Глубинный плунжерный насос

Изобретение относится к нефтедобывающей промышленности и служит для повышения эффективности эксплуатации глубинных плунжерных насосов. В полость насоса и на приеме насоса помещают датчики измерения давления. Всасывающий клапан выполняют в виде электромагнитного клапана, конструкция которого обеспечивает прохождение скважинной жидкости в полость под плунжером без потери сплошности потока и без гидродинамического сопротивления. Электромагнит всасывающего клапана и датчики давления связаны информационной и исполнительной связью со станцией управления, расположенной на поверхности земли. Открытие-закрытие всасывающего клапана осуществляется синхронно ходу плунжера вверх-вниз благодаря постоянному сравнению станцией управления величин давления в полости насоса и на его приеме и своевременной подаче команд на электромагнит клапана. Организация принудительной работы всасывающего клапана обеспечивает полное заполнение полости насоса даже при повышенной вязкости скважинной жидкости и образовании асфальтосмолопарафиновых отложений на элементах всасывающего клапана. 1 ил.

 

Предполагаемое изобретение относится к нефтедобывающей промышленности, в частности к способам добычи нефти и воды с помощью глубинного плунжерного насоса. Изобретение может быть использовано для повышения эффективности эксплуатации поверхностных насосов поршневого типа, перекачивающих газожидкостные смеси.

В глубинном плунжерном насосе при ходе плунжера вверх давление под плунжером снижается так, что под действием появившегося перепада давления между камерой наполнения и приемом в насосе открывается всасывающий клапан. В открытый клапан поступает скважинная жидкость, камера заполняется. В большинстве насосов этого типа всасывающий клапан представляет собой клапанную пару из конусной седловины и тяжелого металлического шарика. При ходе плунжера вверх над шариком всасывающего клапана давление снижается, и под действием возникшего перепада давления шарик поднимается вертикально вверх до ограничителя - клапанной клетки. Как правило, диаметр шарика доходит до 80% от диаметра полости цилиндра насоса, поэтому скважинная жидкость после седловины клапана движется в полость насоса по относительно узкому кольцевому пространству между шариком и цилиндром (корпусом). насоса. Высоковязкая нефть при прохождении всасывающего клапана испытывает повышенное гидродинамическое сопротивление, повышается и степень дегазации этой жидкости. Благодаря этим факторам снижается степень заполнения полости насоса.

Известен всасывающий клапан в составе устройства для эксплуатации скважины в виде принудительного тарельчатого клапана с пружиной (патент РФ на изобретение №2388901 С1, опубл. 10.05.2010). Клапан обладает той же инерционностью, что и традиционная клапанная пара из шарика и седловины, а сам тарельчатый клапан является местным гидродинамическим сопротивлением для входящей в полость насоса скважинной жидкости.

Известно изобретение, в котором степень заполнения полости плунжерного насоса регулируется с помощью датчика давления, помещенного непосредственно в пространство между всасывающим клапаном и плунжером (патент РФ №2439295 С1, опубл. 10.01.2012, бюл. №1). По изобретению конструкция всасывающего клапана остается традиционной с указанным недостатком сужения потока входящей в насос скважинной жидкости.

Технической задачей изобретения является изменение конструкции всасывающего клапана глубинного плунжерного насоса с тем, чтобы скважинная жидкость после прохождения отверстия в седловине клапана не изменяла своего направления и не встречала на своем пути гидродинамического сопротивления в виде тяжелого шарика. В задачу изобретения входит также совершенствование процессов открытия-закрытия всасывающего клапана. Известно, что шарик клапана традиционной конструкции откроется только при превышении разности давлений ниже и выше шарика над давлением самого шарика от собственного веса. Определенную негативную роль на скорость отрывания шарика от седловины играют и асфальтосмолопарафиновые вещества, способные отложиться на шарике и седловине. Поэтому всасывающий клапан должен иметь такую конструкцию, которая позволит клапану открываться быстро, своевременно и на все сечение входящего потока скважинной жидкости.

