Способ определения запаса устойчивости входного устройства газотурбинного двигателя

Изобретение относится к авиации и может быть применено для определения запаса устойчивости входного устройства газотурбинных двигателей. При постоянной частоте вращения ротора двигателя при перемещении органа механизации воздухозаборника определяют программное и фактическое положения органа механизации, измеряют пульсации давления с помощью датчиков, установленных за входным устройством на входе в двигатель, по результатам измерений вычисляют вейвлет-коэффициенты различного уровня и среднеквадратичные отклонения (СКО) вейвлет-коэффициентов, сравнивая значения СКО с полученными во время предварительных испытаний их критическими значениями, при достижении СКО критических значений определяют критическое положение органа механизации и вычисляют запас устойчивости как разницу между программным и критическим положениями органа механизации. Изобретение позволяет определять запасы устойчивости входного устройства без нарушения его устойчивой работы и возможных разрушений, сокращает время проведения летных испытаний. 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к авиации, а именно к входным устройствам силовых установок летательных аппаратов.

Входное устройство газотурбинного двигателя (ГТД) - часть газотурбинной силовой установки, включающая воздухозаборник, средства его регулирования, защитные устройства. Воздухозаборник - устройство для забора атмосферного воздуха и подвода его к ГТД [1. Государственный стандарт Союза СССР Двигатели газотурбинные авиационные. Термины и определения. Гост 23851-79. Москва, 1980, с.6].

Обеспечение устойчивой работы является важнейшим требованием, предъявляемому к входному устройству, так как связано с условиями надежной работы силовой установки и безопасности полетов. Поэтому в эксплуатации недопустима работа на режимах, где рабочая точка на характеристике входного устройства располагается вблизи границы устойчивости, т.е. где запас устойчивости мал и течение воздуха становится неустойчивым. Неустойчивость течения воздуха во входном устройстве, проявляющаяся в виде низкочастотных колебаний с большой амплитудой, получила название «помпаж воздухозаборника».

Известен способ получения характеристик воздухозаборника входного устройства расчетным путем. Он заключается в составлении для конкретной конструкции входного устройства системы дифференциальных уравнений Навье-Стокса, которые описывают нестационарное, пространственное движение вязкого газа, и решении этой системы уравнений. Из-за сложности протекающих процессов точность расчетных характеристик недостаточно высока, особенно в части определения границы устойчивых режимов, где для определения запасов устойчивости требуется описание процессов отрыва пограничного слоя при взаимодействии его со скачками уплотнения, что является его недостатком. [2. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1969, стр.307-322, 432-433].

Известен также способ определения запаса устойчивости входного устройства по расходу воздуха. Запас устойчивости ∆Ку.вх по расходу воздуха, как описано в [3. Нечаев Ю.Н., Федоров P.M. Теория авиационных газотурбинных двигателей. Часть 1. - М.: Машиностроение, 1977, стр.292-293] определяется при каждом числе М полета по соотношению значений коэффициента сохранения полного давления σвх и коэффициента расхода φ в рабочей точке и на границе устойчивости

,

где индексом «г» обозначены параметры на границе устойчивых режимов работы входного устройства.

Здесь коэффициент сохранения полного давления σвх оценивает газодинамические потери входного устройства и представляет собой отношение полного давления за входным устройством (на входе в двигатель) к полному давлению воздуха набегающего потока , т.е.

.

Коэффициент расхода определяется как отношение действительного расхода воздуха через входное устройство Gв к максимально возможному Gв.max при каждом заданном числе М полета

Недостатком этого способа является необходимость измерения расхода воздуха, что в условиях летных испытаний вызывает значительные трудности.

Известны способы оценки запаса устойчивой работы ∆L входного устройства по значению хода органа механизации (например, панели, створки, конуса) воздухозаборника [3. Стр. 302-303]. В этих способах учитывается, что регулирование сверхзвуковых воздухозаборников осуществляется автоматической системой по зависимостям (программам), в которых величина перемещения органа механизации Lпрог, называемая программным положением, является функцией приведенной частоты вращения ротора двигателя Nпр. На фиг.1 показана типичная для сверхзвуковых воздухозаборников программа регулирования (так называется средняя линия на фиг.1). Здесь же показано расположение границ «зуда» и помпажа воздухозаборника. «Зуд» входного устройства - высокочастотные колебания воздушного потока в воздухозаборнике от нескольких десятков до нескольких сотен герц и с амплитудой, много меньшей, чем при помпажных колебаниях. Зуд менее опасен, чем помпаж, и может допускаться в эксплуатации на некоторых режимах в целях повышения запаса устойчивости воздухозаборника по помпажу.

