Способ нанесения гальванических железных покрытий в проточном электролите с крупными дисперсными частицами

Изобретение относится к восстановлению изношенных деталей машин и механизмов путем нанесения на их поверхность гальванических железных покрытий в проточном электролите. Способ нанесения гальванического железного покрытия в проточном электролите включает помещение восстанавливаемой детали и растворимого анода в электролитическую ячейку, подключение их к источнику тока, прокачку через электролитическую ячейку электролита, содержащего соли двухвалентного железа, соляную кислоту, а также крупные твердые дисперсные частицы размером 100-300 мкм, которые дополнительно вводят в состав электролита, при этом электролиз ведут при плотности катодного тока более 1 кА/дм2 и скорости гетерофазного потока 9-11 м/с. Изобретение позволяет повысить скорость осаждения и увеличить максимальную толщину гладкого покрытия. 1 ил.

 

Изобретение относится к восстановлению изношенных деталей машин и механизмов путем нанесения на их поверхность гальванических железных покрытий в проточном электролите.

Известен способ нанесения гальванических железных покрытий на поверхность изношенных деталей в проточном электролите с целью восстановления их геометрических размеров и упрочнения поверхности [1]. При этом восстанавливаемая деталь и растворимый анод помещаются в специальную электролитическую ячейку, через которую прокачивается электролит.

Недостатками такого способа нанесения гальванических покрытий являются ненадежность процесса финишной электрохимической обработки поверхности детали перед нанесением покрытия, поскольку анодная обработка проводится в специальном или рабочем электролите. Скорость осаждения покрытий железа мала из-за необходимости поддержания невысокой катодной плотности тока в связи с быстрым обеднением прикатодного слоя электролита катионами и образования пленок гидрооксидов на восстанавливаемой поверхности.

Наиболее близким к предлагаемому способу нанесения гальванических покрытий является способ железнения в проточном электролите, в состав которого дополнительно включены твердые дисперсные частицы размером 1-10 мкм с целью повышения твердости и износостойкости покрытий [2]. В процессе электролиза частицы такого размера включаются в состав покрытия.

Недостатками этого способа являются:

- низкая скорость осаждения покрытия из-за невысокой предельно допустимой плотности катодного тока;

- небольшая толщина гладких покрытий вследствие интенсивного протекания процесса образования дендритов при использовании электролита с дисперсными частицами;

- уменьшение выхода по току железа.

Задача изобретения - обеспечение активации поверхности за счет ее механической обработки в процессе электролиза и повышение производительности процесса за счет перемешивания растворов в приэлектродном слое и повышения предельной плотности тока.

Технический результат - повышение скорости осаждения и увеличение максимальной толщины гладких покрытий.

Технический результат достигается тем, что при нанесении гальванических покрытий в проточном электролите, включающем помещение восстанавливаемой детали и растворимого анода в электролитическую ячейку, подключение их к источнику тока, прокачку через электролитическую ячейку электролита железнения, содержащего соли двухвалентного железа, соляную кислоту, а также твердые дисперсные частицы, отличающийся тем, что в состав электролита дополнительно вводятся крупные твердые дисперсные частицы размером 100-300 мкм, при этом электролиз ведется при плотности катодного тока более 1 кА/дм2 и скорости гетерофазного потока 9-11 м/с.

Исследования по интенсификации железнения показали, что можно получать качественные железные осадки толщиной 0,06…1,3 мм с выходом по току железа 65…95%. Математические модели влияния параметров электролиза на предельную толщину (Sn) и выход по току (Вт) после проверки их адекватности и отбрасывания незначимых коэффициентов имели вид:

Их анализ показал, что интенсификация активирования при увеличении скорости течения ЭС и содержания в нем абразивных частиц способствует повышению предельной толщины покрытия и расширению диапазона плотности тока, при котором получаются толстые качественные осадки. Вместе с тем, абразивное воздействие гетерофазных потоков приводило к съему частиц металла и некоторому уменьшению Вт. Второй причиной уменьшения Вт может быть облегчение сопутствующей электроосаждению железа реакции выделения водорода. Подтверждением этому является отсутствие площадок «предельного» тока реакции на кривых φcp - iк (рис.1).

