Солнечный модуль с концентратором и способ его изготовления (варианты)

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачную фокусирующую призму с углом полного внутреннего отражения

где n - коэффициент преломления материала призмы, с треугольным поперечным сечением, имеющую грань входа, на которую падает излучение по нормали к поверхности грани входа, и грань переотражения излучения, образующую острый двухгранный угол φ с гранью входа, и грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправленно с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, установленных на некотором расстоянии друг от друга, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ, который расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, линии касания плоскости дополнительного зеркального отражателя с гранью входа и линия касания плоскости зеркального отражателя устройства переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность грани входа больше длины проекции зеркального отражателя устройства отражения на поверхность грани входа на величину

В другом варианте солнечного модуля с концентратором, содержащем прозрачную фокусирующую призму с треугольным поперечным сечением, с углом входа лучей β0 и углом полного внутреннего отражения , где n - коэффициент преломления призмы, имеющую грань входа и грань переотражения излучения, образующие общий двухгранный угол φ, грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправлено с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора установленных на некотором расстоянии друг от друга зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, с устройством поворота относительно грани переотражения, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ и выполнены в виде жалюзи с устройством поворота относительно поверхности грани входа, угол наклона дополнительных зеркальных отражателей к поверхности грани входа расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, оси устройства поворота дополнительного зеркального отражателя на грани входа и оси устройства поворота зеркального отражателя на устройстве переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность входа больше длины проекции зеркального отражателя устройства отражения на поверхность входа на величину

В способе изготовления солнечного модуля с концентратором путем изготовления фокусирующей призмы из оптически прозрачного материала, установки приемника излучения, устройства переотражения с зеркальными отражателями из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 2-12° и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и производят сборку дополнительных зеркальных отражателей с устройствами поворота на рабочей поверхности фокусирующей призмы и устройства поворота для устройства переотражения. В результате использования изобретения увеличивается оптический КПД модуля, снижаются оптические потери при переотражении излучения и увеличивается коэффициент концентрации солнечного излучения. 3 н. и 7 з.п. ф-лы, 3 ил.

 

Изобретение относится к гелиотехнике, в частности, к солнечным модулям с концентраторами для получения электрической и тепловой энергии.

Известен солнечный модуль с концентратором, содержащий прозрачную фокусирующую призму, имеющую образующий острый угол грани входа и переотражения излучения и грань выхода концентрированного излучения и устройство отражения, расположенное относительно фокусирующей призмы с зазором со стороны грани переотражения излучения. Устройство отражения выполнено в виде по меньшей мере одной призмы с треугольным поперечным сечением, имеющей образующие острый угол, грань входа проходящего через фокусирующую призму излучения и грань отражения излучения и расположенной своим острым углом однонаправлено с острым углом фокусирующей призмы (авт. свид. СССР №108365, Б.И. 1984 г., №16).

Выполнение отражающего устройства в виде призмы позволяет ввести отраженное излучение в фокусирующую призму под углом, превышающим угол полного внутреннего отражения.

Недостатком известного фотоэлектрического модуля является большая масса концентратора и высокая стоимость, связанная с большой трудоемкостью его изготовления, и сложность конструкции.

Известен солнечный модуль с концентратором, содержащий концентратор, выполненный в виде фокусирующей призмы из оптически прозрачного материала с коэффициентом преломления n, имеющий образующие острый двухгранный угол φ, рабочую поверхность модуля, на которую падает излучение под углом β0, и грань переотражения, скоммутированные фотопреобразователи, установленные под некоторым углом к вышеуказанным граням и поверхностям, и устройство отражения излучения, расположенное с зазором относительно фокусирующей призмы со стороны грани переотражения излучения, указанное устройство отражения образует острый двухгранный угол φ с гранью переотражения и угол φ+ψ с рабочей поверхностью модуля, причем угол входа β0 и двухгранные углы φ и ψ связаны отношением:

где n - коэффициент преломления, φ - острый двухгранный угол при вершине призмы, ψ - угол между гранью переотражения и зеркальным отражателем.

