Способ определения теплопроводности керна



Способ определения теплопроводности керна
Способ определения теплопроводности керна

 


Владельцы патента RU 2503956:

Шлюмберже Текнолоджи Б.В. (NL)

Использование: для определения теплопроводности керна. Сущность: заключается в том, что подготавливают образец керна и рентгеновский микрокомпьютерный томограф для сканирования указанного образца керна и получения изображения для каждого сканирования, сканируют указанный образец керна, передают для обработки трехмерное сканированное изображение с томографа на компьютер, предназначенный для анализа изображений, задают толщину слоя внутри полученного трехмерного сканированного изображения для анализа, определяют слой с максимальной теплостойкостью внутри полученного трехмерного сканированного изображения и определяют эффективную теплопроводность образца керна. Технический результат: обеспечение возможности быстрой оценки эффективной теплопроводности, не требующей численного решения уравнения теплопроводности. 2 з.п. ф-лы, 4 ил.

 

Область техники

Изобретение относится к методам измерения теплофизических свойств, например теплопроводности твердых тел, в частности горных пород.

Предшествующий уровень техники

Промышленное применение тепловых методов повышения нефтеотдачи предполагает предварительное моделирование тепло- и массообменных процессов в пластах и скважинах, а также оценку теплового режима скважинного оборудования. Это повышает актуальность проблем, связанных с изучением теплопередачи в пористых средах (образцах пород), которые состоят, главным образом, из неоднородного твердого скелета и пор, заполненных одним или несколькими флюидами - газами или жидкостями.

Теплопроводность (ТП) обычно измеряется в лаборатории с использованием керна или расколотых образцов при помощи одного из двух методов: с помощью разветвленного штока или игольчатого зонда (см., например, H.-D. Vosteen, R. Schellschmidt "Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock", Physics and Chemistry of the Earth, 28 (2003), 499-509 - Х-Д. Востеен, P. Шельшмидт: «Влияние температуры на теплопроводность, теплоемкость и температуропроводность различных типов горных пород» - Физика и химия Земли).

Все эти методы предполагают тепловое воздействие на образцы с последующим проведением измерений. Но нагрев нежелателен для заполненных жидкостью образцов, т.к. при нагреве жидкость частично испаряется и образует газовые пробки в поровом пространстве, что приводит к погрешности измерения теплопроводности.

Физические модели, разработанные для расчетов эффективной ТП, включают в себя три параметра: ТП твердой фазы, ТП насыщающей фазы и микроструктуру пористого пространства. Как только получена детальная внутренняя микроструктура образцов породы, становится возможным определить эффективную ТП путем численного решения уравнения теплопроводности (S.V. Patankar, 'Numerical Heat Transfer and Fluid Flow', Taylor&Francis, 1980, pp.59-61 - C.B Патанкар: «Численное определение теплопереноса и расхода флюида»). Прямое численное решение уравнения теплопроводности может представлять собой крайне сложную задачу в случае учета всех деталей сложной трехмерной микроструктуры горной породы. Иногда не представляется возможным применить этот метод ввиду значительных затрат времени на вычисления и невероятно дорогостоящих компьютерных ресурсов, необходимых для проведения такого моделирования.

Краткое изложение сущности изобретения

Предлагаемый способ позволяет быстро оценить эффективную теплопроводность и не требует численного решения уравнения теплопроводности. Этот способ опирается только на микроструктуру керна, полученную при помощи микрокомпьютерной системы рентгеновской томографии (микро-КТ) и содержит следующие этапы: подготовку образца керна и микрокомпьютерного рентгеновского томографа для сканирования указанного образца керна и создания получения изображения для каждого сканирования, сканирование указанного образца керна, получение изображения для каждого сканирования, передачу трехмерных сканированных изображений для обработки с КТ-томографа на компьютер для проведения анализа изображения, выбор толщины слоя для анализа, определение слоя с максимальной теплостойкостью внутри полученного трехмерного сканированного изображения и определение эффективной теплопроводности образца керна.