Поставленная задача решается в изобретении тем, что в известной конструкции глубинного плунжерного насоса, состоящего из корпуса - цилиндра, плунжера, нагнетательного и всасывающего клапанов, датчика давления в полости насоса между плунжером и всасывающим клапаном, на входе в насос установлен дополнительный датчик давления, а всасывающий клапан выполнен в виде электромагнитного клапана, обеспечивающего вертикальное и монолитное прохождение скважинного потока в полость цилиндра после седловины клапана, причем отверстие в седловине клапана имеет меньший диаметр, чем диаметр полости цилиндра насоса, датчики давления и электромагнитный клапан соединены электрокабелями или иной приемлемой связью со станцией управления на поверхности земли с тем, чтобы открытие и закрытие всасывающего электромагнитного клапана происходило в зависимости от показаний датчиков давления, а именно:

- клапан открывается при Рн меньшем, чем Рвх при ходе плунжера вверх;

- клапан закрывается при Рн большем, чем Рвх при ходе плунжера вниз;

где: Рн - давление в полости насоса между плунжером и всасывающим электромагнитным клапаном;

Рвх - давление на приеме плунжерного насоса.

В работу предлагаемого насоса заложены несколько принципов.

1. Клапан должен открываться и закрываться вне зависимости от давления на приеме в насос и наличия или отсутствия адгезионных отложений на элементах клапана.

2. Клапан должен обеспечить свободный вход скважинной жидкости в полость насоса.

3. Открытие-закрытие всасывающего клапана осуществляется по известным законам гидравлики, а именно: клапан открывается электромагнитом по команде станции управления при Рн меньшем, чем Рвх. Это возможно только при ходе плунжера вверх. Закрытие электромагнитного клапана происходит также по команде со станции управления (СУ) при Рн большем, чем Рн. Это возможно только при ходе плунжера вниз и благодаря тому, что на входе все же остается седловина клапана в виде незначительного сужения полости цилиндра. В изобретении седловина играет роль местного гидродинамического сопротивления, которое необходимо для организации процессов открытия-закрытия электромагнитного клапана путем сравнения двух давлений: на входе в насос и в его полости.

На чертеже изображено устройство глубинного плунжерного насоса, где 1 - корпус насоса (цилиндр), 2 - плунжер, 3 - седловина всасывающего электромагнитного клапана, 4 - запорный элемент электромагнитного клапана, 5 - электромагнит всасывающего клапана, 6 - датчик давления в полости насоса, 7 - датчик давления на входе в насос, 8 - станция управления, 9 - линии связи между датчиками, электромагнитом и станцией управления (в традиционном исполнении - это электрокабели).

Глубинный плунжерный насос работает следующим образом. Привод плунжера обеспечивает поступательное движение плунжера 2 вверх-вниз с постоянной частотой. При ходе плунжера вниз даже при еще закрытом нагнетательном клапане давление под плунжером, то есть в полости насоса превысит давление на входе в насос, и по заданной программе действий СУ 8 дает команду на закрытие седловины 3 запорным элементом 4 с помощью электромагнита 5. Нагнетательный клапан открывается, и жидкость из полости насоса перетекает в колонну лифтовых труб. При ходе плунжера вверх закрывается нагнетательный клапан, и давление в полости насоса становится меньше, чем на входе в насос. Станция управления дает команду на открытие электромагнитного клапана путем прижатия запорного элемента 4 к электромагниту 5. Информация из датчиков давления 6 и 7 поступает в СУ в постоянном режиме, поэтому контроллер станции управления своевременно подает необходимые команды на открытие-закрытие всасывающего электромагнитного клапана. Современные электромагниты компактны и обладают значительной силой для полного закрытия и открытия всасывающего клапана несмотря на вязкостные характеристики скважинной жидкости и наличие АСПО на элементах клапана.

Отметим то, что в глубинных плунжерных насосах общепринятой конструкции всасывающий клапан является достаточно уязвимым узлом насоса ввиду того, что его открытие связано с перепадом давления до и после запорного элемента - шарика. При малом значении этого перепада всасывающий клапан может остаться в закрытом положении. Предложенный глубинный плунжерный насос имеет всасывающий клапан, работа которого не зависит от величины указанного перепада давления. Клапан будет полностью и своевременно открываться и закрываться при наличии такого перепада давления, сколь мало бы не было его значение. На наш взгляд, это расширяет возможности плунжерного насоса по откачке высоковязких нефтей с низким погружением глубинного насоса под динамический уровень жидкости в скважине. Это является одним из существенных отличий предложенного насоса. Вторым отличием, на наш взгляд, является то, что новая конструкция всасывающего клапана обеспечивает свободное вхождение скважинной жидкости в полость насоса без встречи с гидродинамическим сопротивлением в виде тяжелого шарика.

Наиболее удобным и экономически привлекательным наше техническое решение будет для глубинного плунжерного насоса, который приводится в действие погружным линейным электродвигателем. По имеющимся силовым кабелям будет возможным передача информации о величине давлений в полости насоса и на входе в насос и управление работой электромагнитного всасывающего клапана насоса.

