Способ получения стекла с антиотражающим мезопористым покрытием на основе наночастиц sio2

Изобретение относится к тонкопленочным просветляющим покрытиям на стекле и может быть использовано в стекольной промышленности и в электронике. Техническим результатом изобретения является получение антиотражающих покрытий на основе наночастиц SiO2, имеющих высокую адгезию к поверхности стекла. Способ получения стекла с антиотражающим мезопористым покрытием на основе наночастиц SiO2 включает предварительную подготовку стеклянной подложки, приготовление силиказоля со средним диаметром частиц 100 нм и низкой полидисперсностью, нанесение наночастиц SiO2 на стеклянную подложку, термообработку стекла с покрытием. Для улучшения адгезии покрытия к стеклу за счет функционализации и создания электростатического взаимодействия между подложкой и покрытием стекла выдерживают в 1% растворе 3-аминопропилтриэтоксисилана в этаноле (ω=96%) в течение 5-15 часов, сушат в атмосфере аргона, а слои наночастиц SiO2 наносят из силиказоля, синтезированного из тетраэтоксисилана в этиловом спирте в присутствии щелочного катализатора при молярном соотношении компонентов ТЭОС/C2H5OH/NH4OH/H2O=0,25/8/0,1/1,3. 2 пр.

 

1. Область техники.

Изобретение относится к тонкопленочным просветляющим покрытиям на стекле и может быть использовано в стекольной промышленности и в электронике.

2. Уровень техники.

В практических целях для получения стекол с антиотражающими покрытиями широкое применение находят многослойные просветляющие покрытия. Разработка технологии нанесения мезопористых покрытий на основе диоксида кремния (SiO2) с использованием современных вариантов золь-гель метода позволяет получать однослойные антиотражающие покрытия на стекле с низким показателем преломления и, соответственно, с высоким светопропусканием (≤90%).

Получение наноструктурированных покрытий SiO2 с более высокими функциональными свойствами осуществляется путем ведения золь-гель процесса в присутствии различных классов веществ, в основном ПАВ, которые определяют самоорганизацию неоргано-органических наноразмерных структур при образовании геля. В качестве основного компонента при приготовлении золя исходных растворов используется, в основном, тетраалкоксиды кремния. Ввиду относительной легкости синтеза новых мезопористых материалов и широких возможностей их практического использования в различных областях техники, работы в данном направлении активно проводятся как в области пленкообразующих составов, так и в направлении повышения эксплуатационных свойств стекол с покрытиями - адгезионных, прочностных и др. (Троицкий Б.Б., Мамаев Ю.А., Бабин А.А. и др. Получение просветляющих покрытий из диоксида кремния на стекле и кварце золь-гель методом с олигоэфирами. // Физика и химия стекла. - 2010. - т.36. - №5. - С.775-785).

Известны способы получения тонких мезапористых покрытий на стекле на основе SiO2, направленные на снижение показателя преломления пленочного покрытия и, соответственно, повышения его светопропускания. Так в патенте RU №2368576, МПК C03C 17/30 покрытия получают золь-гель методом из тетраалкоксида кремния в присутствии органической добавки с концентрации 0,1-5,0 вес.%. В качестве органической добавки используют олигомеры окиси этилена и олигомеры окиси пропилена различной молекулярной массы. Затем образец с покрытием нагревают в воздушной среде при 300-600°C. В результате проведенных операций получают тонкие однослойные просветляющие покрытия толщиной 50-200 нм и с низким показателем преломления, равным 1,23-1,25.

Однако недостатком данного способа является низкая адгезия получаемых покрытий к подложке.

Известен способ получения тонких просветляющих покрытий на стекле на основе мезопористого диоксида кремния по патенту RU №2368575, МПК C03C 17/30, в соответствии с которым тонкие однослойные просветляющие покрытия толщиной 50-200 нм и с показателем преломления 1,27-1,40 получают золь-гель методом из тетраалкоксида кремния в присутствии органической добавки в концентрации 0,1-5,0 вес.% к весу золя. В качестве органической добавки используются одноосновные, двухосновные и многоосновные органические кислоты, функциональные производные органических кислот, содержащие группы -ОН, -NH2, >NH, >СО, сложные эфиры органических кислот.

Недостатком данного способа также является низкая адгезия наносимых покрытий к подложке.