Слой с максимальной теплостойкостью представляет собой слой с минимальной общей пористостью поверхности.

Толщина слоя для анализа выбирается с учетом размеров образца керна и размеров вокселей.

Краткое описание чертежей

На фиг.1 изображена микроструктура образца керна, полученная посредством микро-КТ;

На фиг.2 показан слой с максимальной теплостойкостью с количеством ячеек m=2;

На фиг.3 изображены относительные компоненты тензора эффективной ТП в зависимости от относительной ТП фазы насыщения для первого образца керна 1800×1800×1800;

На фиг.4 изображены относительные компоненты тензора эффективной ТП в зависимости от относительной ТП фазы насыщения для второго образца керна 1800×1800×1800.

Подробное описание изобретения

Цифровые модели породы можно построить из двухмерных тонких участков, полученных путем сканирования при помощи микро-КТ, сканированные изображения КТ представляют собой двухмерные сечения, полученные при помощи источника рентгеновского излучения, вращающегося вокруг образца. Плотность рассчитывается по коэффициентам затухания рентгеновского излучения. Сканированные изображения последовательных поперечных сечений используются для построения трехмерных изображений образца. Ввиду большого контраста значений плотности породы и заполненных флюидом пор КТ-изображения могут быть использованы для визуального отображения системы порода-поры. Разрешение составляет от долей миллиметра до нескольких микрон, в зависимости от используемого устройства.

Рентгеновская компьютерная томография или КТ-сканирование представляет собой важную неразрушающую методику построения изображения керна. КТ-сканирование позволяют получить рентгеновские изображения ряда сопряженных равноудаленных двухмерных срезов.

В настоящем изобретении используется следующая процедура определения теплопроводности образца керна.

Используемый рентгеновский КТ-томограф представляет собой сканер третьего поколения, в котором источник и детектор являются неподвижными, а сканируемый объект вращается. Образец породы помещается на вращающемся столе, а рентгеновские лучи, генерируемые источником рентгеновского излучения, проходят сквозь образец, после чего достигают детектора. Источник или образец во время сканирования вращается на 360 градусов, в это время производится измерение затухающей интенсивности рентгеновского излучения и зарегистрированный профиль затухания среза может быть трансформирован в изображение поперечного сечения. Затем образец перемещается вертикально на фиксированную величину, и сканирование повторяется несколько раз до получения изображения всего образца.

Образец керна, структура которого была получена посредством микро-КТ, приведен на фиг.1. Белый цвет соответствует скелету пористой среды, а черный представляет собой флюиды, которые остаются в порах. Предполагается, что тепловой контакт между ячейками пористой среды является идеальным. Физические свойства скелета и флюидов остаются постоянными, а все поры заполнены флюидом.

Это сканированное изображение затем передается для обработки на компьютер, который осуществляет анализ изображения.

Слой с максимальной теплостойкостью определяет тепловой поток. Таким образом, необходимо найти слой с максимальной теплостойкостью. Критерием поиска является минимальная пористость установленного слоя.

Для описания предлагаемого способа оценки ТП керна рассматривается случай, когда установленный слой состоит из двух ячеек в направлении теплопроводности (фиг.2). Предполагается, что теплопроводность имеет место только в одном направлении (вдоль оси X), а градиент температуры по всей длине образца постоянен, т.е.:

где Δх - разрешение вокселя по оси X, м; δT=T2-T1, где T1 и Т2 - значения температуры противоположных граней керна, перпендикулярных оси X, К.

Размеры образца (фиг.2) можно определить следующим образом:

δx=Δx·Nx δy=Δy·Ny δz=Δz·Nz,

где Δy, Δz - разрешение вокселя по осям Y и Z, м; Nx, Ny и Nz - количество ячеек по осям X, Y и Z, соответственно.

Значение теплового потока по оси X через две сопряженные ячейки с индексами (j;k) в направлении осей Y и Z определяется следующей формулой:

где и являются значениями ТП ячеек в установленном слое. Здесь индексы 1 и 2 обозначают первую и вторую ячейки установленного слоя по оси X, соответственно.