Глубинный плунжерный насос, состоящий из корпуса-цилиндра, плунжера, нагнетательного и всасывающего клапанов, датчика давления в полости насоса между плунжером и всасывающим клапаном, отличающийся тем, что на входе в насос установлен дополнительный датчик давления, а всасывающий клапан выполнен в виде электромагнитного клапана, обеспечивающего вертикальное и монолитное прохождение скважинного потока в полость цилиндра после седловины клапана, причем отверстие в седловине клапана имеет меньший диаметр, чем диаметр полости цилиндра насоса, датчики давления и электромагнитный клапан соединены электрокабелями или иной приемлемой связью со станцией управления на поверхности земли с тем, чтобы открытие и закрытие всасывающего электромагнитного клапана происходило в зависимости от показаний датчиков давления, а именно:
- клапан открывается при Рн, меньшем, чем Рвх при ходе плунжера вверх;
- клапан закрывается при Рн, большем, чем Рвх при ходе плунжера вниз;
где Рн - давление в полости насоса между плунжером и всасывающим электромагнитным клапаном;
Рвх - давление на приеме плунжерного насоса.



 

Похожие патенты:

Изобретение относится к нефтедобывающей промышленности. Устройство для подъема нефти при тепловом воздействия на пласт содержит камеру вытеснения, колонны труб для прохода поднимаемой жидкости и подачи рабочего агента, приемный клапан, сообщенный с внутрискважинным пространством, и нагнетательный клапан, сообщенный с колонной труб для прохода поднимаемой жидкости.

Изобретение относится к нефтедобывающей промышленности, в частности к скважинным насосным установкам, эксплуатирующим одновременно несколько объектов. Насосная установка для эксплуатации пластов в скважине содержит колонну лифтовых труб, хвостовик, пакер, установленный снаружи хвостовика между пластами, погружной насос с кожухом для откачки продукции пластов с производительностью, превышающей общий дебит пластов, между насосом и хвостовиком установлен модуль для последовательной эксплуатации пластов, в состав которого входит корпус с отверстиями, которые имеют возможность сообщать корпус с входом в насос и с каждым из пластов.

Группа изобретений относится к добыче нефти и может быть применена независимо от геолого-технических характеристик добывающих скважин, а также физико-химических показателей добываемой нефти.

Изобретение относится к нефтедобывающей промышленности и может быть использовано в штанговых глубинных насосах. .

Изобретение относится к нефтедобывающей, нефтеперерабатывающей отрасли и может быть использовано для перекачки любой жидкости в трубопроводах, насосно-компрессорных трубах с различными техническими характеристиками.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для эксплуатации высокообводненных нефтяных скважин. .

Изобретение относится к нефтегазовой промышленности и может быть использовано при эксплуатации скважин с высоким содержанием механических примесей и песка. .

Изобретение относится к нефтедобыче, в частности к глубинным штанговым насосам для эксплуатации скважин, и может быть использовано для эксплуатации скважин, работающих со значительным газовым фактором и содержащих в добываемой продукции значительное количество примесей.

Изобретение относится к способу подъема жидкости из скважин и может быть востребовано в различных отраслях промышленности, в том числе в нефтяной и газовой промышленности, в сельском хозяйстве, в строительстве и в других отраслях, где возникает необходимость подъема жидкости, например для осушения, обводнения, сбора и ее транспортировки.

Изобретение относится к насосостроению, в частности к способам подъема воды с механическими примесями, и может быть использовано при водоснабжении из подземных источников для чистки колодцев и скважин от песка, глины и ила, поступающих из водоносного пласта, а также при добыче полезных ископаемых через скважины и при строительстве скважин, особенно в сельской местности при дачном огородничестве и садоводстве.

