Система и способ для отбора текучей среды из ствола скважины



Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины
Система и способ для отбора текучей среды из ствола скважины

 


Владельцы патента RU 2503794:

ШЛЮМБЕРГЕР ТЕКНОЛОДЖИ Б.В. (NL)

Изобретение относится к системе и способам отбора текучей среды из конкретной зоны ствола скважины. Обеспечивает увеличенные степени расширения и более высокие перепады давления депрессии в скважине, уменьшает напряжения, в противном случае создаваемые оправкой инструмента с пакером вследствие перепадов давления. Система отбора текучей среды из конкретной зоны ствола скважины содержит единственный пакер. Пакер имеет структурный слой, который расширяется в стволе скважины и содержит множество дренажных отверстий в зоне расширения. Внутри структурного слоя расположен надувной баллон, а снаружи - уплотнительный слой. Каждое дренажное отверстие взаимодействует с уплотнительным слоем и дренажным элементом. Способ отбора текучей среды из конкретной зоны ствола скважины содержит следующие стадии: охватывание надувного баллона внешним структурным слоем; соединение системы регулирования потока текучей среды с множеством дренажных отверстий; размещение дренажного элемента на каждом дренажном отверстии. Второй способ отбора текучей среды из конкретной зоны ствола скважины включает следующие стадии: выполнение единственного расширяющегося пакера с множеством дренажных отверстий; спуск единственного расширяющегося пакера в ствол скважины; расширение пакера; удаление фильтрационной корки бурового раствора из зоны ствола скважины; осуществление действия насосной системы. 3 н. и 22 з.п. ф-лы, 19 ил.

 

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Различные пакеры используются в стволах скважин для изоляции конкретных зон ствола скважины. Пакер перемещается на забой скважины на спускоподъемном средстве и расширяется, прижимаясь к стенке ствола скважины для изоляции зоны ствола скважины. Часто два или больше пакеров можно использовать для изоляции одной или нескольких зон в различных скважинных применениях, включающих в себя эксплуатационные применения, сервисные применения и испытательные применения. В некоторых применениях сдвоенный пакер можно использовать для изоляции конкретной зоны ствола скважины для обеспечения отбора текучих сред. Вместе с тем, сдвоенный пакер использует конфигурацию с двумя пакерами, в которой текучую среду отбирают между двумя отдельными пакерами. Конфигурация с двумя пакерами является чувствительной к механическим напряжениям, которые ограничивают степень расширения и перепад давления депрессии, который можно использовать. Другие методики с несколькими пакерами могут быть дорогими и создающими дополнительные трудности в отборе образцов и управлении потоком текучей среды в скважинной среде ствола скважины.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Согласно изобретению создана система отбора текучей среды из конкретной зоны ствола скважины, содержащая единственный пакер, имеющий внешний структурный слой, расширяющийся в стволе скважины поперек зоны расширения, и содержащий множество дренажных отверстий в зоне расширения, надувной баллон, расположенный внутри внешнего структурного слоя, и уплотнительный слой, расположенный на внешнем структурном слое, при этом каждое дренажное отверстие взаимодействует с уплотнительный слоем и дренажным элементом, который способствует проходу потока текучей среды через каждое дренажное отверстие в течение срока службы единственного пакера.

Дренажный элемент может содержать окружающую кромку, расположенную вокруг каждого дренажного отверстия для предотвращения выдавливания уплотнительного слоя.

Дренажный элемент может содержать индивидуальное уплотнение, расположенное вокруг каждого дренажного отверстия, при этом индивидуальные уплотнения функционируют как уплотнительный слой.

Дренажный элемент может содержать, по меньшей мере, один проход, выполненный вдоль уплотнительного слоя для обеспечения перемещения текучей среды вдоль уплотнительного слоя между группами конкретных дренажных отверстий, выбранных из множества дренажных отверстий.

Множество дренажных отверстий могут содержать множество дренажных отверстий отбора проб и множество защитных дренажных отверстий. Система может дополнительно содержать систему регулирования потока дренажных отверстий отбора проб, соединенную с множеством дренажных отверстий отбора проб, и систему регулирования потока защитных дренажных отверстий, соединенную с множеством защитных дренажных отверстий. Система может дополнительно содержать единственный насос, соединенный с системой регулирования потока дренажных отверстий отбора проб и системой регулирования потока защитных дренажных отверстий. Система может содержать множество насосов, первый из которых соединен с системой регулирования потока дренажных отверстий отбора проб, и второй из которых с системой регулирования потока защитных дренажных отверстий.

Единственный пакер может дополнительно содержать множество песчаных фильтров, установленных для фильтрования песка из текучей среды, проходящей через множество дренажных отверстий.

Уплотнительный слой может содержать нефтестойкий каучуковый материал, который может быть выбран из группы, состоящей из бутадиен-нитрильного каучука, гидрированного бутадиен-нитрильного каучука и фтор-каучука. Нефтестойкий каучуковый материал может содержать гидрированный бутадиен-нитрильный каучук с содержанием акрилонитрила в диапазоне приблизительно 21 49 процентов.

Согласно изобретению создан способ отбора текучей среды из конкретной зоны ствола скважины, содержащий следующие стадии:

охватывание надувного баллона внешним структурным слоем для создания единственного расширяющегося пакера;

соединение системы регулирования потока текучей среды с множеством дренажных отверстий, размещенных во внешнем структурном слое; и

размещение дренажного элемента на каждом дренажном отверстии для содействия проходу потока текучей среды через множество дренажных отверстий в течение срока службы единственного расширяющегося пакера.

Соединение системы регулирования потока текучей среды с множеством дренажных отверстий может выполняться множеством трубок внешнего структурного слоя. Способ может дополнительно содержать установку двух механических крепежных средств на концах внешнего структурного слоя и соединение множества трубок с множеством соответствующих поворотных проточных элементов каждого механического крепежного средства.

Установка дренажного элемента может содержать использование окружающей кромки, расположенной вокруг каждого дренажного отверстия для деформации стенки окружающего ствола скважины после расширения единственного расширяющегося пакера, или расположение индивидуального уплотнения вокруг каждого дренажного отверстия, или соединение групп конкретных дренажных отверстий из множества дренажных отверстий через проходы, содержащие пористый материал.

Соединение системы регулирования потока текучей среды с множеством дренажных отверстий может содержать соединение отдельных систем регулирования потока текучей среды с дренажными отверстиями отбора проб и с защитными дренажными отверстиями множества дренажных отверстий.

Способ может дополнительно содержать действие, по меньшей мере, одного насоса для уменьшения давления на множестве дренажных отверстий.

Способ может дополнительно содержать действие, по меньшей мере, одного насоса для подачи текучей среды наружу через дренажные отверстия для промывки области ствола скважины.

Способ может дополнительно содержать установку, по меньшей мере, одного песчаного фильтра на пути потока текучей среды от множества дренажных отверстий к, по меньшей мере, одному насосу.

Согласно другому варианту выполнения способ отбора текучей среды из конкретной зоны ствола скважины содержит следующие стадии:

выполнение единственного расширяющегося пакера с множеством дренажных отверстий, имеющим дренажные отверстия отбора проб, расположенные между защитными дренажными отверстиями;

спуск единственного расширяющегося пакера в ствол скважины;

расширение единственного расширяющегося пакера с уплотнением к стенке окружающего ствола скважины;

удаление фильтрационной корки бурового раствора из зоны ствола скважины перед отбором проб скважинной текучей среды через единственный расширяющийся пакер; и

осуществление действия насосной системы для отбора скважинной текучей среды через множество дренажных отверстий и получения пробы скважинной текучей среды через дренажное отверстие отбора проб.

Удаление фильтрационной корки бурового раствора может содержать промывку текучей средой через, по меньшей мере, одно дренажное отверстие из множества дренажных отверстий.

Удаление фильтрационной корки бурового раствора может дополнительно содержать осуществление циркуляции текучей среды между дренажными отверстиями отбора проб и защитными дренажными отверстиями.

КРАТКОЕ ОПИСАНИЕ ЧЕРЕТЕЖЕЙ

Некоторые варианты осуществления изобретения описаны ниже со ссылками на прилагаемые чертежи, на которых одинаковыми позициями обозначены одинаковые элементы.