Рис.1. Потенциодинамические поляризационные кривые железа при гидроабразивной активации катода при скоростях потока, м/с: 1 - 6; 2 - 4; 3 - 2 и концентрации электрокорунда, кг/м3: 1,23 - №100; 4 - поляризационная кривая железа в стационарной ванне.

Поскольку поверхность отклика параметров Вт и Sn относятся к типу возрастающего возвышения "гребня" с центром, находящимся далеко от центра эксперимента, с целью упрощения ее анализа были построены кривые равного значения откликов, полученные пересечением поверхностей второго порядка плоскостями Xi=const. Они показали, что в области наибольших величин независимых переменных (скорость потока, содержание дисперсной фазы (ДФ) в ЭС) могут быть получены качественные железные покрытия толщиной 0,3…1,1 мм при плотностях тока 0,95…1,35 кА/дм2. Скорость роста осадков может быть, таким образом, повышена в 10…15 раз и составляет 25…60 мкм/мин.

Интенсификация гидромеханического активирования поверхности катода приводила к снижению шероховатости осадков. Наименьшая, полученная в опытах шероховатость электролитического железа составляла Rz=20 мкм (при V=9…11 м/с). Равномерность распределения покрытия по поверхности катода также значительно возрастала (до ΔS=0,04 мм на 100 мм длины). Снижение шероховатости покрытий и повышение их равномерности обусловлено выравниванием электрохимической активности различных зон катода (под воздействием частиц), обрабатываемого частицами, непрерывного уноса с его поверхности водородных пузырьков, адсорбированных чужеродных частиц. Это обстоятельство позволяет значительно снизить припуск на финишную обработку покрытий, уменьшить время и расходы на наращивание деталей.

Варьируя параметры процесса, можно изменять микротвердость осадков в пределах 4,5…7,0 ГПа. Уравнение регрессии, адекватно описывающее зависимость Нµ (ГПа) от скорости потока Х\ содержания ДФ Х2 и плотности тока Х3, после отбрасывания незначимых коэффициентов имело вид:

Следует отметить, что в центре опыта при V=6 м/с, а=100 кг/м3 и iк=30,0 кА/м микротвердость покрытий составляла Нµ=5,83 ГПа, что практически совпадает с величиной Нµ, полученной из этого электролита при iк=2,0 кА/м2 и стационарном электролизе, Уравнение (3.3) в канонической форме: Нµ - 6,04=0,924X12-0,152X22-0.246X32, показывает, что поверхность отклика относится к типу минимакса и имеет центр, расположенный в области эксперимента. В области ядра плана микротвердость увеличивается за счет активирования поверхности катода (увеличение X1 и Х2) и уменьшается с ростом плотности тока. Характер закономерностей, выявляемый с помощью кривых равной микротвердости, построение при пересечении поверхности отклика плоскостями X1; X2; X3=const, объясняется повышением прочности осадка вследствие уменьшения включений посторонних частиц (газов, воды, основных и гидроокисных соединений, шлама и т.д.) и воздействием абразивных частиц на растущие кристаллы, приводящим к их наклепу.

Осадки, полученные при активном гидромеханическом воздействии, отличаются отсутствием слоистости и упорядоченной волокнистой структурой, напоминающей молочный хром. Субмикротрещины в осадках направлены нормально поверхности подложки. Проверка их прочности сцепления с чугуном СЧ 21, анодно обработанным в 30% растворе серной кислоты при 0,01…0,2 кА/м2 в течение 12 с, показала, что сдвиг и разрушение покрытий происходили при напряжениях 150…200 МПа. Эта величина порядка прочности основы.

Поскольку условия гидромеханического активирования способствуют очистке поверхности от чужеродных частиц, была проверена возможность анодной подготовки чугуна непосредственно в электролите железнения. Исследования показали, что при варьировании плотности анодного тока в пределах Х2=1,0…19 кА/м и времени обработки в диапазоне 20…120 с, величина прочности сцепления электролитического железа с чугуном изменяется в пределах 8,3…86,4 МПа.

Уравнение регрессии, адекватно описывающее связь функции отклика (τсц, МПа) с независимыми переменными, было: (τсц=74,8-20,3Х1-5,3Х2-13X1X2-16X22-12,6X12). В канонической форме модель представляет поверхность эллиптического параболоида с максимумом в области эксперимента. Опробованный способ подготовки обеспечивает достаточно хорошую сцепляемость осадков с основой и при дальнейшем его усовершенствовании может быть рекомендован для широкого применения в производстве, так как значительно упрощает технологию за счет уменьшения подготовительных операций и сокращения оборудования, повышает его экономичность и экологическую безопасность. Таким образом, установлена возможность получения качественных осадков хрома и железа при плотностях тока в 7…15 раз, превышающих традиционные. Покрытия, полученные из скоростных гетерофазных потоков, обладает достаточно высокими физико-механическими свойствами.