Как видно, отклонение органа механизации от программы регулирования может приводить к изменению располагаемого запаса устойчивой работы воздухозаборника и приближать к границе помпажа. Программа регулирования предварительно выбирается на основе испытаний модели воздухозаборника в аэродинамических трубах. Одной из задач летных испытаниях силовой установки является определение границ помпажа с целью определения оптимальных положений регулируемых органов механизации воздухозаборника и уточнения программ регулирования с достаточными запасами устойчивости. При таком подходе запас устойчивости ∆L, определяют как удаление задаваемого программой (расчетного программного) положения органа механизации Lпрог от положения органа механизации на границе помпажа Lпомп:

∆L=Lпрог-Lпомп.

Наиболее близким к изобретению является способ оценки запаса устойчивой работы входного устройства для определения границы помпажа воздухозаборника, учитывающий ход органа механизации и описанный в [4. Летные испытания специальных устройств и систем силовых установок самолетов и вертолетов. Под ред. Г.П. Долголенко, М.: Машиностроение, 1984, стр.13-15]. В этом способе при постоянном значении приведенной частоты вращения ротора двигателя Nпр определяют (вычисляют) значение программного положения органа механизации воздухозаборника, с помощью ручного управления перемещают орган механизации воздухозаборника до возникновения характерных шумов и тряски конструкции, т.е. до помпажа воздухозаборника, и в процессе перемещения с некоторым интервалом времени регистрируют фактическое значение положения органа механизации. При этом панели воздухозаборника и конус перемещаются в направлении, соответствующем увеличению площади горла воздухозаборника, створка перепуска - в сторону ее закрытия, управляемая обечайка - в сторону уменьшения угла поднутрения. При достижении помпажа отмечают фактическое положение органа механизации воздухозаборника в этот момент. Запас устойчивости ∆L вычисляют как разницу между программным значением положения панели Lпрог при данном Nпр и значением фактического положения панели Lфакт помп, при котором при данном Nпр достигнут помпаж воздухозаборника:

∆L=Lпрог-Lфакт помп.

Недостатком этого способа является необходимость доведения режима работы воздухозаборника до помпажа многократно, для каждого необходимого значения приведенной частоты вращения ротора двигателя Nпр, что может привести к потере управляемости двигателя, деформации и разрушению элементов канала воздухозаборника.

Задачей изобретения является определение запаса устойчивой работы входного устройства путем определения границы помпажа воздухозаборника без нарушения устойчивой работы входного устройства.

Поставленная задача решается с помощью способа определения запаса устойчивости входного устройства, заключающегося в том, что при постоянной частоте вращения ротора двигателя определяют значение программного положения органа механизации воздухозаборника, перемещают орган механизации, в процессе его перемещения регистрируют значения его фактического положения, запас устойчивости определяют как разницу между значениями программного и фактического положения органа механизации, отличающегося тем, что в процессе перемещения органа механизации измеряют пульсации давления с помощью датчиков, установленных за входным устройством на входе в двигатель, результаты измерений регистрируют и по ним вычисляют вейвлет-коэффициенты различного уровня и среднеквадратичные отклонения вычисленных вейвлет-коэффициентов, сравнивая получаемые значения среднеквадратичных отклонений с полученными во время предварительных испытаний их критическими значениями, при достижении среднеквадратичными отклонениями этих критических значений определяют критическое значение фактического положения органа механизации и вычисляют запас устойчивости как разницу между значением программного положения и критическим значением фактического положения органа механизации.

Упомянутые действия повторяют для разных значений частоты вращения ротора двигателя.

В ходе предварительных испытаний для определения критических значений среднеквадратичных отклонений вейвлет-коэффициентов режим работы входного устройства доводят до помпажа, измеряя пульсации давления с помощью упомянутых датчиков, результаты измерений регистрируют и по ним вычисляют вейвлет-коэффициенты различного уровня и среднеквадратичные отклонения вычисленных вейвлет-коэффициентов, по наступлении помпажа определяют критические значения среднеквадратичных отклонений вейвлет-коэффициентов как максимальные значения среднеквадратичных отклонений в период, предшествующий помпажу.

