Нейтронный датчик



Нейтронный датчик
Нейтронный датчик

 


Владельцы патента RU 2503975:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (RU)

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок, и может быть использовано в системах управления и защиты ядерных реакторов, подкритических сборок, импульсных и других источников нейтронов, в научных исследованиях. Сущность изобретения заключается в том, что в нейтронном датчике, содержащем источник заряженных частиц, возникающих под действием нейтронного излучения, и упругодеформируемый элемент, установленные в корпусе, источник заряженных частиц выполнен из стабильного нерадиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, а на поглотителе заряженных частиц установлена отражающая призма, связанная с оптической системой ввода и вывода светового луча, выполненная в виде оптического окна в корпусе датчика, напротив которого расположен узел отражателя из полупрозрачного зеркала и отражающих призм. Технический результат - повышение чувствительности датчика. 2 ил.

 

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок, и может быть использовано в системах управления и защиты ядерных реакторов, подкритических сборок, импульсных и других источников нейтронов, в научных исследованиях.

Известен детектор нейтронов, который содержит резистивный элемент в виде таблетки из делящегося материала с низкой теплопроводностью и большим удельным электросопротивлением. Под действием излучения элемент нагревается и изменяется его электросопротивление, которое измеряется. Патент Российской Федерации №1526403, МПК: G01T 3/00, 1997 г. Недостатками аналога являются: использование радиоактивных материалов, низкий уровень генерируемого электрического сигнала, низкая помехозащищенность к электромагнитным наводкам, отсутствие возможности обеспечения неэлектрическими средствами требуемого порога срабатывания по флюенсу нейтронов.

Известен детектор нейтронов, включающий корпус, заполненный люминесцирующей газовой средой и делящимся материалом, и фотоприемник. В одном из торцов корпуса размещен волоконный световод, соединенный с регистрирующей системой посредством фотоприемника с фильтром, при этом делящийся материал выполнен в виде слоя и нанесен на боковую поверхность корпуса. Полезная модель Российской Федерации №30008, МПК: G01T 1/16, 2003 г. Недостатками аналога являются: использование радиоактивных материалов; низкая эффективность регистрации из-за относительно малого сечения реакции деления; отсутствие возможности обеспечения неэлектрическими средствами требуемого порога срабатывания по флюенсу нейтронов; энергозависимость.

Известен детектор нейтронов, содержащий чувствительный элемент из материала, в состав которого входит делящийся под действием нейтронов материал, и энергонезависимый преобразователь энергии с электрическим выходом, в котором чувствительный элемент выполнен из материала с эффектом памяти формы, энергонезависимый преобразователь включает два одинаковых пьезоэлектрических генератора, включенных электрически параллельно встречно, при этом чувствительный элемент установлен с возможностью взаимодействия с указанными генераторами в процессе формовосстановления при превышении потоком нейтронов критического уровня через дополнительно введенный упругий элемент, механически связанный с чувствительным элементом и размещенный с зазорами между пьезоэлектрическими генераторами. Патент Российской Федерации №2332689, МПК: G01T 3/00, 2008 г. Прототип.

Недостатками прототипа являются: использование делящегося вещества; низкая эффективность регистрации из-за относительно малого сечения реакции деления; ограниченное быстродействие; невозможность измерения временной зависимости потока в случае импульсных нейтронных источников.

Задачами изобретения являются: исключение из конструкции делящегося вещества; создание энергонезависимого нейтронного датчика, менее чувствительного к фоновым излучениям и электромагнитным наводкам; обеспечение неэлектрическими средствами требуемого порога срабатывания; измерение временной зависимости потока в случае импульсных нейтронных источников; снятие ограничений на измеряемые потоки и флюенсы.

Техническим результатом является: исключение делящегося вещества; снятие ограничений на измеряемые потоки и флюенсы, повышение чувствительности за счет применения тонкой призмы с малым углом при основании.

Технический результат достигается тем, что в нейтронном датчике, содержащем источник заряженных частиц, возникающих под действием нейтронного излучения и упругодеформируемый элемент, установленные в корпусе, источник заряженных частиц выполнен из стабильного не радиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, а на поглотителе заряженных частиц установлена тонкая отражающая призма, связанная с оптической системой ввода и вывода светового луча, выполненной в виде оптического окна в корпусе датчика, напротив которого расположен узел отражателя из полупрозрачного зеркала и отражающих призм.