На Фиг.1 схематично показан вид сбоку системы скважины с единственным пакером для отбора пластовых текучих сред из ствола скважины согласно варианту осуществления настоящего изобретения.

На Фиг.2 показан вид сбоку одного примера единственного пакера Фиг.1, согласно варианту осуществления настоящего изобретения.

На Фиг.3 на виде, аналогичном Фиг.3 показаны внутренние компоненты внешнего структурного слоя, согласно варианту осуществления настоящего изобретения.

На Фиг.4 показан изометрический вид конца пакера с Фиг.2 в сокращенной конфигурации, согласно варианту осуществления настоящего изобретения.

На Фиг.5 показан изометрический вид, аналогичный показанному на Фиг.4, но с пакером в расширенной конфигурации согласно варианту осуществления настоящего изобретения.

На Фиг.6 показан один вариант осуществления единственного пакера, расширенного в стволе скважины, для отбора образцов текучей среды, согласно варианту осуществления настоящего изобретения;

На Фиг.7 схематично показан один пример дренажного элемента для облегчения прохода потока через дренажное отверстие, согласно варианту осуществления настоящего изобретения.

На Фиг.8 схематично показан другой дренажный элемент для облегчения прохода потока через дренажное отверстие, согласно альтернативному варианту осуществления настоящего изобретения.

На Фиг.9 показан вид сбоку единственного пакера, имеющего множество дренажных элементов, показанных на Фиг.8, согласно варианту осуществления настоящего изобретения.

На Фиг.10 показан вид сбоку другого варианта осуществления единственного пакера, имеющего альтернативный дренажный элемент, согласно альтернативному варианту осуществления настоящего изобретения.

На Фиг.11 схематично показана система регулирования потока, соединенная с множеством дренажных отверстий единственного пакера, согласно варианту осуществления настоящего изобретения.

На Фиг.12 схематично показан другой вариант осуществления системы регулирования потока, соединенной с множеством дренажных отверстий единственного пакера, согласно альтернативному варианту осуществления настоящего изобретения.

На Фиг.13 показан вид сбоку примера единственного пакера, имеющего песчаные фильтры, согласно варианту осуществления настоящего изобретения.

На Фиг.14 схематично показана процедура очистки с использованием дренажных отверстий пакера, согласно варианту осуществления настоящего изобретения.

На Фиг.15 схематично показана другая процедура очистки с использованием дренажных отверстий, согласно альтернативному варианту осуществления настоящего изобретения.

На Фиг.16 схематично показана работа с использованием единственного пакера для разрушения фильтрационной корки бурового раствора на стволе скважины согласно варианту осуществления настоящего изобретения.

На Фиг.17, аналогичной Фиг.16, показана промывка материала бурового раствора согласно варианту осуществления настоящего изобретения.

На Фиг.18, аналогичной Фиг.16, показан отбор образца скважинной текучей среды согласно варианту осуществления настоящего изобретения.

На Фиг.19 показан вид сбоку другого примера единственного пакера, согласно альтернативному варианту осуществления настоящего изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В следующем описании многочисленные детали изложены для обеспечения понимания настоящего изобретения. Вместе с тем специалистам в данной области техники должно быть понятно, что настоящее изобретение можно реализовать без данных деталей и возможны многочисленные изменения или модификации описанных вариантов осуществления.

Настоящее изобретение, в общем, относится к системе и способу отбора пластовых текучих сред через дренажное отверстие, расположенное в средней части единственного пакера. Отобранные пластовые текучие среды транспортируются вдоль внешнего слоя - пакера к выкидной линии и затем направляются к нужному месту сбора. Использование единственного пакера обеспечивает увеличенные степени расширения и более высокие перепады давления депрессии в скважине. Кроме того, конфигурация единственного пакера уменьшает напряжения, в противном случае создаваемое оправкой инструмента с пакером вследствие перепадов давления. В некоторых вариантах осуществления пакер использует единственный расширяющийся уплотнительный элемент, способный лучше поддерживать пласт в зоне добычи, в которой отбирают пластовые текучие среды. Данное качество способствует относительно большой амплитуде депрессии в скважине даже в слабых, неконсолидированных пластах.

Единственный пакер расширяется поперек зоны расширения, и пластовые текучие среды можно отбирать из средней части зоны расширения, т.е. между аксиальными концами внешнего уплотнительного слоя. Отобранная пластовая текучая среда направляется по выкидным линиям, например, по проточным трубкам, имеющим достаточный внутренний диаметр для обеспечения работы на относительно тяжелом буровом растворе. Пластовую текучую среду можно отбирать через одно или несколько дренажных отверстий. Например, отдельные дренажные отверстия можно расположить по длине пакера для установления интервалов отбора или зон, обеспечивающих сфокусированный отбор проб на множестве интервалов отбора, например двух или трех интервалах отбора. Отдельные выкидные линии можно соединять с различными дренажными отверстиями, например, дренажными отверстиями отбора проб и защитными дренажными отверстиями. В других вариантах применения нормальный отбор проб можно для обеспечения отбора индивидуальных образцов пластовой текучей среды.

Единственный пакер включает в себя различные элементы или взаимодействует с ними для улучшения эффективности операции отбора проб и для улучшения прохода потока через дренажные отверстия пакера в течение срока службы единственного пакера. Например, единственный пакер может включать в себя окружающие кромки, расположенные вокруг дренажных отверстий для предотвращения выдавливания уплотнительного слоя. Кроме того, индивидуальные уплотняющие элементы могут быть установлены вокруг каждого дренажного отверстия, или общий уплотняющий слой можно сконструировать с проходами, обеспечивающими перемещение текучей среды между конкретными группами дренажных отверстий. Конфигурация единственного пакера также обеспечивает очистку зон ствола скважины созданием проходящих к центру или от центра потоков текучей среды через дренажные отверстия для удаления материала, который, если не удален, создает помехи скважинной текучей среде в операциях отбора проб. Различные другие элементы можно включить в состав единственного пакера для осуществления различных операций отбора проб, делающие пакер более надежным и более эффективным и увеличивающие срок службы пакера.

На Фиг.1 показан один вариант осуществления скважинной системы 20, развернутой в стволе 22 скважины. Скважинная система 20 содержит спускоподъемное средство 24 для доставки, по меньшей мере, одного пакера 2 6 в ствол скважины. Во многих вариантах применения пакер 2 6 развертывают на спускоподъемном средстве 24 в форме троса, но спускоподъемное средство 24 может иметь другие формы, включающие в себя колонны насосно-компрессорных труб для других вариантов применения. В показанном варианте осуществления пакер 26 имеет конфигурацию единственного пакера, используемого для отбора пластовых текучих сред из окружающего пласта 28. Пакер 26 селективно расширяется в направлении радиально наружу для уплотнения поперек зоны 30 расширения со стенкой 32 окружающего ствола скважины, такой как стенка окружающей обсадной колонны или стенка необсаженного ствола скважины. Когда пакер 26 расширяется для уплотнения на стенке 32 ствола скважины, пластовые текучие среды могут поступать в пакер 26, как указано стрелками 34. Пластовые текучие среды затем направляются к выкидной линии, как представлено стрелками 36, и подаются к месту сбора, такому как место на буровой площадке на поверхности 38, или в пробоотборниках в спускоподъемном инструменте.

На Фиг.2 и 3 показан один вариант осуществления единственного пакера 26. В данном варианте осуществления пакер 26 содержит внешний слой 40, расширяющийся в стволе скважины для образования уплотнения с окружающей стенкой 32 ствола скважины поперек зоны 30 расширения. Пакер 26 дополнительно содержит внутренний надувной баллон 42, расположенный во внутреннем пространстве за внешним структурным слоем 40. Надувной баллон 42 может быть выполнен в различных конфигурациях и из различных материалов, например из слоя каучука с внутренним кордом. В одном примере баллон 42 селективно расширяется текучей средой, подаваемой через внутреннюю оправку 44. Кроме того, пакер 26 содержит пару механических крепежных средств 46, установленных вокруг внутренней оправки 44, и соединенных с аксиальными концами 4 8 внешнего структурного слоя 40.