Техническим результатом является определение границы помпажа и запаса устойчивой работы входного устройства посредством обнаружения предвестника помпажа, которым является достижение среднеквадратичными отклонениями (СКО) некоторых вейвлет-коэффициентов критических значений. Это позволяет не доводить входное устройство двигателя непосредственно до помпажа, и потому уменьшить возможные разрушения и, следовательно, экономические потери и сократить время проведения летных испытаний.

Изобретение поясняется графическими материалами, где на фиг.1 в системе координат Nпр.-Lпрог показано расположение области устойчивой работы входного устройства воздухозаборника и ее границ; на фиг.2 представлен график зависимости пульсаций давления от времени вплоть до помпажа воздухозаборника, а также зависимость СКО пульсаций давления; на фиг.3 показаны зависимости от времени значений программного и фактического положений органа механизации (панели воздухозаборника); на фиг.4 представлен график среднеквадратичных отклонений одного из вейвлет-коэффициентов пятого уровня С5, возрастающего при приближении к границе устойчивой работы до значения Skp (значение Skp - предвестник помпажа воздухозаборника); на фиг.5 и 6 приведен пример определения вейвлет-коэффициентов при интервале, равном 4096 значений и шаге, равном 1024 значений, а именно: на фиг.5 показана зарегистрированная зависимость пульсаций давления, на фиг.6 - вычисленные СКО вейвлет-коэффициента пятого уровня (С5). На фиг.2-6 при частоте опроса 4096 Гц одно деление на оси абсцисс соответствует ≈4,88 секундам.

Общее пояснение: Теория вейвлетов [Смоленцев Н.К. «Основы теории вейвлетов. Вейвлеты в MATLAB» издание третье, переработанное и дополненное, издательство ДМК, Москва, 2008.] является альтернативой классическому анализу Фурье. В то же время она широко использует технику рядов Фурье и преобразования Фурье. Теория вейвлетов представляет собой более гибкую технику обработки сигналов и выявляет локальные особенности исходного сигнала. Она отличается от разложения в ряд Фурье выбором базисных функций: вместо cos(nx) или sin(nx) используется набор базисных функций, называемых вейвлетами. При разложении функции f(x) в ряд величина каждого коэффициента an, bn, при Фурье анализе, показывает, насколько значителен вклад гармоники в формирование сигнала f(x). При вейвлет-обработке исходный сигнал разлагается на низкочастотную и высокочастотную составляющую со своими коэффициентами. Это разложение 1-го уровня. Далее аналогичную процедуру применяют к полученным коэффициентам и получают коэффициенты 2-го уровня и. т.д., а затем обрабатывают и анализируют полученные коэффициенты. В результате исследований в ряде областей техники было обнаружено, что те или иные вейвлет-коэффициенты имеют диагностическую значимость в некоторых ситуациях.

Авторами предлагаемого способа экспериментально было установлено, что перед возникновением помпажа входного устройства силовой установки увеличиваются среднеквадратичные отклонения (СКО) некоторых вейвлет-коэффициентов пульсаций давления воздуха и достигают определенного максимального критического значения (см. фиг.4, где на графике представлено поведение СКО коэффициента пятого уровня С5). При этом обнаружено, что критические значения СКО практически не зависят от частоты вращения ротора двигателя Nпр.

Предлагаемый способ заключается в следующем.

Предварительно дифференциальные датчики измерения пульсаций полного давления, например, типа ДМИ-Т (датчик малогабаритный индуктивный теплостойкий), устанавливают за входным устройством на входе в двигатель. В таких датчиках по одному из каналов давление подается в измерительную полость, а в другую полость датчика подается то же давление, сглаженное с помощью демпфера и ресивера. Таким образом, на мембрану датчика действует пульсационная составляющая давления.

Затем проводят предварительные испытания для выявления того, СКО вейвлет-коэффициентов какого уровня повышаются перед помпажом (это зависит от конструкции входного устройства, т.к. уровень вейвлет-коэффициента связан с характеристическими частотами конкретного устройства), и для определения критических значений среднеквадратичных отклонений Sкр проводят следующим образом.