Известен способ получения тонких просветляющих покрытий на основе мезопористого диоксида кремния золь-гель методом в присутствии некоторых полимеров, статических сополимеров (RU №2371399, МПК C03C 17/25, G02B 1/11, B05D 5/06). Данный способ получения тонких 50-200 нм однослойных просветляющих покрытий на основе мезопористого диоксида кремния на изделиях из силикатного стекла с максимумом пропускания 97,0-98,5% в видимой области спектра, включает в себя: золь-гель процесс тетраалкоксида кремния в присутствии органической добавки концентрацией 0,1-5,0 вес.% к весу золя, с использованием техники самоорганизации наноструктур, вызванной испарением растворителя (EISA), нагревание образца с покрытиями в атмосфере воздуха при 300-600°C в течение нескольких часов с целью термического разрушения органической добавки. В качестве органической добавки, которая определяет самопроизвольное микроразделение неорганической и органической фаз при образовании твердого покрытия на стекле, используются карбоцепные полимеры, содержащие боковые простые эфирные или сложноэфирные группы или карбоцепные статистические сополимеры, содержащие простые эфирные группы и сложноэфирные группы.

Однако антиотражающие покрытия, получаемые данными способом, имеют низкую адгезию к подложке.

Наиболее близким к предполагаемому изобретению является способ упрочнения фотонно-кристаллических (ФК) пленок на основе монодисперсных сферических частиц кремнезема (RU №2399586, МПК C01B 33/14, C01B 3/18, B82B 1/00), в соответствии с которым для повышения адгезионной прочности, твердости пленочных покрытий на основе SiO2 стекло с покрытием дополнительно обрабатывают спиртовым нанозолем кремнезема путем погружения стекла в подготовленный раствор. Нанозоль готовят смешиванием тетраэтоксисилана с водным раствором HCl с pH 1,5 и этиловым спиртом в соотношении 3,5:1:2,5. Смесь выдерживают при температуре 65-75°C в течение 1-2 часов, затем добавляют цетилтриметиламмония хлорид в количестве 200 мг на 3 мл золя. Перед погружением подложки с ФК пленкой золь разбавляют этиловым спиртом в отношении 1:10. Изобретение позволяет получать адгезионнопрочные, ФК пленки. Однако, недостатком данного способа является сложность получения равномерного покрытия на стекле после дополнительной обработки в нанозоле кремнезема.

3. Раскрытие изобретения.

Технической задачей предполагаемого изобретения является разработка способа получения антиотражающих адгезионнопрочных покрытий на основе наночастиц SiO2, путем предварительной функционализации поверхности стекла.

Сущность изобретения состоит в способе получении стекла с антиотражающим мезопористым покрытием на основе наночастиц SiO2, включающем предварительную подготовку стеклянной подложки, приготовление силиказоля со средним диаметром частиц 100 нм и низкой полидисперсностью, нанесение наночастиц SiO2 на стеклянную подложку, термообработку стекла с покрытием; согласно решению, для улучшения адгезии покрытия к стеклу, осуществляют предварительную функционализацию подложки для создания электростатического взаимодействия между подложкой и покрытием путем выдерживания стекла в 1% растворе 3-аминопропилтриэтоксисилана в этаноле (ω=96%) в течение 5-15 часов, сушки в атмосфере аргона, а слои наночастиц SiO2 наносят из силиказоля, синтезированного из тетраэтоксисилана в этиловом спирте в присутствии щелочного катализатора при молярном соотношении компонентов ТЭОС/C2H5OH/NH4OH/H2O,25/8/0,1/1,3. Это позволит повысить эксплуатационные свойства стекла с покрытием.

Электростатическое взаимодействие между покрытием и подложкой обусловлено следующими факторами: известно, что наночастицы SiO2, синтезированные на основе ТЭОС в присутствии щелочного катализатора, имеют отрицательный заряд (M. Kobayashi, F. Juillerat, P. Galletto, P. Bowen, М. Borkovec. Aggregation and Charging of Colloidal Silica Particles: Effect of Particle Size // Langmuir. - 2005. - 21. - p.5761-5769), положительный заряд на поверхности стекла создают адсорбированными на подложке аминогруппами.

Функционализацию поверхности стекла, с целью придания ей положительного заряда осуществляют за счет образования на поверхности стеклянной подложки аминогрупп, производят путем выдерживания ее в 1% растворе 3-аминопропилтриэтоксисилана в этаноле (ω=96%, первый сорт, ГОСТ 18300-87) в течение 5-15 часов, при постоянном перемешивании раствора, и последующей очистки стеклянной подложки от физически адсорбированных молекул силана путем промывки стеклянной подложки этиловым спиртом, а также сушки в атмосфере аргона.

Слой отрицательно заряженных сферических наночастиц SiO2 наносят погружением подложки с функционализированной поверхностью в силиказоль с низкой полидисперсностью, средним диаметром частиц 100 нм; сушкой композита при температуре 50-100°C в течение 2 часов.