Внешний структурный слой 40 может содержать одно или несколько дренажных отверстий 50, через которые пластовая текучая среда отбирается, когда внешний слой 40 расширяется с уплотнением единственного пакера 2 6 к стенке 32 окружающего ствола скважины. Дренажные отверстия 50 могут быть радиально введены в уплотнительный элемент 52 или уплотнительный слой, окружающий внешний структурный слой 40. Для примера, уплотнительный элемент 52 может являться цилиндрическим и выполненным из эластомерного материала, выбранного для вариантов применения в углеводородной среде, таким как каучуковый материал.

Множество трубчатых элементов или трубок 54 могут функционально соединяться с дренажными отверстиями 50 для направления отобранной пластовой текучей среды в аксиальном направлении к одному или обоим механическим крепежным устройствам 46. В одном примере трубки 54 попеременно соединены либо с индивидуальным центральным дренажным отверстием или отверстиями, то есть дренажными отверстиями 5 6 отбора проб или с дренажными отверстиями, расположенными дальше по оси, т.е., защитными дренажными отверстиями 58, расположенными с двух сторон по оси от расположенных в середине дренажных отверстий отбора проб. Защитные дренажные отверстия 58 могут быть расположены вокруг дренажных отверстий 56 отбора проб для обеспечения более быстрой очистки текучей среды во время отбора проб. Как дополнительно показано на Фиг.3, трубки 54 могут быть выставлены, в общем, параллельно оси 60 пакера, проходящей через аксиальные концы внешнего структурного слоя 40. Трубки 54 могут, по меньшей мере, частично быть введены в материал уплотнительного элемента 52 и, таким образом, перемещаются радиально наружу и радиально внутрь во время расширения и сокращения внешнего структурного слоя 40.

На Фиг.4 и 5, в общем, показан вариант осуществления механических крепежных средств 46 как в сокращенной конфигурации (Фиг.4) и в расширенной конфигурации (Фиг.5). В данном варианте осуществления каждое механическое крепежное средство 46 содержит участок 62 отбора, имеющий внутреннюю гильзу 64 и внешнюю гильзу 66, герметично соединенные друг с другом. Каждый участок 62 отбора может быть снабжен отверстиями, как необходимо, для подачи текучей среды, отобранной из окружающего пласта в установленную выкидную линию, как описано более подробно ниже. Один или несколько подвижных элементов 68 шарнирно соединены с каждым участком 62 отбора, и, по меньшей мере, некоторые из подвижных элементов 68 используют для передачи отобранной текучей среды из трубок 54 в участок 62 отбора. Например, каждый подвижный элемент 68 может быть соединен поворотным шарниром с соответствующим участком 62 отбора для поворота вокруг оси, в общем, параллельной с осью 56 пакера.

В показанном варианте осуществления множество подвижных элементов 68 установлены на поворотных шарнирах на каждом участке 62 отбора. По меньшей мере, некоторые из подвижных элементов 68 выполнены как проточные элементы, обеспечивающие проход потока текучей среды между трубками 54 и участками 62 отбора. Некоторые подвижные проточные элементы 68 могут соединяться с трубками 54, проходящими к дренажным отверстиям 56 отбора проб, а другие подвижные проточные элементы 68 могут соединяться с трубками 54, проходящими к защитным дренажным отверстиям 58 для обеспечения разделения потока защитных дренажных отверстий и потока дренажных отверстий отбора проб. В данном примере подвижные проточные элементы 68 имеют форму буквы S и выполнены для поворотного соединения как с соответствующим участком 62 отбора, так и соответствующими трубками 54. Элементы 68 могут поворачиваться между сокращенной конфигурацией, показанной на Фиг.4, и расширенной конфигурацией, показанной на Фиг.5.

На Фиг.6 показан единственный пакер 26, расширенный в стволе 22 скважины для операции отбора проб. Во время операции отбора проб скважинную текучую среду втягивают из окружающего пласта 28 в дренажное отверстие 56 отбора проб и защитные дренажные отверстия 58, как указано стрелками 70. В качестве примера загрязненную текучую среду первой отбирают через все дренажные отверстия 5 0 для получения чистой текучей среды в дренажном отверстии 56 отбора проб. Защитные дренажные отверстия 58 используют для продолжения втягивания скважинной текучей среды, которая может являться загрязненной для помощи в обеспечении отбора образцов чистой текучей среды через дренажные отверстия 56 отбора проб во время сфокусированной операции отбора проб.

Индивидуальные дренажные отверстия могут содержать дренажный элемент 72 для повышения эффективности отбора проб и для облегчения прохода потока через соответствующее дренажное отверстие в течение срока службы единственного пакера 26, или взаимодействовать с ним. Элементы 72 можно использовать во всех дренажных отверстиях 50 или в выбранных дренажных отверстиях. В качестве примера, элемент 72 может содержать окружающую кромку 74, расположенную вокруг каждого дренажного отверстия 50 для предотвращения выдавливания уплотнительного слоя 52 между дренажным отверстием и стенкой ствола скважины, как показано на Фиг.7. Окружающая кромка 74 может являться острой кромкой, выполненной с возможностью проникновения, например, в деформированный, окружающий пласт или другую стенку ствола скважины когда единственный пакер 26 надувают. Соединение окружающей кромки 74 со стенкой ствола скважины исключает любой зазор, который, в ином случае, может обеспечивать выдавливание уплотнительного слоя 52, когда применяют депрессию на пласт. В примере, показанном на Фиг.7, песчаный фильтр 76 установлен на дренажном отверстии 50 для предотвращения притока твердых частиц в дренажное отверстие.

Другой вариант осуществления дренажного элемента 72 показан на Фиг.8. В данном варианте осуществления элемент 72 содержит индивидуальное уплотнение 78, расположенное вокруг соответствующего дренажного отверстия 50. В некоторых вариантах осуществления индивидуальные уплотнения 78 можно расположить вокруг всех дренажных отверстий отбора проб и защитных дренажных отверстий. Индивидуальные уплотнения 78 придавливаются к окружающей стенке 32 ствола скважины, когда единственный пакер 26 надувают в расширенную конфигурацию. Уплотнения 78 обеспечивают эффективный приток текучей среды через дренажные отверстия 50 во время процедур отбора проб. В некоторых вариантах применения индивидуальные уплотнения можно использовать для исключения уплотнительного слоя 52 или уменьшения его размера, как показано в варианте осуществления на Фиг.9. На Фиг.9, показаны индивидуальные уплотнения 78, расположенные вокруг каждого дренажного отверстия 56 отбора проб и вокруг каждого защитного дренажного отверстия 58 для образования надежного уплотнения с окружающей стенкой ствола скважины без дополнительного слоя материала уплотнения. Индивидуальные уплотнения 78 можно выполнять из эластомерного материала, выбранного для вариантов применения с углеводородами, такого как каучуковый материал.

На Фиг.10 показан другой вариант осуществления дренажного элемента 72. В данном варианте осуществления уплотнение внешнего уплотнительного слоя 52 оптимизировано для максимизирования эффективности дренажного отверстия соединением групп конкретных дренажных отверстий. Например, внешний уплотнительный слой 52 можно разработать исключающим какую-либо изоляцию между дренажными отверстиями 56 отбора проб. Внешний уплотнительный слой 52 также можно разработать исключающим изоляцию между каждой аксиальной группой защитных дренажных отверстий 58, как показано на Фиг.10. Как показано, внешний уплотнительный слой 52 выполнен с одним или несколькими проходами 80, обеспечивающими сообщение текучей средой вдоль внешнего уплотнительного слоя между группами конкретных дренажных отверстий, выбранных из общего числа дренажных отверстий 50. В некоторых вариантах осуществления проходы 80 вдоль внешнего уплотнительного слоя 52 можно заполнять пористым материалом 82, обеспечивающим проход текучей среды между дренажными отверстиями конкретной группы. В качестве примера, пористый материал 82 может содержать пористый и несжимаемый материал, такой как керамический материал, например, керамические шарики, установленные на поверхности уплотнительного слоя 52 для создания проходов 80, когда единственный пакер 26 расширяется, прижимаясь к стенке окружающего ствола скважины.