Однократно доводят режим работы входного устройства до помпажа, например, при помощи ручного управления органами механизации воздухозаборника. При этом с помощью описанных датчиков измеряют пульсации давления за входным устройством на входе в двигатель и регистрируют результаты измерений каким-либо накопителем. По результатам измерений вычисляют вейвлет-коэффициенты различного уровня и их СКО, затем находят те вейвлет-коэффициенты, СКО которых повышаются непосредственно перед помпажом. После наступления помпажа критические значения среднеквадратичных отклонений вейвлет-коэффициентов определяют как максимальные значения среднеквадратичных отклонений в период, предшествующий помпажу.

После того, как определено, СКО каких именно вейвлет-коэффициентов имеют диагностическое значение, и каковы их критические значения, проводят испытания непосредственно для определения границы помпажа и запаса устойчивости.

При постоянных значениях приведенной частоты вращения ротора двигателя Nпр выполняют следующие действия.

1. Определяют значение Lпрог программного положения органа механизации воздухозаборника для этой частоты Nпр.

2. Перемещают (например, с помощью ручного управления) орган механизации воздухозаборника в направлении, в котором следует ожидать появления помпажа, и через определенные интервалы времени определяют и регистрируют каким-либо накопителем значения Lфакт его фактического положения. В эти же моменты времени в процессе перемещения органа механизации с помощью датчиков, установленных за входным устройством на входе в двигатель, измеряют значения пульсаций полного давления воздуха за воздухозаборником (желательно с частотой не менее 4096 Гц) и так же регистрируют результаты измерений.

3. Непосредственно в процессе испытаний по измеренным и зарегистрированным значениям пульсаций давления пошагово с назначенным интервалом времени вычисляют те вейвлет-коэффициенты различного уровня, которые, как было определено во время предварительных испытаний, имеют диагностическое значение.

Для этого назначают один из интервалов обработки измеренных исходных данных, например, размером: 1024; 2048; 4096 значений, что при частоте регистрации 4096 Гц соответствует: 0,25; 0,5; 1,0 секундам. Затем назначают один из шагов обработки измеренных исходных данных размером: 64; 128; 256; 512; 1024; 2048; 4096 значений (см. пример на фиг.5, 6 для интервала в 4096 значений).

4. В конце каждого интервала вычисляют среднеквадратичные отклонения (СКО) полученных вейвлет-коэффициентов Si.

5. В момент достижения среднеквадратическим отклонением (СКО) S, критического значения Sкр, известного из предварительных испытаний, определяют критическое значение фактического положения органа механизации воздухозаборника Lфакт.кр., и перемещают орган механизации в область устойчивой работы.

6. Определяют запас устойчивой работы входного устройства ∆L, как разницу между программным значением Lпрог положения органа механизации и критическим значением фактического положения Lфакт.кр. органа механизации (которое было достигнуто в момент достижения СКО критического значения Sкр):.

∆L=Lпрог-Lфакт.кр.

Отметим, что ни значения давления воздуха, ни его СКО не предвещают в этот момент приближение помпажа воздухозаборника (см. фиг.2, 5).

Таким образом, определение предложенным способом критического значения фактического положения Lфакт.кр. органа механизации и запаса устойчивости ∆L позволяет сделать это без многократного доведения входного устройства газотурбинного двигателя до помпажа.

Для того, чтобы определить границу помпажа и запас устойчивости во всем возможном диапазоне рабочих приведенных частот вращения ротора двигателя, описанные выше в п.п.1-6 действия повторяют для разных значений частоты вращения ротора двигателя этого диапазона.

Для реализации вычислительной части предлагаемого способа разработана серия программ в среде математической системы «MATLAB».

1. Способ определения запаса устойчивости входного устройства, заключающийся в том, что при постоянной частоте вращения ротора двигателя определяют значение программного положения органа механизации воздухозаборника, перемещают орган механизации, в процессе его перемещения регистрируют значения его фактического положения, запас устойчивости определяют как разницу между значениями программного и фактического положения органа механизации, отличающийся тем, что в процессе перемещения органа механизации измеряют пульсации давления с помощью датчиков, установленных за входным устройством на входе в двигатель, результаты измерений регистрируют и по ним вычисляют вейвлет-коэффициенты различного уровня и среднеквадратичные отклонения вычисленных вейвлет-коэффициентов, сравнивая получаемые значения среднеквадратичных отклонений с полученными во время предварительных испытаний их критическими значениями, при достижении среднеквадратичными отклонениями этих критических значений определяют критическое значение фактического положения органа механизации и вычисляют запас устойчивости как разницу между значением программного положения и критическим значением фактического положения органа механизации.