Выражение (2) можно преобразовать до следующего вида:

Интенсивность теплового потока по всем установленным ячейкам слоя по оси X рассчитывается следующим образом:

где представляет собой эффективную ТП по оси X двух сопряженных ячеек с равными индексами (j;k) в направлении осей Y и Z.

С другой стороны, интенсивность теплового потока, проходящего сквозь образец по оси X, определяется выражением:

Если приравнять выражения (4) и (5), мы определим эффективную ТП следующим образом:

При преобразовании выражения (6) получаем:

сделав уравнение (6) безразмерным, получаем:

где ϕ1, ϕ12 и ϕ2 представляют собой поверхностные части заполнения рассматриваемого слоя только керном породы, керном породы совместно с флюидом, а также только флюидом, соответственно. Значения величин ϕ1, ϕ12 и ϕ2 определяются следующими выражениями:

,

Величина ϕ1 также используется для определения минимальной общей пористости поверхности установленного слоя ε. Для этой цели используется следующее выражение:

Теперь рассмотрим случай, когда установленный слой состоит из m ячеек в направлении X, при этом m является нечетным числом. В этом случае перепад температур между средой первой и последней ячеек установленного слоя определяется как:

Тогда интенсивность теплопереноса через слой из m ячеек рассчитывается следующим образом:

здесь - эффективная ТП "колонны", которая состоит из m ячеек по оси X:

Затем интенсивность теплопереноса через слой толщиной, равной m ячеек по оси X, определяется, как указано ниже:

Используя выражения (5) и (10) и сделав несколько преобразований, результирующее выражение для определения эффективной ТП для слоя, включающего в себя m ячеек по оси X, можно записать следующим образом:

Оценка ТП предлагаемым способом проводилась для образца 240×240×240 вокселей. Сравнение расчетной ТП с точным решением показало, что погрешность оценки не превышает 3,6% для рассмотренного образца.

При использовании предлагаемого способа было проведено определение тензорных компонентов относительной эффективной ТП для двух образцов керна размером 1800×1800×1800 вокселей. Для первого образца было проведено изменение толщины установленного слоя в направлении, перпендикулярном направлению теплопереноса. Интервал изменения составлял от 3 до 21 ячеек, при этом толщина слоя менялась с 15 до 105 микрон. Было изучено влияние толщины слоя для образца, насыщенного воздухом и водой. Для этого образца оптимальная толщина установленного слоя составила 11-15 ячеек. В этом случае погрешность определения эффективной ТП с использованием метода аппроксимации по сравнению с процедурой масштабирования составляла не более 5%. Таким образом с целью оценки ТП образцов керна размером 1800×1800×1800 векселей и при размере ячейки 5 микрон толщина установленного слоя задана равной 13 ячейкам. На фиг.3 изображены зависимости относительных тензорных компонентов эффективной ТП от относительной ТП насыщающей фазы . При выборе толщины установленного слоя в 13 ячеек относительная погрешность предлагаемого метода составляет не более 1,5%.

Зависимость тензорных компонентов эффективной ТП от относительной ТП насыщающей среды для второго образца представлена на фиг.4. Погрешность определения компонентов эффективной ТП для второго образца составляет менее 6%.

Продолжительность численной оценки компонентов эффективной ТП для одного образца размером 1800×1800×1800 ячеек составила порядка 1000 секунд работы центрального процессора.

1. Способ определения эффективной теплопроводности керна, содержащий следующие этапы:
подготавливают образец керна и рентгеновский микрокомпьютерный томограф для сканирования указанного образца керна и получения изображения для каждого сканирования,
сканируют указанный образец керна,
передают для обработки трехмерное сканированное изображение с томографа на компьютер, предназначенный для анализа изображений,
задают толщину слоя внутри полученного трехмерного сканированного изображения для анализа,
определяют слой с максимальной теплостойкостью внутри полученного трехмерного сканированного изображения и
определяют эффективную теплопроводность образца керна.