Как показано на Фиг.11, дренажные отверстия 56 отбора проб и защитные дренажные отверстия 58 могут соединяться с системой 84 регулирования потока дренажных отверстий отбора проб и системой 86 регулирования потока защитных дренажных отверстий, соответственно. В данном варианте осуществления система 84 регулирования потока дренажных отверстий отбора проб содержит насос 88, и система 86 регулирования потока защитных дренажных отверстий содержит отдельный насос 90. Система 84 регулирования потока дренажных отверстий отбора проб соединена с дренажным отверстием 56 отбора проб выкидной линией 92 с выпускным патрубком 94 выкидной линии на стороне насоса 88 противоположной дренажному отверстию 56 отбора проб. Пробоотборник 9 6 соединен с выкидной линией 92 через клапан 98, а второй клапан 100 может быть установлен в выкидной линии 92 между пробоотборником 96 и насосом 88. Клапаны 102, если необходимо, также можно установить в системе 84 регулирования потока вблизи каждого дренажного отверстия 56 отбора проб для обеспечения изоляции индивидуальных дренажных отверстий отбора проб.

Система 86 регулирования потока защитных дренажных отверстий аналогично содержит выкидную линию 104 защитных дренажных отверстий, соединенную с защитными дренажными отверстиями 58. Выкидная линия 104 проходит от защитных дренажных отверстий 58 к выпускному патрубку 106 выкидной линии на противоположной стороне насоса 90. Клапан 108 установлен в выкидной линии 104 между насосом 90 и выпускным патрубком 106. Клапаны 110, если необходимо, также могут быть установлены в системе 86 регулирования потока вблизи каждого защитного дренажного отверстия 58 для обеспечения изоляции индивидуальных защитных дренажных отверстий. В показанном варианте осуществления перепускная выкидная линия 112 также может быть соединена между системой 86 регулирования потока защитных дренажных отверстий и системой 84 регулирования потока дренажных отверстий отбора проб для обеспечения непрерывной процедуры отбора проб текучей среды в случае, если выкидная линия 92 не функционирует надлежащим образом. В данном последнем сценарии образцы текучей среды можно отбирать через вкидную линию 104. Перепускная выкидная линия 112 может быть соединена с системой 86 регулирования потока защитных дренажных отверстий через клапан 108 и с системой 84 регулирования потока дренажных отверстий отбора проб между клапанами 98 и 100.

Различные процедуры можно выполнять с помощью единственного пакера 26 во взаимодействии с системами 84 и 86 регулирования потока посредством эксплуатации насосов и клапанов в выбранных режимах работы. Некоторые примеры процедур/фаз работы операции отбора проб дает следующая таблица:

Фаза Насос 90 Клапан 108 Насос 88 Клапан 98 Клапан 100
Очистка пласта откачка открывает выпуск 106 откачка открывает выпуск 94 открыт
Отбор проб откачка открывает выпуск 106 откачка открывает пробоотборник закрывает выпуск 94 открыт
Очистка пласта/защитная выкидная линия отказала выключен открывает выпуск 106 откачка открывает выпуск 94 открыт
Отбор проб/защитная выкидная линия отказала выключен открывает выпуск 106 откачка открывает пробоотборник закрывает выпуск 94 открыт
Очистка пласта/выкидная линия отбора проб отказала откачка закрывает выпуск 106, соединяет линии защитную и отбора выключен открывает выпуск 94 закрыт
Отбор проб/выкидная линия отбора проб отказала откачка закрывает выпуск 106, соединяет линии защитную и отбора выключен открывает пробоотборник
закрывает выпуск 94
закрыт
Очистка выкидной линии обратная подача открывает выпуск 106 обратная подача открывает выпуск 94 открыт
Отбор филь трационной корки в баллон (если необходимо) откачка закрывает выпуск 106, соединяет линии защитную и отбора выключен открывает пробоотборник
закрывает выпуск 94
закрыт
Пакер прихвачен. Обратная перекачка для пакеровки. обратная подача открывает выпуск 106 обратная подача открывает выпуск 94 открыт

Кроме того, можно осуществлять управление изолирующими клапанами 102, 110, селективно изолируя дренажные отверстия 56 отбора проб и/или защитные дренажные отверстия 58 если необходимо. Например, данную операцию отбора проб можно начать последовательным открытием каждого дренажного отверстия 56, 58 и регистрировать реагирование на изменение давления единственного пакера 26. Если происходит значительное увеличение давления после открытия индивидуального дренажного отверстия, это указывает на утечку и конкретное дренажное отверстие можно закрыть или изолировать посредством подходящих изолирующих клапанов 102 или. 110. Операцию отбора проб можно затем продолжить с использованием оставшихся рабочими дренажных отверстий.

Альтернативный вариант осуществления показан на Фиг.12. В данном варианте осуществления используется один насос 114 как для системы 8 4 регулирования потока дренажных отверстий отбора проб, так и для системы 8 6 регулирования потока защитных дренажных отверстий. Показанный на Фиг.12 вариант осуществления аналогичен варианту осуществления на Фиг.11 с несколькими изменениями. Например, система 84 регулирования потока дренажных отверстий отбора проб показана с двумя пробоотборниками 96, соединенными с выкидной линией 92 через клапаны 116. Другой клапан 118 установлен в выкидной линии 92 между дренажным отверстием 56 отбора проб и первым или нижним клапаном 116. Кроме того, выпускной патрубок 94 выкидной линии 92 соединен с выкидной линией 104 системы 8 6 регулирования потока защитных дренажных отверстий между защитными дренажными отверстиями 58 и насосом 114. Перепускная линия 112 соединена между выкидной линией 104 и выкидной линией 92 с клапаном 120, размещенным в перепускной линии 112. Кроме того, клапан 122 установлен в выкидной линии 104 между местами, в которых перепускная линия 112 и выпускной патрубок 94 входят в выкидную линию 104.

Показанный на Фиг.12 вариант осуществления также обеспечивает выполнение различных процедур с помощью единственного пакера 26 во взаимодействии с системами 84 и 8 6 регулирования потока при работе насосов и клапанов в выбранных режимах эксплуатации. Некоторые примеры процедур/фаз работы операции отбора проб дает следующая таблица:

Фаза Насос 114 Клапан 122 Клапан 116 Клапан 118 Клапан 120
Очистка пласта/выкидные линии в порядке откачка открыт закрыть баллон /соединяется с насосом открыт закрыт
Отбор проб/выкидные линии в порядке откачка открыт открывает пробоотборники, закрывает соединение с насосом открыт закрыт
Очистка пласта/защитная выкидная линия отказала откачка закрыт закрыть баллон/соединяется с насосом открыт закрыт
Отбор проб/защитная выкидная линия отказала откачка закрыт открывает пробоотборники, закрывает соединение с насосом открыт закрыт
Очистка пласта/выкидная линия отбора проб отказала откачка закрыт закрыть баллон/соединяется с насосом закрыт открыт
Отбор пластовых проб/выкидная линия отбора проб отказала откачка закрыт открывает пробоотборники, закрывает соединение с насосом закрыт открыт
Очистка выкидных линий обратная подача открыт закрыть баллон/соединяется с насосом открыт открыт
Отбор фильтрационной корки в баллон (если необходимо) откачка закрыт открывает пробоотборники, закрывает соединение с насосом закрыт открыт
Пакер прихвачен. Обратная перекачка для сдутия пакера. обратная подача открывает выпуск 106 открывает выпуск 94 открыт открыт

В некоторых вариантах применения единственный пакер 26 включает в себя фильтрующие механизмы для фильтрования твердой фазы, такой как бурового раствора/песка или других твердых частиц из поступающей скважинной текучей среды. Как показано на Фиг.13, единственный пакер 26 может включать в себя многочисленные песчаные фильтры 76 на индивидуальных дренажных отверстиях 50. Вместе с тем, песчаные фильтры могут быть установлены в других местах для фильтрования текучей среды, поступающей в множество дренажных отверстий 50. Например, один или несколько песчаных фильтров 124 могут быть установлены в выкидных линиях 92, 104, в коллекторах 62, или в других местах на пути потока. Размещение песчаных фильтров 76 в дренажных отверстиях 50 экономит место и уменьшает риск засорения труб. В некоторых вариантах применения песчаные фильтры можно чистить, например, с использованием высокочастотных вибраций, направленных через выкидные линии и дренажные отверстия. В других вариантах применения размещение песчаных фильтров 124 в коллекторах 62 может быть целесообразно, поскольку значительное пространство имеется в коллекторах 62.