Силиказоль синтезируют путем гидролиза тетраэтоксисилана в присутствии щелочного катализатора. Оптимальное молярное соотношение компонентов: ТЭОС/C2H5OH/NH4OH/Н2О=0,25/8/0,1/1,3. Синтез коллоида осуществляют несколько часов. Длительность выдержки силиказоля составляет от 24 до 72 часов. Перед нанесением покрытий поверхность стекол очищают от загрязнений путем выдерживания в растворах: NH4OH:H2O2:H2O, HCl:H2O2:H2O, HF:H2O.

Преимущество заявляемого способа перед прототипом заключается в том, что благодаря предварительной функционализации поверхности стекла, а не последующей, после нанесения покрытия, формируется адгезионно-прочное покрытие без нарушения качества покрытия, его равномерности.

4. Примеры осуществления способа

Пример №1

Перед функционализацией поверхности стекла и нанесением покрытия стекло погружают на несколько минут в кипящий раствор щелочи с перекисью водорода (NH4OH:H2O2:H2O, объемное соотношение компонентов 1:1:5), после чего многократно промывают бидистиллированной водой; затем вновь стекло погружают на несколько минут в кипящий раствор HCl:H2O2:H2O (объемное соотношение компонентов 1:1:5), после чего многократно промывают бидистиллированной водой; затем снова стекло погружают на несколько минут в 5% водный раствор HF, после чего многократно промывают бидистиллированной водой и сушат в термостате при …°С, в течение … час. Для функционализации поверхности стекла подложку выдерживают в 1% растворе 3-аминопропилтриэтоксисилана в этаноле (ω=96%) от 5 до 15 часов, при постоянном перемешивании раствора, для функционализации ее поверхности, физически адсорбированные молекулы 3-аминопропилтриэтоксисилана удаляют промывкой подложки этанолом, промытое стекло с функционализированной поверхностью высушивали в атмосфере аргона. Силиказоль синтезируют путем гидролиза тетраэтоксисилана в присутствии щелочного катализатора. Оптимальное молярное соотношение компонентов: ТЭОС/C2H5OH/NH4OH/Н2О=0,25/8/0,1/1,3. Синтез коллоида производят несколько часов. Длительность выдержки силиказоля составляет от 24 до 72 часов.

Высушенную подложку с функционализированной поверхностью погружают в коллоидный раствор частиц SiO2 (с низкой степенью полидисперсности, диаметром частиц 100 нм) в этаноле, и вытягивают с контролируемой скоростью: 50-150 мм/мин. Подложку с нанесенным покрытием высушивают при температуре 100°C в течение 2 часов.

Адгезионная прочность покрытия была оценена с помощью теста на устойчивость к механическому истиранию по методике prDIN 1096 - 2 «Испытание стекол с покрытием для класса А по условиям эксплуатации», контроль целостности покрытия - по количеству циклов без изменения светопропускания до и после испытания.

Для испытаний было получено 10 образцов. Средняя адгезионная прочность образцов составляла 85 циклов.

Пример №2

Условия проведения эксперимента по получению силиказоля и по нанесению мезопористого покрытия на основе SiO2, его тестированию также, как и в примере №1, однако в данном варианте не была проведена предварительная функционализация поверхности подложки.

Для испытаний было получено 8 образцов. Средняя адгезионная прочность составляла 50 циклов.

Таким образом, заявляемый способ позволяет получать покрытия SiO2 с более высокими адгезионными свойствами.

Способ получения стекла с антиотражающим мезопористым покрытием на основе наночастиц SiO2, включающий предварительную подготовку стеклянной подложки, приготовление силиказоля со средним диаметром частиц 100 нм и низкой полидисперсностью, нанесение наночастиц SiO2 на стеклянную подложку, термообработку стекла с покрытием, отличающийся тем, что для функционализации и создания электростатического взаимодействия между подложкой и покрытием стекло выдерживают в 1%-ном растворе 3-аминопропилтриэтоксисилана в этаноле (ω=96%) в течение 5-15 ч, сушат в атмосфере аргона, а слои наночастиц SiO2 наносят из силиказоля, синтезированного из тетраэтоксисилана в этиловом спирте в присутствии щелочного катализатора при молярном соотношении компонентов ТЭОС/C2H5OH/NH4OH/H2O=0,25/8/0,1/1,3.



 

Похожие патенты:

Изобретение относится к суспензии для пиролитического покрытия. Технический результат изобретения заключается в повышении долговечности пиролитических покрытий.