Для снижения потерь солнечного излучения на части грани переотражения фокусирующей призмы у грани выхода установлены фотопреобразователи с двухсторонней рабочей поверхностью, а в плоскости грани выхода от рабочей поверхности фокусирующей призмы до устройства отражения установлен зеркальный отражатель (патент РФ №2154778, Б.И. 2000, №23).

Известный солнечный модуль с концентратором имеет малую массу и низкую стоимость. Недостатком известного солнечного модуля с концентратором является невысокий коэффициент концентрации и низкий оптический КПД из-за потерь излучения в устройстве отражения модуля.

Задачей предлагаемого изобретения является повышение оптического КПД за счет снижения потерь излучения в модуле и повышение коэффициента концентрации солнечного излучения. В результате использования предлагаемого изобретения увеличивается оптический КПД модуля, снижаются оптические потери при переотражении излучения и увеличивается коэффициент концентрации солнечного излучения.

Вышеуказанный результат достигается тем, что в солнечном модуле с концентратором, содержащем прозрачную фокусирующую призму с углом полного внутреннего отражения , где n - коэффициент преломления материала призмы, с треугольным поперечным сечением, имеющую грань входа, на которую падает излучение по нормали к поверхности грани входа, и грань переотражения излучения, образующая острый двухгранный угол φ с гранью входа, и грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправлено с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора зеркальных отражателей длиной L0 с одинаковыми вышеуказанными острыми двухгранными углами ψ, установленных на некотором расстоянии друг от друга, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ, который расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, линии касания плоскости дополнительного зеркального отражателя с гранью входа и линия касания плоскости зеркального отражателя устройства переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность грани входа больше длины проекции зеркального отражателя устройства отражения на поверхность грани входа на величину

а углы φ, ψ, δ и α связаны собой следующими соотношениями:

В варианте солнечного модуля с концентратором, содержащего прозрачную фокусирующую призму с треугольным поперерчным сечением, с углом входа лучей β0 и углом полного внутреннего отражения , где n - коэффициент преломления призмы, имеющую грань входа и грань переотражения излучения, образующие общих двухгранный угол φ, грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправлено с острым двухгранным углом ср фокусирующей призмы, устройство отражения состоит из набора установленных на некотором расстоянии друг от друга зеркальных отражателей длиной Lo с одинаковыми вышеуказанными острыми двухгранными углами ψ, с устройством поворота относительно грани переотражения, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ и выполнены в виде жалюзи с устройством поворота относительно поверхности грани входа, угол наклона дополнительных зеркальных отражателей к поверхности грани входа расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, оси устройства поворота дополнительного зеркального отражателя на грани входа и оси устройства поворота зеркального отражателя на устройстве переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность входа больше длины проекции зеркального отражателя устройства отражения на поверхность входа на величину

а углы φ, ψ, δ, β0 и α связаны собой соотношениями:

В варианте конструкции солнечного модуля с концентратором в качестве приемника излучения установлен гибридный фотоэлектрический модуль с когенерацией электрической и тепловой энергии.

В другом варианте солнечного модуля с концентратором в качестве приемника излучения использован тепловой абсорбер для получения горячей воды и отопления.

В способе изготовления солнечного модуля с концентратором путем изготовления фокусирующей призмы из оптически прозрачного материала, установке приемника излучения, устройства переотражения с зеркальными отражателями из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 2-12° и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и производят сборку дополнительных зеркальных отражателей с устройствами поворота на рабочей поверхности фокусирующей призмы и устройства поворота для устройства переотражения.

В варианте способа изготовления солнечного модуля с концентратором в качестве оптически прозрачной среды используют дистиллированную воду с добавками для предотвращения цветения и замерзания воды.

В другом варианте способа изготовления солнечного модуля с концентратором в качестве оптически прозрачной среды используют силиконовые теплоносители, например на основе полиметилсилоксановых композиций.

Еще в одном способе изготовления солнечного модуля с концентратором в качестве оптически прозрачной среды используют структурированные полисилоксановые гели.

Сущность предлагаемого изобретения поясняется на фиг.1, 2, 3, где на фиг.1 показано поперечное сечение солнечного модуля с концентратором и ход лучей в нем. На фиг.2 оптическая схема солнечного модуля для определения размеров неработающих зон и зеркальных отражателей. На фиг.3 оптическая схема солнечного модуля для определения перекрытия лучей зеркальными отражателями.