2. Способ по п.1, отличающийся тем, что упомянутые действия повторяют для разных значений частоты вращения ротора двигателя.

3. Способ по п.1, отличающийся тем, что в ходе предварительных испытаний для определения критических значений среднеквадратичных отклонений вейвлет-коэффициентов режим работы входного устройства доводят до помпажа, измеряя пульсации давления с помощью упомянутых датчиков, результаты измерений регистрируют и по ним вычисляют вейвлет-коэффициенты различного уровня и среднеквадратичные отклонения вычисленных вейвлет-коэффициентов, по наступлении помпажа определяют критические значения среднеквадратичных отклонений вейвлет-коэффициентов как максимальные значения среднеквадратичных отклонений в период, предшествующий помпажу.



 

Похожие патенты:

Стенд для испытания мощного высокооборотного агрегата содержит соосно соединенные турбину, компрессор, электрогенератор и соединительную муфту для испытуемого высокооборотного агрегата, а также стендовые системы газоснабжения, водоснабжения, вакуумирования, электропитания, управления и измерений.

Изобретение относится к области измерительной техники, в частности к способам диагностики технического состояния новой техники, не имеющих аналогов. Способ включает испытания объектов до выработки ими ресурса на рабочих режимах работы с определением времени наработки до отказа.

Изобретение относится к контролю технического состояния авиационных газотурбинных двигателей (ГТД) и может быть использовано для диагностики ГТД в процессе их эксплуатации, после технического обслуживания и/или ремонта.

Изобретение относится к области электротехники и может быть использовано в дизель-электрической системе привода. Технический результат - исключение перегрузки мощных полупроводников автономных выпрямителей импульсного тока со стороны генератора при проведении теста self-load-test.

Изобретение относится к технической диагностике и может быть использовано для диагностирования электрических цепей, содержащих активное сопротивление и индуктивность, в частности обмоток электрических машин и аппаратов.

Изобретение относятся к диагностике турбомашин и может быть использовано для диагностирования состояния трансмиссии двухвальных авиационных газотурбинных двигателей (ГТД).

Изобретение может быть использовано при испытаниях турбокомпрессоров для наддува двигателей внутреннего сгорания (ДВС). Стенд содержит входную и выходную магистрали, регулируемый источник газового потока с регулируемым приводом, выполненный в виде технологического компрессора, испытуемый турбокомпрессор с системой смазки и охлаждения, устройство для создания пульсаций газового потока и регулируемый дроссель.

Способ определения полноты сгорания топливной смеси в камере сгорания сверхзвукового прямоточного воздушно-реактивного двигателя заключается в том, что двигатель жестко соединяют с горизонтальной мерительной платформой, платформу устанавливают на поперечные упругие опоры и соединяют с датчиком силы.

Нагрузочное устройство для исследования торцевого демпфирования колебаний лопаток вентиляторов газотурбинного двигателя на вибростенде содержит узел фиксации, предназначенный для удержания и фиксации демпфирующего устройства, узел ориентации, размещенный на станине вибростенда, выполненный с возможностью закрепления в нем узла фиксации и регулирования перемещения в трех взаимно ортогональных направлениях пространства, и узел нагружения прижатием демпфирующего устройства к торцевой поверхности непрофильной части лопатки для создания нагрузки, выполненный с возможностью регулирования силы прижатия с обеспечением силы трения достаточной для рассеивания энергии колебаний лопатки.

Использование: в способе и устройстве для распознавания состояния исследуемой создающей шумы машины. Сущность: в способе и устройстве распознавания состояния исследуемого создающего шумы объекта сгенерированная для по меньшей мере одного эталонного объекта статистическая основная модель классификации акустических признаков на основе акустических признаков (m) генерируемого исследуемым объектом (2) шума с помощью блока (5) обработки данных автоматически индивидуально адаптируется, причем блок (5) обработки данных на основе индивидуально адаптированной статистической модели классификации классифицирует состояние исследуемого создающего шумы объекта (2).