2. Способ по п.1, в котором слой с максимальной теплостойкостью представляет собой слой с минимальной общей пористостью поверхности.

3. Способ по п.1, в котором толщина слоя для анализа выбирается с учетом размеров образца керна и размеров вокселей.



 

Похожие патенты:

Изобретение относится к нестационарным способам определения температуропроводности твердых тел и может применяться в строительстве и теплоэнергетике при проведении тепловых испытаний однородных строительных объектов, теплопроводных и теплоизоляционных материалов.

Изобретение относится к нестационарным способам определения теплопроводности сыпучих материалов и может применяться при изучении термических свойств почв, рыхлых горных пород, сыпучих строительных и прочих дисперсных материалов.

Изобретение относится к газоизмерительному устройство для измерения присутствия заданного газа в текучей среде. Устройство содержит датчик, имеющий чувствительный элемент и нагревательный элемент, сконфигурированный для нагрева чувствительного элемента до предварительно заданной рабочей температуры, причем чувствительный элемент является восприимчивым к заданному газу таким образом, что, по меньшей мере, одно электрическое свойство чувствительного элемента изменяется в зависимости от присутствия заданного газа, причем электрическое свойство чувствительного элемента измеряется газоизмерительным устройством; и цепь управления, имеющую контроллер нагревательного элемента, связанный с нагревательным элементом и измеряющий его электрическое свойство, причем цепь управления имеет источник энергии подогрева, подающий энергию к нагревательному элементу, причем контроллер нагревательного элемента связан с источником энергии подогрева и регулирует его работу в зависимости от измерения электрического свойства нагревательного элемента; средство импульсной модуляции, соединенное с контроллером нагревательного элемента, источником энергии подогрева для управления величиной энергии, подаваемому к нагревательному элементу.

Изобретение относится к области термометрии и может быть использовано для определения коэффициента теплопроводности частично прозрачных керамических и стеклообразных материалов с учетом их прозрачности.
Изобретение относится к измерительной технике, а именно к способам определения физических свойств материалов путем тепловых и электрических измерений, и может быть использовано для оперативного контроля теплотехнических качеств ограждающих конструкций зданий и сооружений в натурных условиях.

Использование: для неразрушающего контроля теплофизических характеристик строительных материалов и изделий. Сущность: заключается в том, что перпендикулярно поверхности исследуемого изделия воздействуют импульсом высокочастотного электромагнитного поля СВЧ-диапазона по линии заданной длины, осуществляя нагрев исследуемого полуограниченного в тепловом отношении тела по плоскости, перпендикулярной плоскости внешней поверхности исследуемого объекта и уходящей внутрь него, причем для организации такого воздействия электромагнитное излучение рупорной антенны СВЧ-генератора фокусируют с использованием рупорно-линзовой антенны в линию заданной длины, измеряют в заданный момент времени после воздействия импульса СВЧ-излучения избыточную температуру на теплоизолированной от окружающей среды поверхности исследуемого изделия в двух точках, находящихся, соответственно, на расстояниях x1 и x2 от плоскости высокочастотного электромагнитного воздействия, длину волны и мощность электромагнитного СВЧ-излучения задают такими, чтобы глубина проникновения электромагнитного поля была не менее, чем на порядок больше заданных расстояний x1 и x2 до точек контроля температуры, имея информацию о мощности теплового воздействия на исследуемое изделие в плоскости СВЧ-нагрева и измеренных в заданный момент времени значений избыточных температур в точках контроля, искомые теплофизические характеристики определяют на основе полученных математических соотношений.

Изобретение относится к области технической физики и может быть использовано при прогнозировании эксплуатационных характеристик композиционных материалов. Заявлено устройство для определения коэффициента теплопроводности материала методом плоского горизонтального слоя, содержащее элемент, исключающий боковые тепловые потери, измерительный блок с нагревателем, измерительную ячейку, предназначенную для расположения образца исследуемого материала и выполненную в виде двух функционально независимых элементов, одного с функцией нагрева, другого - охлаждения, которые расположены соосно и с заданным зазором, обеспечивающим тепловой контакт, термопару, подключенную к измерительному блоку.