Сущность изобретения поясняется на Фиг.1 и Фиг.2.

На фиг.1 представлен продольный разрез датчика нейтронов, где: 1 - корпус датчика; 2 - упругодеформируемый элемент; 3 - источник заряженных частиц; 4 - поглотитель заряженных частиц; 5 - входной световой луч; 6 - выходной луч; 7 - оптическое окно; 8 - узел отражателя.

На фиг.2 схематично представлен ход лучей при использовании призматических элементов, где: 9 - полупрозрачное зеркало; 10 - тонкая отражающая призма, закрепленная на упругодеформируемом элементе 2; 11 - отражающие призмы, закрепленные в корпусе датчика; 12 - направление перемещения призмы 10 при растяжении упругодеформируемого элемента 2.

Нейтронный датчик работает следующим образом. Нейтроны, попадающие в материал источника заряженных частиц 3, вызывают ядерную реакцию и излучение заряженных частиц, часть из которых выходит и в сторону поглотителя заряженных частиц 4. Источник заряженных частиц 3 и поглотитель заряженных частиц 4 набирают заряд противоположных знаков. Между ними возникает сила электрического притяжения, которая растет по мере увеличения заряда. Источник заряженных частиц 3 и поглотитель заряженных частиц 4 растягивают упругодеформируемый элемент 2 и приближаются друг к другу.

Изменение взаимного положения источника заряженных частиц 3 и поглотителя заряженных частиц 4, на котором установлена отражающая призма 10, регистрируют и выводят с помощью оптического узла 8.

Входной световой луч 5 отражается от полупрозрачного зеркала 9 и попадает на тонкую отражающую призму 10, закрепленную на упругодеформируемом элементе 2.

Если никаких радиационных изменений нет, то световой луч возвращается, тем же путем. Если возник нейтронный поток, происходит перемещение упругодеформируемого элемента 2, которое вызывает перемещение призмы 10. Отражающие призмы 11 направляют световой луч через полупрозрачное зеркало 9. Положение отраженного от призмы 10 светового луча 6 смещается (штриховая линия). Малое перемещение отражающей призмы 10 приводит к значительно большему перемещению отраженного луча 6 и повышение чувствительности за счет тонкой отражающей призмы 10 с малым углом при основании.

Датчик нейтронов нечувствителен к электромагнитным наводкам, так как использует оптический канал измерения. Поглотитель заряженных частиц 4 выполнен из материала с хорошей электропроводностью, обладающим минимальным коэффициентом отражения (альбедо) для падающих на него заряженных частиц. Одним из таких материалов является, например, графит.

Упругодеформируемый элемент 2 выполнен в виде жестко защемленной балки, или витой цилиндрической пружины, или спиральной пружины, или торсионной пружины, или мембранной пружины.

Нейтронный датчик, содержащий источник заряженных частиц, возникающих под действием нейтронного излучения, и упругодеформируемый элемент, установленные в корпусе, отличающийся тем, что источник заряженных частиц выполнен из стабильного нерадиоактивного материала, напротив источника заряженных частиц установлен поглотитель заряженных частиц, на поглотителе заряженных частиц установлена тонкая отражающая призма, связанная с оптической системой ввода и вывода светового луча, выполненной в виде оптического окна в корпусе датчика, напротив которого расположен узел отражателя из полупрозрачного зеркала и отражающих призм.



 

Похожие патенты:

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано для определения плотности потока быстрых нейтронов при работе ядерно-физических установок.

Изобретение относится к углеводородной промышленности, более конкретно данное изобретение касается инструментов нейтронного каротажа, используемых при исследовании геологической формации.

Изобретение относится к области ядерной техники, в частности к калибровке эмиссионных детекторов нейтронов для внутризонного контроля распределения энерговыделения в ядерных реакторах.

Изобретение относится к устройству измерения скорости счета камеры деления и устройству калибровки соответствующей камеры деления. .

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок.