Во многих вариантах применения единственный пакер 26 можно использовать для очистки зон ствола 22 скважин промывкой скважин текучей средой через дренажные отверстия 50. В одном варианте осуществления очистку выполняют перед отбором проб текучей среды. Это обеспечивает выполнение анализа текучей среды с уменьшением риска засорения фильтров. Как показано на Фиг.14, насосы 88, 90 или насос 114 можно использовать для подачи текучей среды на забой в дренажные отверстия 50 и наружу в зону окружающего пространства ствола скважины, как показано стрелками 126. Промывку текучей средой можно выполнять как через дренажные отверстия отбора проб, так и через защитные дренажные отверстия для растворения и удаления бурового раствора и другого нежелательного материала из зоны ствола скважины. В некоторых вариантах применения может быть полезно вначале применять депрессию в скважине для разрушения фильтрационной корки бурового раствора перед промывкой текучей средой для удаления бурового раствора.

Альтернативно, промывочную текучую среду можно подавать через одну систему регулирования потока и удалять через другую, как показано на Фиг.15. В данном варианте осуществления промывочную текучую среду подают в ствол скважины через дренажное отверстие 56 отбора проб, как показано стрелками 128. Промывочная текучая среда смешивается с буровым раствором и втягивается в защитные дренажные отверстия 58, как показано стрелками 130. Фазу очистки завершают установлением циркуляции текучей среды между дренажными отверстиями отбора проб и защитными дренажными отверстиями. Следует отметить, что промывочную текучую среду также можно подавать в зону ствола скважины через защитные дренажные отверстия и осуществлять обратную циркуляцию в дренажные отверстия отбора проб. Удаление бурового раствора также можно осуществлять закачкой химреагентов, помогающих растворению фильтрационной корки бурового раствора, с промывочной текучей средой. Например, кислоты, растворители, антидисперсанты и другие химреагенты можно закачивать для помощи в увеличении эффективности отбора проб посредством растворения фильтрационной корки бурового раствора и снижения риска засорения когда применяют депрессию в скважине.

В некоторых вариантах применения, эффективность отбора проб можно улучшить, создав начальную депрессию в скважине для отрыва фильтрационной корки бурового раствора для ее удаления перед отбором проб. Как показано для примера на Фиг.16, единственный пакер 26 вначале расширяют, т.е., надувают и прижимают к окружающей стенке 32 ствола скважины, и обеспечивают депрессию в скважине для разрушения фильтрационной корки бурового раствора на месте дренажных отверстий 50, как показано стрелками 132. После разрушения фильтрационной корки бурового раствора промывочную текучую среду можно подавать по надлежащей выкидной линии к одному или нескольким дренажным отверстиям 50. Промывочная текучая среда смешивается с буровым раствором и другими отходами, как показано стрелками 134, и давление в выкидной линии обеспечивает выброс смеси через обратный клапан 136, как дополнительно показано на Фиг.17. Далее прикладывается отрицательное давление для отбора образцов текучей среды из пласта, как показано стрелкой 13 8 на Фиг.18. Отрицательное давление также закрывает обратный клапан 136 и обеспечивает продолжающийся отбор пробы пластовой текучей среды с уменьшением риска засорения фильтра.

Единственный пакер 26 также может быть сконструирован с участками 140 выкидных линий, введенными во внешний уплотнительный слой 52 для осуществления выравнивания давления после надувания пакера, как показано на Фиг.19. Посредством установки выкидных линий в каучуке или другом материале уплотнительного слоя, единственный пакер способен лучше выравнивать давления на обеих крайних токах пакера при надувании. Конфигурация уменьшает аксиальную силу, приложенную к конструкции пакера вследствие перепадов давления.

Как описано выше, скважинную систему 20 можно сконструировать в различных конфигурациях для использования в многих средах и вариантах применения. Единственный пакер 26 может быть сконструирован из различных материалов и компонентов для отбора пластовых текучих сред из одного или нескольких интервалов в одной зоне расширения. Способность расширения уплотнительного элемента поперек всей зоны расширения обеспечивает использование пакера 26 в различных скважинах в средах, включающих в себя слабые неконсолидированные пласты. Различные конструкции дренажного элемента и систем регулирования потока также можно конструировать в нескольких устройствах для создания более надежного и эффективного образца единственного пакера.

В любых вариантах осуществления, описанных выше, где компонент описан выполненным из каучука или содержащим каучук, каучук может включать в себя нефтестойкий каучук, такой как бутадиен-нитрильный каучук, гидрированный бутадиен-нитрильный каучук и фтор-каучук. В конкретном примере каучук может являться содержащим большой процент акрилонитрилового гидрированного бутадиен-нитрильного каучука, такого как гидрированный бутадиен-нитрильный каучук с процентом акрилонитрила в диапазоне приблизительно 21-49%. Компоненты подходящие для каучуков, описанных в данном абзаце, включают в себя, без ограничения этим, внутренний надувной баллон 42, уплотняющий слой 52 и индивидуальное уплотнение 78.

Соответственно, хотя подробно описаны выше только несколько вариантов осуществления настоящего изобретения, специалистам в данной области техники должно быть понятно, что возможны многие модификации без существенного отхода от сущности данного изобретения. Такие модификации направлены на включение в объем данного изобретения, определенного в формуле изобретения.

1. Система отбора текучей среды из конкретной зоны ствола скважины, содержащая единственный пакер, имеющий внешний структурный слой, расширяющийся в стволе скважины поперек зоны расширения, и содержащий множество дренажных отверстий в зоне расширения, надувной баллон, расположенный внутри внешнего структурного слоя, и уплотнительный слой, расположенный на внешнем структурном слое, при этом каждое дренажное отверстие взаимодействует с уплотнительным слоем и дренажным элементом, который способствует проходу потока через каждое дренажное отверстие в течение срока службы единственного пакера.

2. Система по п.1, в которой дренажный элемент содержит окружающую кромку, расположенную вокруг каждого дренажного отверстия для предотвращения выдавливания уплотнительного слоя.

3. Система по п.1, в которой дренажный элемент содержит индивидуальное уплотнение, расположенное вокруг каждого дренажного отверстия, при этом индивидуальные уплотнения функционируют как уплотнительный слой.

4. Система по п.1, в которой дренажный элемент содержит, по меньшей мере, один проход, выполненный вдоль уплотнительного слоя для обеспечения перемещения текучей среды вдоль уплотнительного слоя между группами конкретных дренажных отверстий, выбранных из множества дренажных отверстий.

5. Система по п.1, в которой множество дренажных отверстий содержит множество дренажных отверстий отбора проб и множество защитных дренажных отверстий.

6. Система по п.5, дополнительно содержащая систему регулирования потока дренажных отверстий отбора проб, соединенную с множеством дренажных отверстий отбора проб, и систему регулирования потока защитных дренажных отверстий, соединенную с множеством защитных дренажных отверстий.

7. Система по п.6, дополнительно содержащая единственный насос, соединенный с системой регулирования потока дренажных отверстий отбора проб и системой регулирования потока защитных дренажных отверстий.

8. Система по п.6, содержащая множество насосов, первый из которых соединен с системой регулирования потока дренажных отверстий отбора проб и второй из которых с системой регулирования потока защитных дренажных отверстий.

9. Система по п.1, в которой единственный пакер дополнительно содержит множество песчаных фильтров, установленных для фильтрования песка из текучей среды, проходящей через множество дренажных отверстий.

10. Система по п.1, в которой уплотнительный слой содержит нефтестойкий каучуковый материал.

