и 13 з.п. ф-лы, 6 ил.
Наверх