Изобретение может быть использовано при испытаниях объекта (О): транспортного средства (ТС), снабженного двигателем внутреннего сгорания (ДВС), в отношении мощностных показателей, выбросов загрязняющих веществ и топливной экономичности или ДВС в отношении его рабочих характеристик при работе на газовых топливах (ГТ). Для испытаний используют доступное в регионе испытаний, либо доступное для региона поставок ГТ. Предварительная подготовка ГТ к испытаниям заключается в получении данных о его низшей теплоте сгорания. По завершении подготовительных работ проводят испытания. По результатам измерений, выполненных в процессе испытаний О, дополнительно рассчитывают энергию, заключенную в использованном для данных конкретных испытаний ГТ, энергию, снятую с маховика О, если О - ДВС, или с маховика ДВС объекта, если О - ТС, энергоэффективность О, относительное энергосодержание ГТ. При принятии решений по результатам испытаний экономичность О оценивают с учетом его энергоэффективности, а мощностные показатели (мощность, крутящий момент) оценивают с учетом относительного энергосодержания топливо-воздушной смеси. Технический результат заключается в сокращении сроков и повышении достоверности результатов испытаний. 4 табл.

Изобретение относится к стендам для испытаний газотурбинных установок (ГТУ) газоперекачивающих агрегатов магистральных газопроводов. Стенд включает в себя испытательный станок с установленной на нем платформой с ГТУ, выхлопное устройство, выполненное в виде выпускного вертикально расположенного газохода, в состав которого входит пристыкованный к выходу испытуемой ГТУ выпускной коллектор, расположенный выше него и присоединенный к нему термокомпенсирующий и виброгасящий блок, пристыкованный к термокомпенсирующему и виброгасящему блоку переходный канал, присоединенную к переходному каналу выхлопную трубу, верхний срез которой расположен выше входной шахты. Выхлопная труба выполнена из двух секций (нижней и верхней), нижняя из которых расположена внутри каркасной конструкции и опирается на ее нижнюю часть, а сама каркасная конструкция подвешена к крыше стенда, при этом верхняя часть нижней секции выхлопной трубы проходит через крышу стенда и свободно размещена в нижней части верхней секции, которая установлена на крыше стенда. Технический результат заключается в устранении возникновения знакопеременных нагрузок в нижерасположенных конструкциях стенда от воздействия выхлопной трубы. 1 ил.

Изобретение относится к способам технической диагностики дефектов элементов газотурбинного двигателя при его испытаниях и может найти применение при его доводке, а также для создания систем диагностики двигателя. Техническим результатом, на достижение которого направлено изобретение, является повышение эффективности и надежности диагностики технического состояния элементов двигателя за счет выявления на ранней стадии появления дефекта - ослабления затяжки крепления рабочего колеса с валом - в процессе испытаний без переборки двигателя. Технический результат достигается тем, что предварительно определяют первую критическую частоту вращения ротора и при условии, что удвоенное значение первой критической частоты вращения ротора входит в рабочий диапазон частот вращения ротора, в качестве диагностической частоты принимают частоту, равную удвоенной первой критической частоте, следят за составляющей на диагностической частоте, по росту амплитуды которой делают вывод об ослаблении затяжки крепления рабочего колеса с валом. Подтверждением появления дефекта является появление в спектре вибрации составляющей на первой критической частоте вращения ротора. При выявлении дефекта на первых запусках двигателя делают вывод об ослаблении затяжки крепления рабочего колеса с валом при сборке ротора. При выявлении дефекта в процессе наработки при испытании двигателя делают вывод об ослаблении затяжки крепления рабочего колеса с валом в рабочих условиях. 3 з.п. ф-лы, 3 ил.