Солнечный фотоэлектрический модуль с концентратором содержит приемник 1, фокусирующую призму 2 с гранью входа 3, которая совпадает с рабочей поверхностью 4 и гранью переотражения 5, устройство отражения 6 и дополнительные зеркальные отражатели 7 на рабочей поверхности 4. Острый двухгранный угол φ есть угол между рабочей поверхностью 4, на которую падает излучение, и гранью переотражения 5. Угол входа (падения) солнечного излучения на рабочую поверхность 4 есть угол β0 между лучом и вектором , перпендикулярным к поверхности, на которую падает излучение.

Острый двухгранный угол ψ есть угол между гранью переотражения 5 фокусирующей призмы 2 и устройством отражения 6. Устройство отражения 6 содержит зеркальные отражатели 8, которые наклонены под углом ψ к грани переотражения 5 и выполнены в виде жалюзи с устройством поворота 9 относительно грани переотражения 6. Зеркальные отражатели 7 наклонены к рабочей поверхности под углом 90°-δ, где δ - угол между плоскостью зеркального отражателя 7 и нормалью к рабочей поверхности 4 и выполнены в виде жалюзи с устройством поворота 10 относительно рабочей поверхности модуля. Приемник 1 установлен перпендикулярно рабочей поверхности 4 фокусирующей призмы 2.

В варианте конструкции солнечного модуля на торце фокусирующей призмы 2 перпендикулярно рабочей поверхности 4 установлен зеркальный отражатель, а приемник 1 с двухсторонней рабочей поверхностью расположен горизонтально рабочей поверхности 4 фокусирующей призмы 2 в непосредственной близости у зеркального отражателя.

Приемник 1 выполнен в виде скоммутированных солнечных элементов. В варианте конструкции модуля приемник 1 представляет собой тепловой абсорбер для получения тепловой энергии. Наиболее перспективно использование гибридного приемника 1, содержащего скоммутированные солнечные элементы, установленные на тепловом абсорбере с отводом и утилизацией тепловой энергии.

Зеркальные отражатели 7 на рабочей поверхности расположены над неработающими зонами 11 на рабочей поверхности 4, которые возникают при возвращении лучей от зеркальных отражателей 8 в фокусирующую призму 4 на грань переотражения 5.

Для увеличения вырабатываемой мощности солнечного модуля с концентратором на рабочей поверхности 4 у острого угла фокусирующей призмы 2 параллельно отражателю 7 установлен дополнительный зеркальный отражатель 12. Зеркальный отражатель 8 у приемника 1 содержит дополнительный зеркальный отражатель 13 для отражения излучения непосредственно на приемник 1.

Солнечный фотоэлектрический модуль работает следующим образом. Солнечное излучение луч Л1 падает на рабочую поверхность 4 фокусирующей призмы 2 под углом β0 (фиг.1), входит в призму 2 под углом β1 попадает на грань переотражения 5 под углом β2, выходит из призмы 2 под углом β3, попадает на зеркальный отражатель 8 под углом β4, отражается и попадает на грань переотражения 5 под углом β5, преломляется в фокусирующей призме 2 под углом β6 и падает на рабочую поверхность призмы 2 изнутри под углом β7, который должен быть больше угла полного внутреннего отражения β7>arcsin 1/n, где n - коэффициент преломления материала призмы 2. После полного внутреннего отражения излучение попадает на приемник 1.

Для лучей Л1, нормальных к грани входа 3, углы между нормалью к поверхности и лучом имеют следующий вид:

Для фокусирующей призмы 2 с φ=8°, ψ=25°, n=1,5 вышеуказанные углы имеют вид: β0=0, βt=0, β2=8°, β3=12,2°, β4=37,2°, β5=62,2°, β6=35,6°, β7=43,6°. Для стекла с n=1,5 угол полного внутреннего отражения равен α=41,8°. Таким образом, β7>α и луч не выходит за пределы фокусирующей призмы 2.