Изобретение касается способа определения спектрального и пространственного распределения потока фотонов тормозного излучения, по меньшей мере, в одном пространственном направлении (х, у, z). Способ осуществляют путем измерения нейтронов, получаемых при попадании фотонов (ph) тормозного излучения по меньшей мере на одну конверсионную мишень (5), которую перемещают в указанном направлении (х, у, z). Технический результат - сокращение времени измерений. 2 н. и 5 з.п. ф-лы, 5 ил.

Изобретение относится к способам детектирования нейтронного потока в зоне облучения. Способ регистрации нейтронного потока ядерной установки в широком диапазоне измерений, заключающийся в том, что детектируют нейтронный поток ядерной установки посредством регистрации токового режима камеры деления с последующим измерением и обработкой тока камеры деления вне зоны облучения, при этом одновременно с токовым режимом используют режим счета единичных нейтронов, при этом в диапазоне линейной зависимости скорости счета от нейтронного потока осуществляют прямые измерения актов регистрации нейтронов, причем сигнал, обусловленный единичными нейтронами без предварительного усиления, передают по кабельной линии для регистрации и обработки вне зоны облучения, после чего зависимости плотности потока нейтронов от времени, измеренные камерой деления в счетном и токовом режимах, объединяются. Технический результат - повышение достоверности измерения нейтронного потока при значениях регистрируемого тока с камеры меньших, чем десять фоновых токов камеры в условиях сохранения надежности и стабильности рабочих характеристик регистрирующей аппаратуры. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способам определения направленности радиоактивного излучения. Способ определения направленности радиоактивного излучения включает создание объема метастабильной протянутой текучей среды; размещение объема метастабильной протянутой текучей среды в непосредственной близости от источника радиоактивного излучения; определение положения кавитаций, вызванных радиоактивным излучением, в метастабильной протянутой текучей среде; и определение направления источника радиоактивного излучения на основании кавитаций, вызванных радиоактивным излучением, в метастабильной протянутой текучей среде. Устройство для определения направленности падающего радиоактивного излучения содержит камеру, содержащую текучую среду, систему управления, связанную с механизмом для деформации камеры, которые совместно функционируют для создания и поддержания в текучей среде напряженного метастабильного состояния, достаточного для формирования кавитационных пузырьков при столкновениях молекул текучей среды с налетающими ядерными частицами. 2 н. и 27 з.п. ф-лы, 22 ил., 4 табл.

Изобретение касается способа определения изотопного отношения делящегося вещества. Способ определения изотопного отношения делящегося вещества, содержащегося в камере деления, причем делящееся вещество имеет основной изотоп X и по меньшей мере один изотоп-примесь Y, при этом изотопы X и Y характеризуются радиоактивным распадом согласно двум следующим уравнениям: X->X′, характеризуется λX, FX, и Y->Y′, характеризуется λY, FY, где X′ и Y′ соответственно являются «дочерними» изотопами изотопов X и Y, при этом распад изотопа X, соответственно Y, характеризуется испусканием гамма-кванта дочерним изотопом X′, соответственно Y′, с энергией E1, соответственно E2, с вероятностью испускания Iγ(E1), соответственно Iγ(Е2), причем величины λX и λY соответственно являются постоянной радиоактивного распада основного изотопа X и постоянной радиоактивного распада изотопа-примеси Y, a FX и FY соответственно являются коэффициентом разветвления распада изотопа, используемым для измерения радиоактивности основного изотопа, и коэффициентом разветвления распада изотопа, используемым для измерения радиоактивности изотопа-примеси, отличающийся тем, что содержит следующие этапы: при помощи спектрометрической установки, установленной в заданной конфигурации измерения, измеряют чистую площадь S(E1) первого пика гамма-излучения делящегося вещества с первой энергией E1 и чистую площадь S(E2) второго пика гамма-излучения делящегося вещества с второй энергией E2, при помощи контрольных точечных источников в заданной конфигурации измерения определяют контрольный коэффициент полного поглощения R O P ( E 1 ) с первой энергией E1 и контрольный коэффициент полного поглощения R 0 P ( E 2 ) со второй энергией E2, при помощи вычислительного устройства для заданной конфигурации измерения вычисляют интегральный переход T(E1) коэффициента для делящегося вещества с первой энергией E1 и интегральный переход T(Е2) коэффициента для делящегося вещества со второй энергией Е2, и при помощи вычислительного устройства вычисляют изотопное отношение R делящегося вещества при помощи уравнения: R = λ X λ Y × S ( E 2 ) S ( E 1 ) × I γ ( E 1 ) I γ ( E 2 ) × R 0 P ( E 1 ) R 0 P ( E 2 ) × T ( E 1 ) T ( E 2 ) × F X F Y . Технический результат - повышение эффективности определения изотопного отношения делящегося вещества. 5 з.п. ф-лы, 5 ил.