11. Система по п.10, в которой нефтестойкий каучуковый материал выбран из группы, состоящей из бутадиен-нитрильного каучука, гидрированного бутадиен-нитрильного каучука и фтор-каучука.

12. Система по п.10, в которой нефтестойкий каучуковый материал содержит гидрированный бутадиен-нитрильный каучук с содержанием акрилонитрила в диапазоне приблизительно 21-49%.

13. Способ отбора текучей среды из конкретной зоны ствола скважины, содержащий следующие стадии:
охватывание надувного баллона внешним структурным слоем для создания единственного расширяющегося пакера;
соединение системы регулирования потока текучей среды с множеством дренажных отверстий, размещенных во внешнем структурном слое; и
размещение дренажного элемента на каждом дренажном отверстии для содействия проходу потока через множество дренажных отверстий в течение срока службы единственного расширяющегося пакера.

14. Способ по п.13, в котором соединение системы регулирования потока текучей среды с множеством дренажных отверстий выполняется через множество трубок внешнего структурного слоя.

15. Способ по п.14, дополнительно содержащий установку двух механических крепежных средств на концах внешнего структурного слоя и соединение множества труб с множеством соответствующих поворотных проточных элементов каждого механического крепежного средства.

16. Способ по п.13, в котором установка дренажного элемента содержит использование окружающей кромки, расположенной вокруг каждого дренажного отверстия для деформации стенки окружающего ствола скважины после расширения единственного расширяющегося пакера.

17. Способ по п.13, в котором установка дренажного элемента содержит расположение индивидуального уплотнения вокруг каждого дренажного отверстия.

18. Способ по п.13, в котором установка дренажного элемента содержит соединение групп конкретных дренажных отверстий из множества дренажных отверстий через проходы, содержащие пористый материал.

19. Способ по п.13, в котором соединение системы регулирования потока текучей среды с множеством дренажных отверстий содержит соединение отдельных систем регулирования потока текучей среды с дренажными отверстиями отбора проб и с защитными дренажными отверстиями множества дренажных отверстий.

20. Способ по п.19, дополнительно содержащий действие, по меньшей мере, одного насоса для уменьшения давления на множестве дренажных отверстий.

21. Способ по п.19, дополнительно содержащий действие, по меньшей мере, одного насоса для подачи текучей среды наружу через дренажные отверстия для промывки области ствола скважины.

22. Способ по п.20, дополнительно содержащий установку, по меньшей мере, одного песчаного фильтра на пути потока текучей среды от множества дренажных отверстий к, по меньшей мере, одному насосу.

23. Способ отбора текучей среды из конкретной зоны ствола скважины, содержащий следующие стадии:
выполнение единственного расширяющегося пакера с множеством дренажных отверстий, имеющего дренажные отверстия отбора проб, расположенные между защитными дренажными отверстиями;
спуск единственного расширяющегося пакера в ствол скважины;
расширение единственного расширяющегося пакера с уплотнением к стенке окружающего ствола скважины;
удаление фильтрационной корки бурового раствора из зоны ствола скважины перед отбором проб скважинной текучей среды через единственный расширяющийся пакер; и
осуществление действия насосной системы для отбора скважинной текучей среды через множество дренажных отверстий и получения пробы скважинной текучей среды через дренажное отверстие отбора проб.

24. Способ по п.23, в котором удаление фильтрационной корки бурового раствора содержит промывку текучей средой через, по меньшей мере, одно дренажное отверстие из множества дренажных отверстий.

25. Способ по п.24, в котором удаление фильтрационной корки бурового раствора дополнительно содержит осуществление циркуляции текучей среды между дренажными отверстиями отбора проб и защитными дренажными отверстиями.



 

Похожие патенты:

Группа изобретений относится к нефтедобывающей промышленности, а именно к пакерам с электронным измерительным прибором и способам для их реализации. Обеспечивает повышение эффективности эксплуатации скважины.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для освоения и эксплуатации нефтяных, газовых и нагнетательных скважин, проведения ремонтно-изоляционных работ и других технологических операций, а также селективной обработки пласта под давлением, поинтервальной опрессовки эксплуатационной колонны и поиска негерметичности с использованием двух пакеров.

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для разобщения пластов в скважине при раздельной закачке в них различных реагентов.

Изобретение относится к нефтяной и газовой промышленности, а именно к уплотнительным элементам, используемым в устройствах для герметичного разобщения интервалов обсадной колонны скважины (пакерах).

Изобретение относится к нефтегазодобывающей промышленности и предназначено для проведения изоляционных и других работ при капитальном ремонте скважин. Изобретение предотвращает преждевременное срабатывание инструмента установочного гидравлического, обеспечивает надежную пакеровку, улучшение герметичности пакера, а также повышение надежности механизма соединения-разъединения инструмента установочного гидравлического с пакером разбуриваемым.

Изобретение относится к нефтегазодобывающей промышленности, а именно к разработке и эксплуатации нефтяных пластов с зонами различной проницаемости, в том числе в боковых и горизонтальных стволах с применением технологии одновременно-раздельной эксплуатации и изоляции зон несанкционированного водопритока.

Группа изобретений относится к нефтегазовой промышленности, а именно к устройствам, включающим набухающий эластомер и используемым в скважинах в качестве пакеров или уплотнений, а также к способу регулирования набухания эластомера в скважине.

Изобретение относится устройству, используемому для испытаний на герметичность в скважине и трубопроводе. Устройство для удаления заглушки содержит трубчатый кожух, кольцевой кожух и поршень.

Изобретение относится к нефтяной промышленности и может найти применение при пакеровании интервалов горизонтальной скважины. Обеспечивает фиксацию пакерного устройства в горизонтальном стволе скважины.

Изобретение относится к нефтяной и газовой промышленности, в частности к уплотнительным элементам пакера, и может быть использовано для оснащения пакеров. .

Изобретение относится к нефтедобывающей промышленности, в частности к области вторичного воздействия вакуумом на продуктивный пласт. Устройство для имплозионной обработки пласта содержит полый корпус с входящей в него депрессионной камерой и пакер. На корпусе телескопически установлена и зафиксирована срезным винтом крышка, соединенная снизу со штоком переменного сечения, имеющим ограничитель. Ограничитель установлен с возможностью взаимодействия с внутренним выступом корпуса. При этом шток переменного сечения установлен с возможностью взаимодействия с переточным отверстием корпуса. Крышка сверху соединена с колонной труб. Шток переменного сечения выполнен полым и сообщает внутреннее пространство колонны труб с депрессионной камерой. При этом полый шток переменного сечения оснащен конусной поверхностью, сужающейся снизу вверх и выполненной с углом наклона 10-20°. Пакер выполнен в виде чередующихся металлических колец и резиновых бочкообразных уплотнений. Техническим результатом является повышение надежности и эффективности работы устройства, а также исключение загрязнения приустьевой территории продуктами имплозионной обработки пласта. 2 ил.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для перекрытия межтрубного пространства добывающих скважин при проведении ремонтно-изоляционных работ. Обеспечивает возможность гидравлической посадки с помощью посадочного инструмента, с защитой ствола пакера от избыточного давления, возможность отсоединения посадочного инструмента от ствола пакера с сохранением герметичности лифтовой колонны труб и возможностью подачи изолирующего состава в подпакерную зону, возможность отсечки подпакерной зоны от осевого канала ствола пакера после окончания технологического процесса, возможность осуществления прямой или обратной промывки осевого канала лифтовой колонны труб, возможность многократного применения посадочного клапана. Разбуриваемый пакер состоит из ствола с башмаком на нижнем конце, в осевом канале которого установлен подпружиненный обратный клапан. На ствол установлены нижние и верхние разрывные плашки с разжимными конусами, уплотнительный элемент и подвижная опора с пакетом разрезных стопорных колец. Ствол снабжен внутренней расточкой на нижнем конце. В осевом канале ствола находится полый шток с удлинителем и цангой. Удлинитель имеет продольные пазы. Лепестки цанги снабжены головками, которые установлены с возможностью взаимодействия с внутренней расточкой ствола. Также они взаимодействуют с опорой на конус обратного клапана в его осевом канале через пазы удлинителя. Удлинитель снабжен дроссельной шайбой, радиальными отверстиями над ней и установлен с возможностью торцевого контакта с обратным клапаном башмака. Шток снабжен переходной муфтой с регулировочной гайкой и связан со стволом срезным элементом. 4 ил.