Изобретение относится к области физико-химического анализа и может быть использовано при тепловых испытаниях. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный круглый нагреватель.

Изобретение относится к области изучения физических свойств пористых неоднородных материалов и может быть использовано для определения характеристик порового пространства и теплопроводности образцов горных пород и минералов.

Изобретение относится к области приборостроения и может быть использовано в промысловой геофизике для оценки глубинных тепловых полей, процессов мембранного разделения в химической промышленности и других отраслях.

Использование: для томографии целевого объекта. Сущность изобретения заключается в том, что измеряют потерю энергии заряженных частиц, которые входят и проникают сквозь объем или останавливаются внутри объема без проникновения сквозь объем; на основании измеряемой потери энергии определяют пространственное распределение заряженных частиц, которые входят и проникают сквозь объем или останавливаются внутри объема без проникновения сквозь объем; и используют пространственное распределение потери энергии заряженных частиц для восстановления трехмерного распределения материалов в досматриваемом объеме.

Использование: для осмотра объектов путем их одновременного обследования в проходящем и рассеянном свете. Сущность заключается в том, что выполняют облучение объекта первым лучом проникающего излучения, генерирование сигнала пропускания на основе проникающего излучения, пропущенного через объект и зарегистрированного датчиком регистрации пропускания, сканирование объекта вторым лучом проникающего излучения, генерирование сигнала рассеивания на основе проникающего излучения, рассеянного объектом и зарегистрированного датчиком регистрации рассеивания, корректирование любой помехи в сигнале рассеивания, возникающей вследствие первого луча проникающего излучения при наличии объекта, и отображение изображения, видимого оператору и включающего информацию по меньшей мере от сигнала рассеивания.

Использование: для бесконтактного рентгеновского контроля. Сущность: заключается в том, что в досмотровом комплексе применяется один источник рентгеновского веерообразного пучка лучей, который может перемещаться по дуге, длиной, равной четверти окружности, с изменяющимся шагом в диапазоне 0°…90°.
Использование: для получения трехмерного образа пробы планктона. Сущность: заключается в том, что выполняют проведение рентгеновской микрокомпьютерной томографии пробы, причем процессу томографии одновременно подвергается вся совокупность объектов, содержащихся в пробе, в которой к фиксирующему раствору добавляется рентгеноконтрастная жидкость.

Изобретение относится к области исследования образцов неконсолидированных пористых сред и может быть использовано для изучения открытой или закрытой пористости, распределения пор по размерам, удельной поверхности, пространственного распределения и концентрации ледяных и/или газогидратных включений в поровом пространстве образцов, определения размера включений и т.д.
Изобретение относится к медицине и может быть использовано для диагностики туберкулеза внутригрудных лимфатических узлов (ТВГЛУ) бронхопульмональной группы у детей.

Изобретение относится к медицинской технике, а именно к рентгеновским устройствам. .

Использование: для рентгеновской томографии. Сущность способа: заключается в том, что облучают и воспринимают массив изображения энергетического спектра рентгеновского излучения, проходящего через объект, при этом восстанавливают изображения по теневым проекциям объекта, затем формируют, сравнивают и анализируют текущие и эталонные интегральные характеристики изображения объекта, определяют дефекты объекта и отображают результаты анализа объекта. Способ отличается тем, что восстановление трехмерного изображения осуществляют при вращении и смещении объекта по трем взаимно перпендикулярным осям системы координат, связанной с рабочей зоной объекта при корректировке управления последней, а текущие и эталонные интегральные характеристики изображения объекта формируют в виде спектральных и фрактальных признаков. Технический результат: повышение точности оценки внутренней структуры объекта, быстродействия, расширение функциональных возможностей (расширение класса диагностируемых объектов) и снижение опасности применения для обслуживающего персонала из-за значительного рентгеновского облучения. 2 н. и 14 з.п. ф-лы, 17 ил.
Наверх