Изобретение предназначено для использования в области машиностроения и нефтедобычи для перекачивания газожидкостной среды. Поршневой насос содержит корпус 1, внутри которого с образованием рабочей камеры 2 установлен поршень 3 с поршневым кольцом 4 или щелевым уплотнением 5. Рабочая камера подключена к всасывающей 6 и нагнетательной 7 линиям через одноименные клапаны 8 и 9. К верхней части 10 рабочей камеры подключен газосепаратор 11 с газоотводным каналом 12. Газосепаратор выполнен в виде малорасходного дросселя 13. Дроссель 13 выполнен с расходом жидкости при максимальном давлении нагнетания насоса не более 1% от подачи насоса. В результате обеспечивается стабилизация расхода рабочей жидкости, подаваемой насосом в нагнетательную линию с высоким давлением, в случае попадания в рабочую камеру насоса газа из всасывающей линии, обеспечиваемая за счет быстрого и надежного возобновления подачи без существенного снижения подачи жидкости. 5 з.п.ф-лы, 6 ил.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при добыче текучих сред из глубоких скважин с применением глубинных насосов типа электроцентробежных насосов - ЭЦН. Обеспечивает повышение эффективности способа за счет снижения энергетических затрат на подъем жидкости, повышения производительности ЭЦН и возможности увеличения глубины его установки в скважине. Сущность изобретения: способ включает спуск на колонне насосно-компрессорных труб ЭЦН и хвостовика из насосно-компрессорных труб с перфорированной нижней частью, изоляцию потока жидкости в межтрубном пространстве пакером, установленным на хвостовике, и регулирование направления потока жидкости для распределения его через внутреннюю полость колонны насосно-компрессорных труб и межтрубное пространство. Согласно изобретению перед спуском в скважину устанавливают обратный клапан на конце хвостовика и перфорируют колонну насосно-компрессорных труб в зоне устья скважины. В колонне насосно-компрессорных труб в зоне устья скважины выполняют перфорационные каналы. Эти каналы выполняют в 1,5-2 раза больше перфорационных каналов в нижней части хвостовика. 1 ил.

Изобретение относится к нефтедобывающей промышленности для поочередной подачи на прием скважинного насоса нефти и воды при эксплуатации обводненных, высокодебитных скважин с высоковязкой нефтью, осложненных образованием высоковязкой водонефтяной эмульсии. Входное устройство содержит соединенную с переводником приемной части насоса отстойную камеру. В ней размещен U-образный подводящий канал, вход которого выведен за отстойную камеру. Ниже отстойной камеры расположен стакан с отверстиями в верхней части. Площадь внутреннего сечения между входным каналом и стаканом выбрана таким образом, что максимальная скорость течения воды вниз в этом сечении может превышать скорость всплытия нефти в воде не более чем в два раза. Минимальный объем внутреннего пространства между входным каналом и стаканом не менее половины объема жидкости, поступающей в насос при всасывании. Верхний конец входного канала расположен на уровне конца U-образного подводящего канала. Ниже стакана последовательно установлены аналогичные дополнительные стаканы, количество которых находится в прямой зависимости от производительности насоса. Входной канал сообщен с нижней частью каждого стакана входным калиброванным отверстием, который выполнен с возможностью поддержания одинаковой скорости из соответствующего стакана во входной канал. Над калиброванным отверстием установлен фильтр. Между отстойной камерой и стаканом входной канал снабжен дополнительной камерой для увеличения его длины. Повышается эффективность работы за счет повышения стабильности работы в высокодебитных скважинах и надежности при работе с высоковязкой нефтью. 1 ил.