Некоторые результаты экспериментальных исследований можно объяснить с точки зрения электрохимической теории кристаллизации. Согласно А.Т. Ваграмяну, одной из стадий, лимитирующих скорость электрохимических реакций на катоде, является адсорбция поверхностью чужеродных частиц, находящихся в электролите, и промежуточных продуктов электрохимических реакций. Применение скоростных гетерофазных потоков способствует активированию поверхности катода и снятию адсорбционных ограничений, Большие скорости потока вызывают турбули-зацию пограничных слоев, срыв и унос в объем электролита обедненных приэлектродных слоев и побочных продуктов электрохимических реакций. Интенсификация обмена электролита позволяет расширить диапазон плотностей тока, при которых получаются качественные железные осадки значительной толщины.

Источники информации

1. Сайфулин Р.С. Неорганические композиционные материалы. М.: Химия, 1983.

2. Гурьянов Г.В. Электроосаждение износостойких композиций. Кишинев: Штиинца, 1986.

Способ нанесения гальванических железных покрытий на детали в проточном электролите, включающий помещение восстанавливаемой детали и растворимого анода в электролитическую ячейку, подключение их к источнику тока, прокачку через электролитическую ячейку электролита, содержащего соли двухвалентного железа и соляную кислоту, отличающийся тем, что в состав электролита дополнительно вводят крупные твердые дисперсные частицы размером 100-300 мкм, при этом электролиз ведут при плотности катодного тока более 1 кА/дм2 и скорости гетерофазного потока 9-11 м/с.



 

Похожие патенты:
Изобретение относится к области гальванотехники и может быть использовано в ювелирной, часовой, медицинской, радио- и электронно-технической промышленности, а также в производстве сувениров и бижутерии.

Изобретение относится к области электрохимии и может быть использовано в условиях воздействия агрессивных сред, в том числе в условиях морского и тропического климата.
Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности. .
Изобретение относится к области гальванотехники и может быть использовано в различных отраслях промышленности. .

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, автомобилестроении, морском транспорте и в других отраслях промышленности для увеличения коррозионной стойкости покрытий на основе сплава олово-цинк.
Изобретение относится к получению гальванических композиционных покрытий, в частности на основе никеля с дисперсной фазой в виде наноалмазных порошков. .

Изобретение относится к области электрохимической обработки поверхности изделий из вентильных металлов и их сплавов и может быть использовано в машиностроении и других отраслях промышленности для получения гидрофобных покрытий, обладающих высокой износостойкостью, а также антифрикционными свойствами и коррозионной стойкостью.
Изобретение относится к области гальванотехники, а именно к получению покрытий из электролитов никелирования с использованием в качестве второй фазы нанодисперсного порошка диборида хрома.

Изобретение относится к электролитическому осаждению твердых износостойких покрытий, а именно композиционных электрохимических покрытий на основе железа с металлокерамическими частицами, применяемых для восстановления и упрочнения поверхностей деталей.

Изобретение относится к области гальванотехники и может быть использовано для получения никелевых композиционных покрытий. .
Изобретение относится к области электролитического осаждения твердых, износостойких покрытий, в частности железо-дисульфид молибденовых покрытий, применяемых для восстановления и упрочнения поверхностей деталей. Способ включает осаждение из электролита, содержащего, кг/м3: сернокислое железо 400-600, дисульфид молибдена 100-200, соляную кислоту 0,5-1,5, на переменном асимметричном токе с коэффициентом асимметрии β=1,2-6,0 и катодной плотностью 20-80 А/дм2 при механическом перемешивании электролита с температурой 20-40°C и кислотностью pH 0,8-1,0. Технический результат: повышение производительности процесса за счет использования переменного ассиметричного тока и повышение износостойкости покрытия за счет увеличения композитного компонента дисульфида молибдена в покрытии до 5%.