Углы φ, ψ и угол полного внутреннего отражения

где n - коэффициент преломления материала фокусирующей призмы, связаны между собой соотношением:

Угол δ между плоскостью дополнительного зеркального отражателя и нормалью к грани входа связан с углами φ и α следующими соотношениями:

2δ≥β5, подставляя β5 из (3), получим

Условие полного внутреннего отражения для лучей с углом входа в фокусирующую призму 2 β=2δ

Для лучей Л2 с углом падения на грань входа 3 β0>0, который равен углу между направлением луча и нормалью n к поверхности, в ходе лучей углы между нормалью к поверхности и лучом имеют следующий вид:

,

Для β0>0

Углы φ, ψ, β0 и α связаны соотношением:

Углы δ, β0 и φ связаны соотношением:

неравенство (7) преобразуется

Неравенство (8) останется без изменений, поскольку оно не зависит от β0.

При отсутствии дополнительных зеркальных отражателей 7 появляются неработающие зоны 11 на рабочей поверхности 4, которые возникают при возвращении лучей от зеркального отражателя 8 к фокусирующей призме (луч β5 на фиг.1), снижают оптический КПД солнечного модуля с концентратором. На фиг.1 для солнечного модуля с φ=8°, ψ=25° пунктирами показаны зеркальный отражатель 14, отраженный от зеркального отражателя луч 15, длина работающей зоны 16 и неработающей зоны 17. Площадь работающей зоны составляет от полной поверхности модуля 55%, а площадь неработающей зоны 45%, в результате при отсутствии дополнительных зеркальных отражателей 7 оптический КПД модуля снижается на 45%. Такие потери имеет известный солнечный модуль с концентратором при φ=8°, ψ=25°. В предлагаемом солнечном модуле с концентратором оптические потери из-за неработающих зон 11 отсутствуют, так как по всей площади этих неработающих зон 11 на рабочей поверхности 4 установлены дополнительные зеркальные отражатели 7, направляющие лучи под углом 2δ=β5 к рабочей поверхности 4 фокусирующей призмы 2. Длина зеркальных отражателей 7 выбирается из условия, что луч, отраженный от конца отражателя 7, попадал на рабочую поверхность 4 фокусирующей призмы 2 у основания соседнего зеркального отражателя 7 или у приемника 1.

Определим размеры ΔН неработающих зон 11 и размеры дополнительных зеркальных отражателей 7 для компенсации оптических потерь от неработающих зон 11.

Найдем проекцию ΔН линии O2A на грань входа (фиг.2).

Из ΔABO1:AB=AO1·sinψ.

Из .

Из ΔACO2H=CO2=AO2·cos(90°-φ-β5)=AO2·sin(φ+β5),

где AO1 - длина зеркального отражателя 8.

Найдем проекцию дополнительного зеркального отражателя 7 O3F на грань входа (фиг.2).

Из ΔO3 FK:KO3=FO3·cos(90°-δ)=FO3·sinδ,

где FO3 - длина зеркального отражателя 7.

Из-за отклонения луча на выходе из грани переотражения на угол β3 возникает перекрытие Δ=DE (фиг.3) проекций дополнительного зеркального отражателя 7 FO3 и зеркального отражателя 8 AO1 устройства отражения на грань входа 3 (фиг.3).

Из ΔABO1:AB=AO1·sinψ.

Из

Из

Величина перекрытия

где L0 - длина зеркального отражателя 8, β2 и β3 определяется из (1) при β0=0, (3) или (9), (10), (11), (12) при β0>0 и должна учитываться при проектировании солнечного модуля с концентратором.

Для

для

Для изготовления солнечного модуля с концентратором из закаленного стела толщиной 3 мм изготавливают и герметизируют стенки полости фокусирующей призмы 2 с двухгранным углом при вершине 8°, а затем заполняют полученную полость оптически прозрачной средой. При использовании в качестве оптически прозрачной среды дистиллированной воды уменьшение тока солнечного элемента I(x) при увеличении толщины слоя воды x описывается соотношением:

I(x)=I0l-αx,

где I0 - ток солнечного элемента в приповерхностном слое воды.