Изобретение относится к области изготовления оптически прозрачных тонкопленочных покрытий из жидкой фазы на поверхности прозрачных материалов, например изделий из органических стекол, использующихся в остеклении авиационной техники.

Изобретение относится к конструкциям оконных стекол для транспортных средств и способам их изготовления. .

Изобретение относится к оконному стеклу для транспортного средства и способу его изготовления. .

Изобретение относится к области стекломатериалов для функциональных покрытий с необходимыми электрофизическими свойствами. .

Изобретение относится к тонкопленочным интерференционным покрытиям для просветления оптических элементов. .
Изобретение относится к получению пленочных покрытий широкой цветовой гаммы при изготовлении тонированного, светоотражающего стекла, при нанесении декоративных покрытий на керамические изделия, а также при формировании диэлектрических и полупроводниковых покрытий в электронике.
Изобретение относится к области получения пленочных покрытий и касается разработки способа получения титанооксидных и/или железооксидных пленочных покрытий, обладающих тепло- и светоотражающими свойствами, и может быть использовано при изготовлении тонированного, светоотражающего стекла большого формата, при нанесении декоративных покрытий, рисунков на керамические изделия, а также при формировании диэлектрических и полупроводниковых покрытий со специальными свойствами в электронике.

Изобретение относится к листовому стеклу, используемому в строительной индустрии, для считывающих устройств, для солнечных батарей. Техническим результатом изобретения является создание для листового стекла покрытия, обладающего повышенными показателями микротвердости и стойкости к царапанию без существенной потери прозрачности в видимой области спектра. Способ получения покрытия включает золь-гель процесс тетраалкоксида кремния, нанесение золя на стекло, нагревание образца с покрытием в атмосфере воздуха. В золь дополнительно вводят суспензию порошка наноалмаза в водном растворе ПАВ с концентрацией 0,04-0,06 моль/л, при этом количество наноалмаза по отношению ко всей смеси составляет 0,3-0,5%, смесь подвергают механическому перемешиванию в течение 5-10 мин, далее УЗ-воздействию при частоте 18-20 кГц в течение 20-30 мин, после чего в подготовленную смесь погружают флоат-стекло, которое затем извлекают со скоростью 5-7 см/мин и далее подвергают сушке и термообработке при 450-470°C в течение 20-30 мин с дальнейшим охлаждением. В качестве ПАВ используют катионактивные вещества, в частности четвертичные аммонийные соли типа цетилтриметиламмонийбромид, или октадециламмонийхлорид, или триметилгексадециламмонийхлорид. Способ обеспечивает стойкость стекла к царапанию, повышение микротвердости более чем на 200% и светопропускание на уровне 80-85%. 1 з.п. ф-лы, 1 табл., 2 пр.

Изобретение к облучающему устройству для генерации ультрафиолетового излучения. Технический результат изобретения заключается в увеличении срока эксплуатации облучающего устройства. Облучающее устройство для генерации ультрафиолетового излучения используют в частности при переработке пищевых продуктов или при подготовке воды. Устройство включает ультрафиолетовый облучатель, имеющий трубку облучателя из кварцевого стекла, или окруженный цилиндрической защитной трубкой из кварцевого стекла ультрафиолетовый облучатель, имеющий трубку облучателя из кварцевого стекла. На трубку облучателя и/или защитную трубку нанесено грязе- и водоотталкивающее покрытие в виде спиртовой дисперсии, содержащей наночастицы диоксида титана и от 20 объемн. % до 60 объемн. % этанола. 2 н. и 7 з.п. ф-лы, 2 ил., 3 табл.

Изобретение относится к химической технологии нанесения на микросферы металлосодержащих покрытий. Способ нанесения металлосодержащих покрытий на микросферы пиролитическим разложением металлоорганических соединений заключается во взаимодействии паров металлоорганического соединения с поверхностью микросфер, нагретых до температуры ниже температуры размягчения, перемешивании микросфер. Перемешивание микросфер осуществляют в присутствии паров металлоорганического соединения. Количество металлоорганического соединения по отношению к количеству микросфер определяют по зависимости от необходимой толщины покрытия , где mMC - масса загрузки микросфер, г; mMOC - масса металлоорганического соединения, г; ρП - плотность покрытия, г/см3; - удельная поверхность микросфер, см2/г; k1 - коэффициент перехода исходного соединения в материал покрытия, k2 - коэффициент использования материала - определяется объемом камеры и соотношением площадей микросфер и камеры (варьируется от 0,30 до 0,95). 4 з.п. ф-лы, 3 табл., 7 пр., 5 ил.
Наверх