Изобретение относится к способам герметизации эксплуатационной колонны. Перед герметизацией эксплуатационной колонны временно блокируют пласт самораспадающимся после проверки герметичности нижнего пакера гелем, затем на устье скважины снизу вверх собирают следующую компоновку: нижний пакер, труба, длина которой больше протяженности интервалов нарушения, верхний пакер, левый переводник, разделительный клапан. Производят спуск компоновки на посадочном инструменте в эксплуатационную колонну скважины в интервал герметизации эксплуатационной колонны, далее производят одновременную посадку пакеров, после чего поочередно проверяют герметичность посадки нижнего и верхнего пакеров снижением уровня жидкости в эксплуатационной колонне свабированием по посадочному инструменту, причем сначала проверяют герметичность посадки нижнего пакера, а затем верхнего пакера, при герметичной посадке обоих пакеров вращают по часовой стрелке посадочный инструмент с устья скважины, отворачивая посадочный инструмент с разделительным клапаном от левого переводника, извлекают посадочный инструмент с разделительным клапаном из эксплуатационной колонны на поверхность. При негерметичной посадке хотя бы одного из пакеров срывают пакеры и извлекают всю компоновку на ревизию, после чего повторяют операции по временной блокировке пласта, спуску, посадке и проверке пакеров на герметичность. Технический результат - повышение эффективности реализации способа за счет обеспечения герметичности с возможностью извлечения двухпакерной компоновки на устье скважины и упрощение технологического процесса осуществления способа за одну спускоподъемную операцию. 4 ил., 1 табл.

Изобретение относится к нефтегазодобывающей промышленности, а именно к устройствам для разобщения пластов в скважине при раздельной закачке в них различных реагентов. Устройство для обработки пластов в скважине содержит пакер, включающий проходной в осевом направлении корпус с фигурным пазом на наружной поверхности, обойму со штифтом и шлипсами, причем штифт установлен в фигурный паз и имеет возможность перемещения по траектории фигурного паза, и эластичную манжету, разобщитель, включающий ствол с верхней и нижней резьбой, и золотник, расположенный внутри ствола и соединенный с ним срезными элементами, золотник снабжен расточкой, в которой установлено стопорное кольцо, взаимодействующее с кольцевой проточкой, расположенной в нижней части ствола, и седлом для запорного элемента, сбрасываемого вовнутрь устройства перед обработкой верхнего пласта, и нижнее кольцо, навернутое на нижнюю резьбу ствола, Фигурный паз на наружной поверхности проходного корпуса пакера выполнен в виде поперечной и продольной проточек, расположенных перпендикулярно друг к другу и соединенных между собой в нижней части продольной проточки, причем снизу золотник разобщителя снабжен осевым центральным отверстием, при этом расточка, в которую установлено стопорное кольцо, выполнена на внутренней поверхности золотника, а нижнее кольцо выполнено в виде крышки, навернутой на нижнюю резьбу ствола разобщителя, причем снизу крышка снабжена наружной резьбой для соединения с корпусом проходного пакера, а по центру крышка снабжена жесткозакрепленным на ней стержнем, направленным в сторону золотника, а также осевыми отверстиями по окружности, при этом пропускная способность отверстий крышки больше пропускной способности центрального отверстия золотника, а стержень имеет возможность герметичного взаимодействия с осевым центральным отверстием золотника после посадки запорного элемента на седло золотника и осевого перемещения золотника относительно ствола разобщителя, причем кольцевая проточка, имеющая возможность взаимодействия со стопорным кольцом, выполнена на наружной поверхности стержня в виде кольцевых насечек, направленных противоположно стопорному кольцу, при этом запорный элемент выполнен в виде полусферы, жесткозакрепленной сверху со штоком, оснащенным уплотнительными дисками. Предлагаемое устройство позволяет произвести поинтервальную обработку пластов в горизонтальной скважине, так как гарантировано обеспечивает посадку запорного элемента на седло золотника, повышает долговечность и надежность работы устройства, имеет расширенные технологические возможности работы, при этом снижается стоимость изготовления устройства. 4 ил.

Изобретение относится к нефтедобывающей промышленности, в частности к способам герметизации эксплуатационной колонны. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины двух пакеров, соединенных между собой трубой, на посадочном инструменте, в качестве которого используется колонна насосно-компрессорных труб, их посадку в эксплуатационной колонне выше и ниже интервала негерметичности с последующим извлечением посадочного инструмента. До возникновения негерметичности эксплуатационной колонны отбором проб производят анализ химического состава пластовой жидкости, затем на устье скважины собирают следующую компоновку снизу-вверх: нижний пакер, труба, верхний пакер, левый переводник, разделительный клапан, производят спуск компоновки на посадочном инструменте в интервал негерметичности эксплуатационной колонны, далее производят посадку пакеров, затем приводят в действие разделительный клапан, который гидравлически разделяет компоновку от посадочного инструмента и сообщает внутренние пространства посадочного инструмента с межколонным пространством скважины выше верхнего пакера, затем свабированием по посадочному инструменту снижают уровень жидкости в скважине над верхним пакером и определяют герметичность посадки верхнего пакера, при негерметичной посадке верхнего пакера срывают пакеры и извлекают всю компоновку на ревизию, после чего повторяют вышеописанные операции до герметичной посадки верхнего пакера, при герметичной посадке верхнего пакера вращают по часовой стрелке посадочный инструмент с устья скважины и отворачивают посадочный инструмент с разделительным клапаном и левым переводником, извлекают посадочный инструмент с разделительным клапаном и левым переводником из эксплуатационной колонны на поверхность, запускают скважину в эксплуатацию и отбором проб производят повторный анализ химического состава пластовой жидкости, сопоставлением результатов анализов химического состава пластовой жидкости в начальной и повторной пробах определяют герметичность посадки нижнего пакера, при негерметичной посадке нижнего пакера выполняют повторную герметизацию эксплуатационной колонны, как описано выше, от спуска компоновки в интервал негерметичности эксплуатационной колонны до определения герметичности посадки нижнего пакера. Предлагаемый способ герметизации эксплуатационной колонны прост в осуществлении, так как весь технологический процесс герметизации эксплуатационной колонны осуществляется за один спуск инструмента. Имеется возможность контроля герметичности посадки верхнего пакера до его отсоединения от посадочного инструмента. Также возможно извлечение двухпакерной компоновки на устье скважины в случае негерметичной посадки верхнего пакера до отсоединения от посадочного инструмента, что повышает эффективность и успешность работ по герметизации эксплуатационных колонн двухпакерными компоновками. 4 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для разобщения в скважине зон обсадных колонн при проведении ремонтных, изоляционных и исследовательских работ. Пакер для перекрытия внутренней полости колонны труб или обсадной колонны содержит верхнюю и нижнюю опорные втулки, на которых установлены, соответственно, верхняя и нижняя самоуплотняющиеся манжеты, причем указанные верхняя и нижняя самоуплотняющиеся манжеты установлены расширяющейся частью навстречу друг другу, а узкой частью самоуплотняющиеся манжеты закреплены в конусообразных втулках, охватывающих опорные втулки, между верхней и нижней опорными втулками с образованием центрального проходного канала установлены соединенные друг с другом по направлению сверху вниз переходная втулка, центратор и корпус клапана, состоящий из верхней и нижней частей, на верхней опорной втулке установлен входной патрубок, а на нижней опорной втулке подвешена цилиндрическая втулка с выполненными в стенке цилиндрической втулки отверстиями и установленным снизу наконечником-центратором, при этом в верхней части корпуса клапана выполнен центральный канал, в котором установлен подвижный шток, подпружиненный относительно установленной в нижней части верхней части корпуса клапана резьбовой втулки, верхняя часть подвижного штока уплотнена относительно центрального канала, в стенке верхней части корпуса клапана выполнено четыре продолговатых отверстия, а снизу к подвижному штоку прикреплен затвор клапана, расположенный в нижней части корпуса клапана, в которой выполнено седло, и в стенке нижней части корпуса клапана над седлом выполнены радиальные отверстия, причем подвижный шток с затвором установлены с возможностью замены на технологическую пробку. В результате достигается упрощение процесса посадки и срыва пакера. 4 ил.