Коэффициент поглощения воды, измеренный кремниевым солнечным элементом, составляет 0,025 см-1, при этом средняя толщина слоя воды, в которой ток солнечного элемента уменьшался в l=2,73 раза, составляет 40 см. При длине фокусирующей призмы 2 на фиг.1 0,5 м длина пути луча Л1 внутри фокусирующей призмы 2 составляет 24 см. Поток фотоактивного излучения на приемнике

уменьшается в 1,82 раза. Таким образом, на приемник поступает 55,5% энергии излучения, а 45,5% солнечного излучения поглощается внутри фокусирующей призмы 2. Поглощенная энергия, в основном в длинноволновой части спектра, используется для повышения температуры воды. За счет конвенции горячая вода поднимается в верхнюю часть солнечного модуля и нагревает приемник. Солнечное излучение в коротковолновой части спектра концентрируется в фокусирующей призме, поглощается в приемнике и преобразуется в электрическую энергию в солнечных элементах. Таким образом обеспечивается энергоэффективное преобразование солнечной энергии в электрическую и тепловую энергию в гибридном приемнике или только в тепловую энергию для горячего водоснабжения и отопления в приемнике с тепловым абсорбером.

Если использовать полиметилсилоксановые жидкости, более 90% солнечного излучения будет поглощаться в приемнике за счет низкого коэффициента поглощения излучения в жидкости. При использовании в качестве оптически прозрачной среды структурированного полисилоксанового геля его заливают в полость фокусирующей призмы 2 в жидком виде, а потом проводят его отверждение - структурирование. В этом случае высокая прозрачность полисилоксанового геля и отсутствие утечек геля при случайной разгерметизации полости фокусирующей линзы обеспечивает высокий оптический КПД и большой срок службы солнечного модуля с концентратором. Объем оптически прозрачной среды внутри полости фокусирующей призмы зависит от размера солнечного модуля и угла φ.

Для солнечного модуля с концентратором размером длиной 0,5, шириной 1,2 м объем оптически прозрачной среды составит для угла φ=8° 22,5 л, для φ=3° 8,4 л. Конструкция и технология изготовления солнечного модуля с концентратором позволяет в 5-10 раз снизить потребление металла для абсорберов по сравнению с известными солнечными коллекторами и в 5-10 раз снизить площадь солнечных элементов по сравнению с солнечными планарными модулями без концентраторов.

Солнечный модуль с концентратором может быть использован в составе солнечной электростанции с системой слежения за солнцем. Для солнечного модуля на фиг.1 с нормальным падением солнечных лучей на поверхность грани входа необходима система ориентации с двумя осями слежения за солнцем. Для солнечного модуля с устройствами поворота зеркальных отражателей возможно использовать устройство слежения вокруг одной полярной оси.

Геометрический коэффициент концентрации k=ctgφ для одного призменного концентратора с односторонним фотоприемником и k=2ctgφ для двух призменных концентраторов с общим двухсторонним приемником. При стационарном расположении солнечного модуля плоскости зеркальных отражателей ориентированы в направлении Восток-Запад, а годовое склонение Солнца ±23,5° компенсируется поворотом зеркальных отражателей в соответствии с формулами (15) и (16).

При повороте луча на ±24° от нормального положения зеркальные отражатели поворачиваются на ±12°. На фиг.1 показан ход лучей в фокусирующей призме 2 при δ=31,5°, φ=8° и ψ=25°, при этом геометрический коэффициент концентрации составляет k=ctg 8°=7,15 для одностороннего приемника и k=2ctg 8°=14,3 для двухстороннего приемника.

Солнечный модуль с концентратором имеет малую массу, высокую эффективность, низкую стоимость, прост в изготовлении и может быть использован для получения тепла и электроэнергии как в автономных установках со слежением за солнцем, так и в энергоактивных зданиях в качестве элемента фотоэлектрического фасада здания или солнечной крыши.

1. Солнечный модуль с концентратором, содержащий прозрачную фокусирующую призму с углом полного внутреннего отражения , где n - коэффициент преломления материала призмы, с треугольным поперечным сечением, имеющую грань входа, на которую падает излучение по нормали к поверхности грани входа, и грань переотражения излучения, образующую острый двухгранный угол φ с гранью входа, и грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправленно с острым двухгранным углом φ фокусирующей призмы, отличающийся тем, что устройство отражения состоит из набора зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, установленных на некотором расстоянии друг от друга, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ, который расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, линии касания плоскости дополнительного зеркального отражателя с гранью входа и линия касания плоскости зеркального отражателя устройства переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность грани входа больше длины проекции зеркального отражателя устройства отражения на поверхность грани входа на величину

а углы φ, ψ, δ и α связаны собой следующими соотношениями
,
,
.