Изобретение относится к области гальванотехники и может быть использовано для нанесения композиционных износостойких покрытий. Самосмазывающееся покрытие (7) состоит из металлического слоя (8), в который включен смазочный материал (1), способный высвобождаться при износе, при этом смазочный материал (1) состоит по меньшей мере из одного однократно разветвленного органического соединения (2), имеющего по меньшей мере одну функциональную группу (5), обладающую аффинностью к металлическому слою (8) и представляющую собой тиоловую группу (6). Способ нанесения самосмазывающегося покрытия (7) включает добавление по меньшей мере одного смазочного материала (1), состоящего из по меньшей мере одного однократно разветвленного органического соединения (2), в раствор электролита, содержащий металл (9) по меньшей мере одного вида, растворенный в виде иона или комплекса, и осаждение растворенного металла (9) и смазочного материала (1) из раствора электролита в виде покрытия (7) на детали (11). Технический результат: увеличение износостойкости на более длительное время. 4 н.п. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к алмазно-абразивному инструменту, используемому для обработки особо твердых и хрупких материалов, преимущественно кремния, сапфира, гранатов, кварца, керамики, стекла и т.п., в частности к алмазному проволочному инструменту. Способ включает изолирование от электролита части электропроводящей основы и гальваническое нанесение на неизолированные части основы алмазно-абразивного режущего слоя. Изолирование части основы от электролита осуществляют путем прикрепления к основе нерастворимого в электролите неэлектропроводящего материала в виде последовательно расположенных дискретных кольцеобразных элементов или спирали, соосных с основой, а после гальванического нанесения на неизолированные части основы алмазно-абразивного режущего слоя изолирующий неэлектропроводящий материал удаляют. Технический результат: повышение ресурса работоспособности инструмента и улучшение качества обработки. 1 з.п. ф-лы, 6 ил., 2 пр.

Изобретение относится к области гальванотехники и может быть использовано в радиотехнике и электротехнике. Покрытие равномерно по всему объему серебра содержит астралены в количестве от 0,005 мас % до 0,5 мас %. Способ включает электрохимическое осаждение серебра из электролита серебрения в виде водной суспензии, содержащей астралены в количестве 0,15-0,5 г/л, и поддержание их во взвешенном состоянии в электролите во время электрохимического осаждения путем воздействия на электролит ультразвуковыми колебаниями. Технический результат: повышение эксплуатационных характеристик покрытия - износостойкости и коррозионной стойкости. 2 н.п. ф-лы, 6 ил.
Изобретение относится к области гальванотехники и может быть использовано для создания композиционных электрохимических покрытий различного назначения. Способ получения композиционного покрытия включает осаждение металлического покрытия из водного электролита-суспензии с ультрадисперсными частицами алмаза. Осаждение проводят при постоянном восстановлении отработанной суспензии по размерам ультрадисперсных частиц воздействием ультразвуковых колебаний путем замены отработанной суспензии на восстановленную каждые 15-20 минут принудительной циркуляцией между сообщающимися ваннами гальванического осаждения и восстановления электролита. Технический результат: способ позволяет поддерживать электролит-суспензию в рабочем состоянии в течение всего срока эксплуатации электролита без седиментации частиц. 2 пр.

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности, в частности в машиностроении, производстве монет, столовых приборов, дорожных ограждений и других изделий, подверженных истиранию, коррозии и эрозии. Способ включает электрохимическое осаждение из цинкатного электролита, содержащего твердые частицы ультрадисперсных алмазов в количестве 10,0-15,0 г/л, при этом электролит содержит твердые частицы ультрадисперсных алмазов с размером частиц 0,0005÷0,0009 мкм и с удельной поверхностью 250-550 м2/г, при этом в качестве электролита используют цинкатный электролит, в который добавляют поверхностно-активное вещество в количестве 0,2-3,0 г/л. Техническим результатом является повышение антикоррозионных свойств, микротвердости, износоустойчивости покрытия с ровным матовым цветом. 2 з.п. ф-лы, 1 табл., 6 пр.