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежей нефти с коллектором, имеющим естественную трещиноватость. Обеспечивает повышение охвата пласта воздействием и увеличение нефтеотдачи продуктивного пласта. Сущность изобретения: по способу определяют направления трещиноватости коллектора, формируют элементы разработки бурением горизонтальных нагнетательных скважин по квадратной сетке с параллельным расположением стволов и многозабойными добывающими скважинами с закругленными окончаниями стволов, расположенными вокруг ствола каждой горизонтальной скважины. Производят закачку рабочего агента через нагнетательные скважины и отбор продукции через добывающие скважины. При обводнении последних определяют интервалы обводнения и изолируют обводнившиеся интервалы. Согласно изобретению многозабойную скважину выполняют в форме полуэллипса, большая ось которого направлена под углом 30-60° к направлению трещиноватости при отношении малой полуоси b/2 к большой полуоси a/2 эллипса 0,1-0,8. При этом стволы многозабойной добывающей скважины выполняют длиной в продуктивной части пласта (0,6-0,8)·а каждый, на которых через каждые 50-250 м устанавливают водонабухающие пакеры. Сами стволы располагают у кровли продуктивного пласта на расстоянии не менее 0,5 м и не более 2 м от нее. Горизонтальную нагнетательную скважину размещают в плане вдоль большой оси эллипса многозабойной добывающей скважины, выполняют длиной (0,3-0,6)·а горизонтальной части в продуктивном пласте и размещают у водо-нефтяного контакта или подошвы чисто нефтенасыщенного пласта в профиле на расстоянии не менее 0,2 м и не более 1 м от него. 1 з.п. ф-лы, 4 пр., 3 ил.

Изобретение относится к нефтяной промышленности и может найти применение при разработке залежей нефти в карбонатных и терригенных коллекторах, разбуренных вертикальными и горизонтальными скважинами. Обеспечивает повышение охвата пласта вытеснением как по толщине, так и по площади, увеличение нефтеотдачи продуктивного пласта и повышение темпов отбора нефти. Сущность изобретения: способ включает разбуривание залежи вертикальными и/или наклонно направленными нагнетательными скважинами и размещенными крестообразно со взаимно перпендикулярным расположением стволов горизонтальными добывающими скважинами, закачку рабочего агента через вертикальные и/или наклонно направленные нагнетательные скважины и отбор нефти через добывающие горизонтальные скважины. Согласно изобретению горизонтальные добывающие скважины выполняют длиной, более чем в 4 раза превышающей расстояние между добывающими и нагнетательными скважинами, так что горизонтальные добывающие скважины вскрывают в начале и в конце ствола нижние пропластки, а в середине ствола - верхние пропластки. В перпендикулярном направлении в начале и в конце ствола горизонтальные добывающие скважины вскрывают верхние пропластки, а в середине ствола - нижние пропластки. При этом горизонтальные добывающие скважины образуют сетку, в центре каждой ячейки которой размещают от 1 до 3 вертикальных и/или наклонно направленных нагнетательных скважин. При этом минимальное расстояние между горизонтальной добывающей скважиной в вертикальной плоскости - 1 м. Для отсечения мест прорыва рабочего агента в горизонтальные добывающие скважины предусматривают водонабухающие пакеры. 1 пр., 3 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано в пакерах для защиты уплотнительного элемента пакера от затекания резины в кольцевой зазор между стенкой обсадной колонны и корпусом пакера. Комплект раздвижных опор пакера состоит из опор первого и второго типа, устанавливаемых в пакере с чередованием между собой. Раздвижные опоры пакера первого и второго типа выполнены в виде симметрично разрезанной по боковым поверхностям цилиндрической трубы и содержат хвостовик, ножку и основание. Хвостовик имеет внешнюю коническую поверхность, внешнюю цилиндрическую поверхность, боковые поверхности. Ножка имеет внешнюю цилиндрическую поверхность, боковые поверхности. Основание имеет внешнюю цилиндрическую поверхность, внутреннюю коническую поверхность и боковые поверхности. Внутри плашки имеется внутренняя цилиндрическая поверхность. Внешняя коническая поверхность хвостовика, параллельная внутренней конической поверхности основания, выполнена с переходом во внешнюю цилиндрическую поверхность ножки. Ножка и основание выполнены в виде разрезанного полого цилиндра, усеченного по бокам с образованием одинаковых с обеих сторон плоских поверхностей. Внешние цилиндрические поверхности соответственно хвостовика и основания выполнены с переходом в плоские поверхности. При этом плоские поверхности нижней части основания раздвижной опоры первого типа выполнены с переходом в козырьки. По обеим сторонам нижней части основания раздвижной опоры второго типа выполнены ответные фигурные выборки под козырьки в виде выборки. Техническим результатом заявляемого изобретения является повышение надежности конструкции раздвижной опоры, обеспечение простоты и удобства сборки при установке раздвижных опор в пакер, обеспечение надежной герметизации кольцевого пространства между стенкой обсадной колонны и корпусом пакера, обеспечение гарантированного возврата раздвижных опор в исходное положение. 3 з.п. ф-лы, 5 ил..

Изобретение относится к нефтедобывающей промышленности, в частности к способам герметизации эксплуатационной колонны. Способ герметизации эксплуатационной колонны включает спуск в эксплуатационную колонну скважины на посадочном инструменте, выполненном в виде колонны насосно-компрессорных труб (НКТ), двух пакеров, соединенных между собой трубой, их посадку в эксплуатационной колонне выше и ниже нарушения с последующим извлечением посадочного инструмента. До появления негерметичности в эксплуатационной колонне на нижнем конце посадочного инструмента выполняют радиальные отверстия, а ниже радиальных отверстий в посадочном инструменте устанавливают ограничитель, радиальные отверстия в начальном положении герметично перекрывают полой втулкой, имеющей возможность ограниченного осевого перемещения до упора в ограничитель посадочного инструмента и фиксации в посадочном инструменте, после появления негерметичности на устье скважины собирают следующую компоновку снизу вверх: нижний пакер, труба, верхний пакер, левый переводник, производят спуск компоновки в интервал негерметичности эксплуатационной колонны на посадочном инструменте, далее производят посадку пакеров, после чего проверяют герметичность посадки нижнего пакера, для чего на кабеле спускают геофизический прибор по посадочному инструменту в эксплуатационную колонну скважины в интервал нижнего пакера и производят геофизические исследования, затем извлекают геофизический прибор на кабеле из скважины, на устье скважины в посадочный инструмент устанавливают резиновую пробку с металлическим наконечником снизу, продавливают ее до фиксации металлического наконечника в полой втулке, при этом резиновая пробка герметично отсекает двухпакерную компоновку от посадочного инструмента и открываются радиальные отверстия посадочного инструмента, которые сообщают внутреннее пространство посадочного инструмента и межколонное пространство скважины выше верхнего пакера, после чего снижают уровень жидкости в межколонном пространстве скважины над верхним пакером свабированием по посадочному инструменту и определяют герметичность посадки верхнего пакера, при герметичной посадке обоих пакеров вращают по часовой стрелке посадочный инструмент с устья скважины, отворачивая посадочный инструмент от левого переводника, извлекают посадочный инструмент из эксплуатационной колонны на поверхность, при негерметичной посадке хотя бы одного из пакеров срывают пакеры и извлекают всю компоновку на ревизию, после чего повторяют вышеописанные операции. Предлагаемый способ герметизации эксплуатационной колонны прост в осуществлении, так как весь технологический процесс герметизации эксплуатационной колонны осуществляется за один спуск инструмента. Имеется возможность контроля герметичности посадки как верхнего, так и нижнего пакеров, а также извлечения двухпакерной компоновки на устье скважины в случае негерметичной посадки хотя бы одного из пакеров, что гарантирует высокую успешность работ по герметизации эксплуатационных колонн двухпакерными компоновками. 4 ил.
Наверх