2. Солнечный модуль с концентратором по п.1, отличающийся тем, что в качестве приемника излучения установлен гибридный фотоэлектрический модуль с когенерацией электрической и тепловой энергии.

3. Солнечный модуль с концентратором по п.1, отличающийся тем, что в качестве приемника излучения использован тепловой абсорбер для получения горячей воды и отопления.

4. Солнечный модуль с концентратором, содержащий прозрачную фокусирующую призму с треугольным поперечным сечением, с углом входа лучей β0 и углом полного внутреннего отражения , где n - коэффициент преломления призмы, имеющую грань входа и грань переотражения излучения, образующие общий двухгранный угол φ, грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправленно с острым двухгранным углом φ фокусирующей призмы, отличающийся тем, что устройство отражения состоит из набора установленных на некотором расстоянии друг от друга зеркальных отражателей длиной L0 с одинаковыми вышеуказанными острыми двугранными углами ψ, с устройством поворота относительно грани переотражения, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ и выполнены в виде жалюзи с устройством поворота относительно поверхности грани входа, угол наклона дополнительных зеркальных отражателей к поверхности грани входа расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, оси устройства поворота дополнительного зеркального отражателя на грани входа и оси устройства поворота зеркального отражателя на устройстве переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность входа больше длины проекции зеркального отражателя устройства отражения на поверхность входа на величину

а углы φ, ψ, δ, β0 и α связаны между собой соотношениями
,

.

5. Солнечный модуль с концентратором по п.4, отличающийся тем, что в качестве приемника излучения установлен гибридный фотоэлектрический модуль с когенерацией электрической и тепловой энергии.

6. Солнечный модуль с концентратором по п.4, отличающийся тем, что в качестве приемника излучения использован тепловой абсорбер для получения горячей воды и отопления.

7. Способ изготовления солнечного модуля с концентратором путем изготовления фокусирующей призмы из оптически прозрачного материала, установки приемника излучения, устройства переотражения излучения с зеркальными отражателями и дополнительными зеркальными отражателями на рабочей поверхности с устройствами поворота, отличающийся тем, что из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 2-12° и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и проводят сборку дополнительных зеркальных отражателей с устройствами поворота на рабочей поверхности фокусирующей призмы и устройства поворота для устройства переотражения излучения.

8. Способ изготовления солнечного модуля с концентратором по п.7, отличающийся тем, что в качестве оптически прозрачной среды используют дистиллированную воду с добавками для предотвращения цветения и замерзания воды.

9. Способ изготовления солнечного модуля с концентратором по п.7, отличающийся тем, что в качестве оптически прозрачной среды используют силиконовые теплоносители, например, на основе полиметилсилоксановых композиций.

10. Способ изготовления солнечного модуля с концентратором по п.7, отличающийся тем, что в качестве оптически прозрачной среды используют структурированные полисилоксановые гели.



 

Похожие патенты:

Изобретение относится к изготовлению модулей солнечных элементов, а также к соответствующим модулям солнечных элементов. Предложено применение а) по меньшей мере одного полиалкил(мет)-акрилата и b) по меньшей мере одного соединения формулы (I), в которой остатки R1 и R2 соответственно независимо друг от друга означают алкил или циклоалкил с 1-20 атомами углерода, для изготовления модулей солнечных элементов, прежде всего для изготовления световых концентраторов модулей солнечных элементов. Заявлен также модуль солнечных элементов и вариант модуля.

Задний лист для модуля солнечных элементов содержит лист подложки и отвержденный слой пленки покрытия из материала покрытия, сформированного на одной стороне или на каждой стороне листа подложки, причем указанный материал покрытия содержит фторполимер (А), имеющий повторяющиеся звенья на основе фторолефина (а), повторяющиеся звенья на основе мономера (b), содержащего группы для поперечного сшивания и повторяющиеся звенья на основе мономера (с), содержащего алкильные группы, где C2-20 линейная или разветвленная алкильная группа не имеет четвертичного атома углерода, а ненасыщенные группы, способные к полимеризации, связаны друг с другом посредством эфирной связи или сложноэфирной связи.