Изобретение относится к авиадвигателестроению и энергомашиностроению и может найти применение при доводке газотурбинных двигателей (ГТД), а также для создания систем диагностики колебаний. Техническим результатом изобретения является повышение эффективности и надежности диагностики колебаний рабочего колеса турбомашины в режиме реального времени. Технический результат достигается тем, что в способе диагностики колебаний рабочего колеса турбомашины сигналы измеряют одновременно, по меньшей мере, с двух датчиков, вторым из которых является вибропреобразователь, установленный на статорных деталях турбомашины вблизи рабочего колеса, в качестве безразмерного параметра, характеризующего потерю устойчивости, используют коэффициент эксцесса, предварительно задают пороговые уровни для сигналов с датчика пульсаций давления потока и вибропреобразователя и определяют соответствующие им пороговые значения коэффициентов эксцесса, измерение сигналов производят в узкой полосе частот, для каждого из сигналов определяют значения коэффициентов эксцесса и моменты времени, в которые они достигают своих пороговых значений, при этом, если коэффициент эксцесса для сигнала с датчика пульсаций давления потока достигает своего порогового значения раньше, чем коэффициент эксцесса для сигнала с вибропреобразователя, то это свидетельствует о наличии срывных колебаний в рабочем колесе, если коэффициенты эксцесса для сигналов с датчика пульсаций давления потока и вибропреобразователя одновременно достигают своих пороговых значений, то это свидетельствует о наличии автоколебаний в рабочем колесе. 1 з.п. ф-лы, 3 ил.

Изобретение может быть использовано при диагностировании двигателей внутреннего сгорания (ДВС). ДВС выводят номинальный тепловой режим и измеряют температурное поле на поверхности выпускного коллектора (ВК). Определяют конфигурацию ВК и коэффициент, учитывающий особенности движения выхлопных (отработавших) газов (ВГ) в ВК. Затем рассчитывают фактическую температуру ВГ (ТВГп) для каждого цилиндра по формуле: Т В Г п = k n p α в ( Т с 1 − Т в ) ( 1 α в г + δ λ k ) + Т с 1 , где k - коэффициент, учитывающий количество окон ВК; n - порядковый номер цилиндра; р - показатель, зависящий от особенностей конфигурации ВК; αвг - коэффициент теплопередачи ВГ, Вт/(К·м2); αв - коэффициент теплопередачи воздуха, Вт/(K·м2); λk - коэффициент теплопроводности материала ВК, Вт/(К·м); δ - толщина стенки ВК, м; Tс1 - температура наружной стенки ВК, К; Тв - температура наружного воздуха, К; Твг - температура ВГ, затем путем сравнения ее с эталоном, устанавливают конкретное место или несколько мест неисправностей в двигателе. Технический результат заключается в снижении трудоемкости и уменьшении времени проведения диагностики, повышении информативности. 2 ил.

Изобретение относится к авиации и предназначено для определения температуры газа при испытаниях и эксплуатации газотурбинных двигателей на форсажных режимах. Техническим результатом, объективно достигаемым при использовании заявленного способа, является повышение точности определения температуры газа перед турбиной на форсажном режиме за счет уменьшения расчетных величин и использования метода косвенного измерения. Указанный технический результат достигается тем, что в способе определения температуры газа перед турбиной на форсажном режиме турбореактивного двигателя измеряют на максимальном и форсажном режимах температуру газа за турбиной Т4М и Т4Ф, также измеряют на максимальном и форсажном режимах давление за компрессором РКМ и РКФ и за турбиной РТМ и РТФ, далее определяют температуру газа перед турбиной на максимальном режиме перед включением форсажа ТГМ. Затем приводится формула для определения температуры газа перед турбиной на форсажном режиме ТГФ.

Изобретение относится к машиностроению. Сущность изобретения: установка для испытаний кассетного нейтрализатора отработавших газов двигателя внутреннего сгорания содержит пористые проницаемые металлокерамические каталитические блоки фильтрации твердых частиц, пористые проницаемые металлокерамические окислительные и восстановительные каталитические блоки установлены с образованием кассет в секции. Установка снабжена входным и выходным патрубками, секцией приема очищенных газов и установлена на опорах, жестко связанных с секцией пористых проницаемых металлокерамических каталитических блоков фильтрации твердых частиц и секцией приема очищенных газов. Между последовательно расположенными секциями установлены промежуточные соединения, закрепленные на крестовинах и имеющие возможность перемещения в осевом и продольном направлениях относительно общей для всех секций оси. Секция с пористыми проницаемыми металлокерамическими восстановительными каталитическими блоками и секция с пористыми проницаемыми металлокерамическими окислительными каталитическими блоками, имеющие выпускные окна, установлены между секцией пористых проницаемых металлокерамических каталитических блоков фильтрации твердых частиц и секцией приема очищенных газов на общей для всех секций оси с возможностью поворота относительно последней и снабжены фиксаторами положения. На опорах смонтирована штанга, снабженная скользящими направляющими втулками, подсоединенными к промежуточным соединениям. Секции выполнены в виде барабанов. Техническим результатом изобретения является обеспечение идентичности условий и методов испытаний и возможности многовариантного подбора составов каталитических материалов для обеспечения эффективной системы очистки. 1ил.