Изобретение относится к полупроводниковым детекторам излучений. Детектор быстрых нейтронов содержит конвертор быстрых нейтронов и поверхностно-барьерный GaAs сенсор, регистрирующий протоны отдачи, при этом сенсор выполнен на подложке арсенида галлия n-типа проводимости, на рабочей поверхности которого выращен эпитаксиальный слой GaAs высокой чистоты толщиной от 10 до 80 мкм, причем и где d - толщина эпитаксиального слоя GaAs высокой чистоты, εп - относительная диэлектрическая проницаемость полупроводника, ε0 - электрическая постоянная, φк - контактная разность потенциалов, q - заряд электрона, ND - уровень легирования полупроводника, µе - подвижность электронов, τе - время жизни электронов, со сформированным на нем платиновым барьером Шоттки толщиной 500 Å, на обратной стороне подложки сформирован омический контакт. Технический результат - повышение эффективности сбора заряда детектора, снижение чувствительности к гамма-фону. 1 ил.

Изобретение относится к области ядерной физики. Способ измерения асимметрии распада поляризованных пучков включает в себя пропускание поляризованного пучка частиц через контролируемую зону, регистрацию заряженных частиц, испускаемых асимметрично относительно спина распадающихся частиц, контрольные измерения при изменении направления поляризации пучка на 180°, при этом исходный поляризованный пучок частиц пропускают через зону контроля с близким к нулю магнитным полем, поток частиц исходного поляризованного пучка ступенчато варьируют с помощью прецизионной управляемой диафрагмы, на каждой ступени потока проводят многократные измерения скорости счета и энергетического спектра испускаемых в зоне контроля заряженных частиц с помощью охватывающего пучок секционированного по углу детектора; по совокупности скоростей счета и их погрешностей строят функционал ошибок для оценок чисел частиц в зоне видимости детектора путем приближений этих чисел шкалой (последовательностью) с шагом 1/μ, значение μ подбирают до наилучшего совмещения минимумов функционалов ошибки для времен жизни τ+ и τ- двух спиновых мод распада и их среднего арифметического значения, причем обработка проводится независимо для двух наборов данных, отличающихся значениями потока, а решение по μ и τ определяется пересечением функционалов этих наборов вблизи минимумов, близких к 1, причем коэффициент спиновой корреляции (асимметрия распада) определяется по формуле где - есть средняя спиральность частиц, испускаемых при распаде, определяемая из измеренного спектра частиц или из табличных данных. Технический результат - повышение точности измерения асимметрии распада нейтронов. 4 ил.

Изобретение относится к области измерительной техники, а именно к метрологии нейтронного излучения, и может быть использовано при калибровке каналов измерения расхода теплоносителя в первом контуре корпусных ядерных реакторов. Способ включает измерение и запись величины плотности нейтронного потока при различных условиях его формирования с помощью ионизационной камеры деления. Согласно изобретению калибровку каналов измерения плотности нейтронного потока производят за пределами реактора, при этом измерение плотности нейтронного потока осуществляют двумя измерительными каналами в два этапа: на первом этапе размещают источник нейтронов напротив датчика первого измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны выхода теплоносителя из реактора, при этом расстояние l1 от источника нейтронов до этого датчика выбирают таким образом, чтобы скорость счета N1 в первом измерительном канале соответствовала плотности нейтронного потока на трубопроводе, и регистрируют эту скорость счета N1, на втором этапе размещают источник нейтронов напротив датчика второго измерительного канала, предназначенного для установки на трубопроводе первого контура ядерного реактора со стороны возврата теплоносителя в реактор, и выбирают расстояние l2 между источником нейтронов и вторым датчиком по формуле , где v - скорость потока теплоносителя; L - расстояние между датчиками на трубопроводе; τ - период полураспада изотопа 17N, затем настраивают чувствительность второго измерительного канала таким образом, чтобы его скорость счета N2 была равна после чего устанавливают датчики на трубопровод. Технический результат - повышение точности калибровки каналов измерения плотности нейтронного потока и сокращение времени на ее проведение.