Группа изобретений относится к области добычи нефти и может быть использована для эксплуатации скважин, оборудованных электронасосами, в частности погружными центробежными электронасосами. Обеспечивает повышение эффективности способа и надежности работы устройства как в малодебитных, так и в высокопродуктивных скважинах. Сущность изобретений: способ заключается в периодическом повторении циклов, включающих откачку, поиск частоты прекращения подачи и накопление. При этом для обеспечения отбора такого количества жидкости из скважины, которое равно ее притоку, выбирают насосную установку с более высокой производительностью по сравнению с притоком жидкости из пласта в скважину. В процессе выполнения циклов производят коррекцию соотношения времени откачки-накопления в зависимости от результатов работы в предыдущих циклах до тех пор, пока соотношение откачки-накопления не перестанет изменяться. Момент наступления прекращения подачи определяют по равенству значений текущего момента на валу погружного электродвигателя и контрольного момента, который определяют предварительно по скачкообразному падению значения момента на валу двигателя в точке наступления прекращения подачи при снижении частоты питающего напряжения. Устройство содержит размещенную в колонне эксплуатационных труб скважины насосную установку, состоящую из центробежного насоса и погружного электродвигателя, подвешенную на колонне подземных труб. При этом погружной электродвигатель токопроводящим кабелем связан с находящимися на поверхности преобразователем частоты и управляющим устройством. Устройство содержит также согласующий трансформатор, блок определения частоты, тока, момента, мощности, блок связи, блок индикации и управления. При этом токопроводящий кабель связан с первым входом-выходом согласующего трансформатора, который вторым входом-выходом связан со входом-выходом преобразователя частоты. Преобразователь частоты своим вторым входом-выходом связан с блоком питания, а третьим входом-выходом - с первым входом-выходом блока определения частоты, тока, момента, мощности, который своим вторым входом-выходом связан с первым входом-выходом блока связи, второй вход-выход которого связан с четвертым входом-выходом преобразователя частоты, а третьим входом-выходом связан с первым входом-выходом контроллера управления, второй вход-выход которого связан с блоком индикации и управления. При этом обеспечена возможность поступления всех сигналов на блоки, находящиеся на поверхности, через токопроводящий кабель непосредственно с вала погружного электродвигателя. 2 н.п. ф-лы, 3 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к добыче высоковязкой песчаной нефти, и может быть использовано для добычи любой пластовой жидкости из наклонно-направленных и горизонтальных скважин. Насос содержит цилиндр с размещенным в нем плунжером и со всасывающим шаровым клапаном. Плунжер имеет полую втулку и клапанную каретку с нагнетательным шаровым клапаном. Клапанная каретка соединена с колонной насосных штанг и полой втулкой. Плунжер снабжен компрессионными кольцами, золотниковым механизмом для принудительного закрытия нагнетательного клапана. Золотниковый механизм состоит из ползуна и толкателя. Ползун взаимодействует с внутренней стенкой цилиндра, а толкатель - с нагнетательным клапаном. Полая втулка плунжера снабжена пружиной, которая взаимодействует с компрессионными кольцами. На нижних концах цилиндра и плунжера размещены постоянные магниты. Нижний конец полой втулки выполнен в виде конуса с кольцевой острой кромкой, а на верхнем конце клапанной каретки выполнены клиновидные скребковые кромки. Ползун золотникового механизма снабжен фрикционными кольцами или пластинками. Штанговый насос может быть выполнен с резиновой втулкой, размещенной на полой втулке плунжера. Штанговый насос может быть выполнен с плунжером, снабженным спиральной компрессионной пружиной, взаимодействующей с внутренней стенкой цилиндра насоса. Увеличивается надежность и долговечность работы. Повышается коэффициент наполнения и подачи путем исключения отказа работы нагнетательного шарового клапана. 3 н.п. ф-лы, 7 ил.

Изобретение относится к нефтедобывающей промышленности и, в частности, к добыче скважинной жидкости на нефтяных месторождениях. Обеспечивает повышение эффективности добычи за счет возможности температурного воздействия на добываемую скважинную жидкость. Сущность изобретения: способ включает подъем скважинной жидкости по колонне лифтовых труб с воздействием на нее для изменения ее физических свойств. Согласно изобретению воздействие на скважинную жидкость осуществляют путем ее электродного нагрева в закрытой рабочей камере установки посредством подачи электрического тока с поверхности земли через многожильный электрический кабель на расположенные внутри рабочей камеры электроды. В результате этого обеспечивают тепловое расширение скважинной жидкости и ее перетекание в колонну лифтовых труб через подъемный канал с малым поперечным сечением относительно его длины. При этом для осуществления процесса заполнения рабочей камеры установки и электродного нагрева скважинной жидкости, с последующим ее расширением, установка оборудована всасывающим клапаном для обеспечения поступления скважинной жидкости в рабочую камеру, нагнетательным клапаном для обеспечения перетекания части скважинной жидкости из рабочей камеры в колонну лифтовых труб и порционной транспортировки скважинной жидкости на поверхность и клапаном принудительного действия, имеющим возможность его закрытия после полного заполнения рабочей камеры скважинной жидкостью и его открытия после нагрева скважинной жидкости до установленной величины. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области насосного оборудования и может быть использовано для подъема жидкости с большой глубины. Скважинная насосная установка включает насосно-компрессорные трубы (нкт), плунжерный насос, содержащий цилиндр, плунжер, приводную штангу, всасывающий и нагнетательный клапаны и приводимый в действие приводом, включающим реверсивный электродвигатель, передачу винт-гайка качения с приводной штангой, размещенные в маслозаполненном корпусе, содержащем эластичную оболочку, демпферы, причем приводная штанга соединена с плунжером и уплотнена в корпусе. Новым является то, что плунжер выполнен полым и ступенчатым, нижняя ступень плунжера имеет размер по диаметру меньше, чем верхняя ступень и уплотнена в цилиндре, образуя кольцевую нагнетательную полость, а цилиндр герметично заключен в кожух и снабжен дополнительной полостью, сообщающейся с надплунжерной всасывающей полостью через перепускной клапан, а с полостью нкт - через нагнетательный клапан, причем дополнительная полость сообщается с кольцевой полостью по каналу, образованному между кожухом и цилиндром, и отверстиям, выполненным в нижней части цилиндра, а всасывающий клапан расположен в верхней части плунжера. 1 ил.