Изобретение относится к области гальванотехники и может быть использовано для ремонта лопаток соплового аппарата газовой турбины. Согласно изобретению обеспечивают лопатку (120, 130), образующую катод и имеющую покрываемую поверхность, ограничивающую критическую зону (21), анод (19), электролитическую ванну, содержащую нерастворимые частицы, и опору (12), на которой устанавливают упомянутую лопатку в рабочем положении относительно опорной стенки (14), помещают опору (12) в упомянутую ванну и осуществляют соосаждение частиц и металла анода (19), образуя покрытие (20) на покрываемой поверхности, при этом образом упомянутый анод (19) размещен обращенным к критической зоне (21), а упомянутая опора (12) снабжена средством контроля линий тока таким образом, чтобы получить покрытие (20) с толщиной, заданной и относительно постоянной для критической зоны (21) и постепенно уменьшающейся до практически нулевого значения вдоль краев упомянутого покрытия (20). Технический результат: изготовление покрытия, стойкого к окислению и коррозии и имеющего такие толщину и форму, которые предотвращают любое возмущение аэродинамических потоков без необходимости последующей обработки, например, резанием. 4 н. и 12 з.п. ф-лы, 7 ил.

Изобретение относится к области гальванотехники, в частности к электролитическим способам нанесения композиционных хромовых покрытий на металлические изделия, и может быть использовано в металлургии и машиностроении для получения коррозионно-стойких твердых хромовых покрытий. Способ включает электрохимическое осаждение покрытия из электролита на основе хромовой кислоты, при этом используют электролит, содержащий хромовый ангидрид CrO3 - 250 г/л, сульфат кальция CaSO4 - 20 г/л и дисперсный графит - 10-20 г/л, полученный из углеродсодержащих твердых отходов алюминиевого производства в виде хвостов флотации угольной пены. Технический результат: повышение электропроводности и коррозионной стойкости получаемого покрытия за счет применения частиц углерода, полученных из отходов производства алюминия, с размерами частиц менее 200 нм. 2 ил., 1 табл.

Изобретение относится к области гальванотехники и может быть использовано в различных областях промышленности для повышения износостойкости режущего инструмента деталей, машин и механизмов. Способ включает электроосаждение покрытия из электролита хромирования, содержащего взвесь частиц алмаза, при этом частицы алмаза представляют собой смесь нанодисперсных алмазов детонационного синтеза с размером монокристалла 2÷20 нм и алмазов статического синтеза с размером монокристалла 2÷250 нм при весовом соотношении нанодисперсный алмаз детонационного синтеза : алмаз статического синтеза = (10:90) : (90:10), а электроосаждение проводят при суммарной концентрации смеси алмазов в электролите равной 2÷30 г/л. Технический результат: повышение микротвердости, износостойкости и коррозионной стойкости покрытия при малом расходе алмазов. 10 табл., 3 пр.
Изобретение относится к области гальванотехники и может быть использовано для нанесения на детали, работающие под нагрузкой в агрессивных средах, для повышения надежности работы изделий. Способ включает электроосаждение композиционного покрытия на основе никеля и наноразмерного диоксида циркония из электролита, содержащего соли никеля и частицы диоксида циркония, при этом в качестве солей никеля используют тетрагидрат ацетата никеля в количестве 60-90 г/л и гексагидрат хлорида никеля в количестве 7-15 г/л при рН 4,3-4,7, в которые добавляют золь диоксида циркония, содержащий хлороводородную кислоту 1,3-1,7 моль/л и частицы диоксида циркония с размерами 2-6 нм и концентрацией 15-18 г/л, в количестве 6-56 мл/л, причем процесс электроосаждения проводят при температуре электролита 45-55 °С и плотности тока 2-12 А/дм2. Технический результат: получение покрытий на основе никеля без питтинга с высокими значениями микротвердости, обеспечивающими высокую износостойкость и коррозионную стойкость, в частности, в хлоридных средах. 3 пр.

Изобретение относится к восстановлению изношенных деталей машин и механизмов путем нанесения на их поверхность гальванических железных покрытий в проточном электролите. Способ нанесения гальванического железного покрытия в проточном электролите включает помещение восстанавливаемой детали и растворимого анода в электролитическую ячейку, подключение их к источнику тока, прокачку через электролитическую ячейку электролита, содержащего соли двухвалентного железа, соляную кислоту, а также крупные твердые дисперсные частицы размером 100-300 мкм, которые дополнительно вводят в состав электролита, при этом электролиз ведут при плотности катодного тока более 1 кАдм2 и скорости гетерофазного потока 9-11 мс. Изобретение позволяет повысить скорость осаждения и увеличить максимальную толщину гладкого покрытия. 1 ил.

Наверх