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые могут быть использованы в качестве источников электричества в системах энергообеспечения различных объектов - автомобилей, катеров, яхт, пунктов метеонаблюдения, телекоммуникационных систем, информационных стендов.

Изобретение относится к электронной технике, а именно к приборам, преобразующим энергию электромагнитного излучения в электрическую, и технологии их изготовления, в частности к полупроводниковым фотоэлектрическим генераторам.

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые, помимо основной функции - генерации фототоэлектричества, могут использоваться в качестве элементов промышленного и строительного дизайна, подвергающихся упругой деформации в продольном и/или поперечном направлении - кручению или изгибу.

Изобретение относится к фотоэлектрической битумной черепице для фотоэлектрической кровли. Технический результат: создание фотоэлектрической кровельной плитки с оптимизированной поверхностью с высокой улавливающей способностью, с высоким энергетическим выходом, обеспечение надежности, атмосферостойкости и снижение массы плитки.

Изобретение относится к преобразователям энергии электромагнитного излучения в электрическую энергию и может быть использовано в производстве солнечных элементов.

Изобретение относится к гелиотехнике. .

Изобретение относится к области беспроводной передачи электрической энергии между космическими аппаратами (КА) на основе направленного электромагнитного излучения с одного КА на приемник-преобразователь, на основе фотоэлектрического преобразователя (ФЭП), второго КА.

Изобретение относится к гелиотехнике, в частности к солнечным энергетическим модулям с концентраторами для получения электричества и/или тепла. Солнечный модуль с концентратором состоит из приемника солнечного излучения и цилиндрического солнечного концентратора, отражающая поверхность которого образована прямоугольными зеркально отражающими пластинами - фацетами.

Изобретение относится к области металлургии и гелиоэнергетики и может быть использовано на гелиоустановках при изготовлении и монтаже отражательных элементов. Способ изготовления отражательного устройства гелиоустановки включает прокатку полотна, установку его в корпус отражательного устройства и последующее его растяжение с усилием, которое определяется по эмпирической формуле: T I = ( δ h 1,33 ) ⋅ в Е ⋅ 10 − 3 где: TI - усилие растяжения полотна, тс; δh - поперечная разнотолщинность полотна; мм (h - толщина полотна); в - ширина полотна, мм; Е - модуль упругости первого рода в кгс/мм2 для материала полотна, используемого в отражательном элементе.

Изобретение относится к области солнечной энергетики, в частности к гибким фотоэлектрическим модулям, которые, помимо основной функции, могут быть дополнительно использованы в качестве элементов промышленного и строительного дизайна, подвергающихся упругой деформации в продольном и/или поперечном направлении.

Изобретение относится к гелиотехнике. .

Изобретение относится к способу преобразования солнечной энергии в химическую и аккумулирования ее в продуктах парогазовой конверсии углеводорода, в котором с использованием концентратора солнечной энергии проводят реакцию паровой каталитической конверсии метаносодержащего газа с получением продуктов реакции, содержащих водород и диоксид углерода.

Изобретение относится к ветровой энергетике и может быть использовано в сушилках и отоплении промышленных и другого назначения объектов. .

Изобретение относится к солнечной энергетике и может найти применение как в солнечных электростанциях, так и в качестве энергетической установки индивидуального пользования.

Изобретение относится к области фотоэлектроники и предназначено для преобразования потока солнечного излучения в электроэнергию. .