Изобретение относится к технике добычи нефти, в частности к скважинным штанговым насосам, и может быть использовано в нефтедобывающей промышленности. Скважинный штанговый насос с коротким поршнем содержит цилиндр с всасывающим и нагнетательным клапанами, в котором установлен короткий поршень, снабженный набором металлических колец. В наборе металлических колец диаметром D последние прижаты друг к другу по торцам и упруго поджаты к уплотняемым поверхностям. На корпусе короткого поршня выполнены кольцевые канавки, в которых размещены эластичные кольца. На внутренней поверхности металлических колец выполнены эксцентричные пазы с одной стороны, предназначенные для эластичных колец, обеспечивающие смещение металлических колец в радиальном направлении на (0,1÷0,3)D. В наборе в каждой паре металлические кольца в радиальной плоскости развернуты относительно друг друга по эксцентриситету на 180°. Каждая пара металлических колец в радиальной плоскости развернута на 90° относительно каждой последующей пары. Длина набора металлических колец составляет не менее двух диаметров поршня. Набор металлических колец поджат в продольном направлении резьбовой втулкой с зазором (0,05÷0,1)D относительно корпуса короткого поршня. Изобретение позволяет повысить надежность устройства за счет повышения герметичности уплотнения короткого поршня. 2 з.п. ф-лы, 3 ил.

Изобретение предназначено для использования в объемных погружных скважинных насосах с механическим приводом и приспособлено для подъема жидких сред различной вязкости и различной степени механических примесей и газов. Приспособлен для самопроизвольного перехода из плунжерно-диафрагменного режима в плунжерный режим работы путем разрушения одной эластичной диафрагмы (21a) насоса при ее прилегании к аварийному отверстию (22) в бачке (16a) рабочего узла (15a). Обеспечена опора плунжера (6) на три опорных узла (26, 27, 28), разнесенных по длине плунжера и содержащих подшипники (32,33) скольжения. Два подшипника (32, 33) с двух сторон защищены от контакта с откачиваемой средой и со средой гидропривода каскадами (35) уплотнений и замкнутой полостью (39) цилиндра (38) гидрозащиты, заполненной смазывающей средой для смазки боковых поверхностей плунжера (6). Насос содержит средство (9) разъемного соединения плунжера (6) с колонной (83) штанг, выполненное в виде автосцепа (1а), в котором зацеп (54), закрепленный на хвостовике (47) и ловитель (55), закрепленный на колонне (83) штанг, приспособлены для соединения между собой путем надевания ловителя (55) на зацеп (54). Свободные слабопроточные объемы внутренней полости рабочей камеры (4) могут быть заполнены объемными (71) и проточными (75) балластными элементами для исключения образования газовоздушных включений. Насосная установка (81) содержит насос (1) и устройство (85) слива, в котором сливной клапан (86) снабжен закрепляемой снаружи сменной мембраной (91), выполненной из материала, имеющего узкий диапазон давления разрушения. Обеспечивает возможность реализации способа подъема жидкой среды из скважины. 3 н. и 22 з.п. ф-лы, 18 ил.

Изобретение относится к области автоматизации скважинной добычи нефти и может быть использовано для диагностики состояния насосного оборудования и управления электроприводами скважин, эксплуатируемых глубиннонасосным способом. Динамограф устанавливается на станке-качалке и содержит последовательно соединенные датчик силоизмерительный и усилитель, подключенные к первому входу контроллера, со вторым входом которого соединен датчик перемещения, и радиоблок, соединенный с третьим входом контроллера. Дополнительно содержит формирователь питающего напряжения, к которому подключена приемная высокочастотная катушка. На основании станка-качалки установлен генератор высокочастотных колебаний и передающая высокочастотная катушка с возможностью передачи генерируемых высокочастотных колебаний на приемную высокочастотную катушку. Применение беспроводного динамографа для контроля работы скважинных штанговых насосов позволяет отказаться от использования соединительных проводов, аккумуляторных батарей, солнечных батарей, что повышает надежность, обеспечивает практически неограниченный ресурс непрерывной работы, высокие эксплуатационные характеристики. 1 ил.
Наверх