Изобретения относятся к измерительной технике, в частности к области контроля состояния газотурбинных двигателей, и могут быть использованы для контроля вибрационных явлений, появляющихся в газотурбинном двигателе летательного аппарата во время работы. Способ состоит в том, что устанавливают спектр частот вибрационного сигнала, характерного для состояния работы двигателя и его компонентов, используют множество вибрационных сигнатур, каждая из которых соответствует вибрационному явлению, которое появляется во время работы авиационных двигателей того же типа, что и контролируемый, и причиной которого является дефект или ненормальная работа компонента двигателей. При этом в спектре идентифицируют точки кривых, которые отвечают математическим функциям, каждая из которых определяет вибрационную сигнатуру, для каждой идентифицированной кривой, соответствующей дефекту компонентов двигателя, анализируют амплитуду, связанную с точками кривой, по отношению к предопределенным значениям амплитуды, соответствующим степени серьезности дефекта, и при превышении значения амплитуды или при обнаружении ненормальной работы передают сообщение, связанное с вибрационной сигнатурой. Система содержит средства получения вибрационного сигнала, средства установления спектра частот вибрационного сигнала, базу данных, содержащую множество вибрационных сигнатур, средства идентификации в спектре частот вибрационной сигнатуры, средства анализа амплитуды и средства передачи сообщения, связанного с вибрационной сигнатурой. Технический результат заключается в улучшении качества контроля за состоянием газотурбинного двигателя. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к области испытаний и эксплуатации газотурбинных двигателей, в частности двухконтурных, а именно к контролю технического состояния во время их испытаний и эксплуатации для принятия решения по их обслуживанию и дальнейшей эксплуатации. В качестве дополнительного параметра для оценки изменений технического состояния двигателя выбирают полную температуру газа за турбиной низкого давления − T 4 * , измеренную не менее чем в 8 точках, равномерно распределенных по окружности в характерном сечении, определяют среднюю температуру и предварительно устанавливают предельно допустимое отклонение средней температуры от ее исходного значения в процессе эксплуатации, определяют термопары с максимальным и минимальным значением температуры по измеренным текущим температурам двигателя в процессе эксплуатации, проводят оценку изменения технического состояния по предельно допустимым отклонениям от средней температуры, по предельно допустимым отклонениям разницы между максимальным и минимальным значением температуры, а по месту расположения термопар с максимальной и минимальной температурой определяется место расположения неисправного узла и причина неисправности. Оценку технического состояния производят при значениях разности температур − T 4 * в точках с максимальной и минимальной температурой не более 110°C, и отклонениях температуры по всем точкам от среднего значения не более 10°. Технический результат изобретения - повышение точности определения мест засорения, износа, повреждения проточной части газовоздушного тракта, надежности поддержания требуемого режимного состояния и эксплуатационных характеристик, эксплуатационной экономичности газотурбинного двигателя. 1 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к ракетной технике, а именно к стендовому оборудованию, применяемому при огневых стендовых испытаниях ракетных двигателей с имитацией высотных условий. Стенд для высотных испытаний ракетных двигателей с тонкостенными соплами содержит барокамеру, выхлопной диффузор, кольцевой эжектор и соединенный с ним источник эжектирующего рабочего тела. Источник эжектирующего рабочего тела выполнен в виде парогенератора, образованного охватывающим диффузор кожухом, полость которого на входе сообщена с подводом охлаждающей жидкости, а на выходе с кольцевым эжектором. Стенд снабжен форсунками, размещенными в кольцевом эжекторе и имеющими программно разрушающиеся корпусы. Изобретение позволяет имитировать высотные условия при испытании ракетного двигателя с тонкостенным соплом на различных режимах его работы, включая период выключения, а также обеспечить сохранность элементов конструкции двигателя. 1 з.п. ф-лы, 3 ил.
Наверх