Многофункциональная солнечноэнергетическая установка (далее МСЭУ) относится к возобновляемым источникам энергии, в частности к использованию солнечного излучения для получения электрической энергии, обеспечения горячего водоснабжения и естественного освещения помещений различного назначения, содержащая оптически активный прозрачный купол, представляющий собой двояковыпуклую прямоугольную линзу, фотоэлектрическую панель, солнечный коллектор, круглые плоские горизонтальные заслонки полых световодов, полые световодные трубы, теплоприемную медную пластину солнечного коллектора, рассеиватель солнечного света, микродвигатели круглых плоских горизонтальных заслонок полых световодных труб, круговые светодиодные лампы, аккумуляторные батареи, датчики света и температуры, электронный блок управления, пульт управления, бак-аккумулятор, теплообменник, насос, обратный клапан, шестигранные медные трубопроводы, инвертор и опору с опорными стойками для поддержания конструкции МСЭУ. Актуальность заявленного изобретения заключается: в снижении финансовых затрат на традиционную электрическую энергию в уменьшении выбросов парниковых газов за счет замещения солнечной энергией выработку энергии тепловыми электростанциями; в преобразовании энергии Солнца в электрическую и тепловую энергию, а также для естественного освещения помещений различного назначения, например детских садиков и зон отдыха, коттеджей, торговых центров, помещений, развернутых в полевых условиях, стационарных парников, объектов агропромышленного комплекса, спортивных сооружений, цехов промышленных предприятий, складов, хранилищ техники и других объектов двойного назначения, а также в качестве энергоактивных крыш в различных постройках. 9 з.п. ф-лы, 4 ил.

Изобретение относится к гелиотехнике, в частности к солнечным модулям с концентраторами для получения электрической и тепловой энергии. В солнечном модуле с концентратором, содержащем прозрачную фокусирующую призму с углом полного внутреннего отражениягде n - коэффициент преломления материала призмы, с треугольным поперечным сечением, имеющую грань входа, на которую падает излучение по нормали к поверхности грани входа, и грань переотражения излучения, образующую острый двухгранный угол φ с гранью входа, и грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправленно с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, установленных на некотором расстоянии друг от друга, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ, который расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, линии касания плоскости дополнительного зеркального отражателя с гранью входа и линия касания плоскости зеркального отражателя устройства переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность грани входа больше длины проекции зеркального отражателя устройства отражения на поверхность грани входа на величинуВ другом варианте солнечного модуля с концентратором, содержащем прозрачную фокусирующую призму с треугольным поперечным сечением, с углом входа лучей β0 и углом полного внутреннего отражения, где n - коэффициент преломления призмы, имеющую грань входа и грань переотражения излучения, образующие общий двухгранный угол φ, грань выхода концентрированного излучения и устройство отражения, образующее с гранью переотражения острый двухгранный угол ψ, который расположен однонаправлено с острым двухгранным углом φ фокусирующей призмы, устройство отражения состоит из набора установленных на некотором расстоянии друг от друга зеркальных отражателей длиной L0 с одинаковыми острыми углами ψ, с устройством поворота относительно грани переотражения, на поверхности грани входа установлены дополнительные зеркальные отражатели, которые наклонены к поверхности грани входа под углом 90°-δ и выполнены в виде жалюзи с устройством поворота относительно поверхности грани входа, угол наклона дополнительных зеркальных отражателей к поверхности грани входа расположен разнонаправленно с острым двухгранным углом φ фокусирующей призмы, оси устройства поворота дополнительного зеркального отражателя на грани входа и оси устройства поворота зеркального отражателя на устройстве переотражения с гранью переотражения находятся в одной плоскости, перпендикулярной поверхности входа, длина проекции дополнительного зеркального отражателя на поверхность входа больше длины проекции зеркального отражателя устройства отражения на поверхность входа на величинуВ способе изготовления солнечного модуля с концентратором путем изготовления фокусирующей призмы из оптически прозрачного материала, установки приемника излучения, устройства переотражения с зеркальными отражателями из закаленного листового стекла или другого прозрачного листового материала изготавливают и герметизируют стенки полости фокусирующей призмы с острым двухгранным углом при вершине 2-12° и затем заполняют полученную полость оптически прозрачной средой, устанавливают герметично приемник излучения и производят сборку дополнительных зеркальных отражателей с устройствами поворота на рабочей поверхности фокусирующей призмы и устройства поворота для устройства переотражения. В результате использования изобретения увеличивается оптический КПД модуля, снижаются оптические потери при переотражении излучения и увеличивается коэффициент концентрации солнечного излучения. 3 н. и 7 з.п. ф-лы, 3 ил.

Наверх