Устройство может быть использовано для изготовления цилиндрических трубок из пластика или металлопластика для газонаполненных дрейфовых детекторов ионизирующего излучения. Рабочий орган для ультразвуковой сварки представляет собой сонотрод со сферической рабочей поверхностью и установлен с возможностью его прижатия во время сварки к наковальне. Подающая бобина снабжена регулируемым натяжителем ленты. Упор для формирования ленты в U-образный профиль имеет регулировочный узел для точного позиционирования продольных кромок заготовки трубки относительно сонотрода и наковальни. Фильера имеет средство для точного позиционирования ее относительно наковальни. Устройство снабжено кареткой для закрепления в ней конца трубки, которая имеет возможность перемещения по направляющей для вытягивания трубки. Каретка снабжена соплом для подачи газа под избыточным давлением в сваренную часть трубки. Полученные трубки имеют минимально возможную толщину, обладают достаточной прочностью для эксплуатации при рабочем давлении газа внутри трубки. Максимально увеличена гладкость внутренней поверхности сварного шва за счет исключения свисания его кромки по всей длине. Изготовленные с помощью устройства трубки обеспечивают малое искажение электрического поля внутри, что положительно влияет на эффективность работы детектора. 5 ил.

Изобретение относится к области измерении плотности потока нейтронов с помощью различных типов детекторов, в частности пропорциональных и коронных счетчиков медленных нейтронов, импульсных камер деления. Способ регистрации нейтронов в присутствии гамма-излучения с тактовой процедурой измерений включает измерение постоянного тока Iγ, возникающего в детекторе нейтронов под действием гамма-излучения, при этом порог рабочей дискриминации UДраб для регистрации скорости счета нейтронов устанавливается по двум значениям скорости счета собственных шумов детектора на нерабочей ветви интегрального спектра импульсов, когда в логарифмическом масштабе прямая, соединяющая эти значения - 1-го (NШ1) - максимально высокого в пределах разрешающей способности усилительного тракта, 2-го (NШ2) - низкого, выбранного с соблюдением условия NШ2≥10·Nn, где Nn - ожидаемая скорость счета нейтронов, экстраполируется на ось дискриминаций, имеющую линейный масштаб, и точка пересечения на оси дискриминаций в области NШ≤(10-1-10-2)·Nn принимается в качестве UДраб, при котором можно пренебречь вкладом шумовых импульсов в измеряемую после установки UДраб скорость счета нейтронов Nn, а в канал измерения тока Iγ дополнительно вводятся автоподстройка значений высокого напряжения детектора Uвыс1 (перед автоподстройкой нуля схемы измерения тока Iγ), Uвыс2 (перед измерением тока Iγ) и реперный сигнал с автоконтролем его воспроизводимости. Технический результат - исключение влияния нестабильности работы канала детектирования нейтронов на результаты текущих измерений с обеспечением максимально возможной эффективности детекторов при любых значениях мощности дозы гамма-излучения. 2 ил., 1 табл.

Изобретение относится к полупроводниковым детекторам для регистрации корпускулярных излучений, в частности к алмазным детекторам тепловых нейтронов. Алмазный детектор тепловых нейтронов состоит из алмазной пластины, двух контактных электродов, конвертора тепловых нейтронов и внешних выводов для подачи напряжения смещения и съема выходного сигнала, при этом один из контактных электродов выполнен в виде набора графитовых столбиков, расположенных в объеме алмазной пластины так, чтобы расстояние от торцов графитовых столбиков до второго контактного электрода не превышало 5-10 мкм, при этом основания графитовых столбиков параллельно подсоединены к выводу для подачи напряжения смещения, а конвертор тепловых нейтронов установлен над поверхностью другого контактного электрода. Технический результат - снижение чувствительности к фоновому гамма-излучению. 1 ил.
Наверх