Гибридная фоточувствительная схема (гфс)

Гибридная фоточувствительная схема содержит: алмазный матричный фотоприемник (МФП), индиевые столбики и кремниевый мультиплексор с чувствительными площадками. В состав МФП входят: верхний плоский электрод, на который подается напряжение смещения, алмазная пластина и нижние электроды чувствительных элементов алмазного МПФ, с которых снимается сигнал. Нижние электроды гальванически связаны через индиевые столбики с расположенными в виде прямоугольной матрицы с осями X и Y чувствительными элементами кремниевого мультиплексора. Число индиевых столбиков на каждой осей X и Y должно быть не менее двух. Кроме того, матрица алмазного фотоприемника по оси X и Y имеет в два раза шаг больше, чем матрица кремниевого мультиплексора, и нижние электроды чувствительных элементов алмазного МПФ расположены в шахматном порядке. Нижние электроды чувствительных элементов алмазного МПФ соединены гальванически индиевыми столбиками только с нечетными или четными чувствительными площадками кремниевого мультиплексора, поэтому, свободные чувствительные площадки кремниевого мультиплексора могут использоваться для регистрации видимого и ИК-излучений. Технический результат изобретения - расширение детектируемого диапазона излучения, за счет одновременной регистрации изображения в ультрафиолетовом, видимом и ИК спектре, увеличение срока службы ГФС за счет исключения попадания жесткого УФ излучения на мультиплексор. 4 ил.

 

Изобретение относится к области полупроводниковой электроники и может быть использовано при создании многоспектральных многоэлементных фотоприемников.

Известны многоэлементные микроэлектронные устройства, в которых отдельные элементы чувствительного слоя, принимающие излучение в разных рабочих спектральных диапазонах, располагаются поочередно - по отдельным столбцам, что позволяет решить проблему расширения детектируемого диапазона за счет усложнения конструкции мультиплексора. Сигналы с этих элементов поступают на низкошумящие трансимпедансные усилители схемы считывания, имеют разные для каждого из двух типов приемников коэффициенты усиления и емкости ячеек накопления зарядов ("Long-wavelength 128×128 GaAs quantum well infarared photodetector arrays" - B.F. Levine et.al., Semicjnd,. Soi. Technol. 1991, v6. C. 114-C119).

Недостатком такой конструкции является то, что для каждого из двух типов приемников приходиться изготовлять свой тип усилителя, с разными коэффициентами усиления и емкостью ячеек накопления зарядов, что технологически очень сложно и существенно повышает стоимость конечного изделия.

Кроме того, в этом случае остается нерешенным вопрос защиты кремниевого мультиплексора от жесткого УФ излучения, что приводит к существенному снижению его надежности и срока службы.

Также известно решение, которое принято за прототип изобретения, когда (фиг 1.) гибридная фоточувствительная схема, содержащая: алмазный матричный фотоприемник (МФП), индиевые столбики 4 и кремниевый мультиплексор 6 с чувствительными площадками 5, причем в состав МФП входят: верхний плоский электрод 1, на который подается напряжение смещения, алмазная пластина 2 и нижние электроды 3 чувствительных элементов алмазного МПФ, с которых снимается сигнал, при этом нижние электроды 3 гальванически связаны через индиевые столбики 4 с расположенными в виде прямоугольной матрицы с осями X и Y чувствительными элементами 5 кремниевого мультиплексора 6, причем число индиевых столбиков на каждой из осей X и Y не менее двух. Матрица фотоприемника по осям X и Y имеет одинаковые шаги (flip-chip-сборка). (Altukhov А.А., Feshchenko V.S., Mityagin A.Yu. et al. А 128×128 Pixel Ultraviolet Photodetector Based on a Diamond Sensor // Radiotekhnika i elektronika. - 2010. - v.55. - №6, p.764-768).

Недостатком такой конструкции является ограничение диапазона детектируемого излучения УФ диапазоном спектра, обусловленного спектром фоточувствительности фотоприемной матрицы.

Признаки прототипа, совпадающие с признаками изобретения: прототип и изобретение состоят из двух основных частей - интегральной схемы детектирования УФ излучения и кремниевой интегральной схемы преобразования принятого сигнала, в которых собственно фотоприемная матрица электрически связана с матричным кремниевым мультиплексором посредством индиевых столбиков (flip-chip-сборка).

Техническим результатом изобретения является расширение детектируемого диапазона излучения в УФ диапазон спектра, увеличение срока службы за счет исключения попадания жесткого УФ излучения на мультиплексор и возможность регистрации изображения одновременно и в ультрафиолетовом, видимом и ИК-диапазоне спектра.

Изобретение поясняется чертежами.

На фиг.1 представлена конструкция гибридной фоточувствительной схемы (ГФС), где введены обозначения: 1 - верхний электрод алмазного МФП; 2 - алмазная пластина; 3 - нижний электрод чувствительного элемента алмазного МФП; 4 - индиевые столбики; 5 - чувствительные площадки кремниевого мультиплексора; 6 - кремниевый мультиплексор; 7 - падающее излучение; 8 - отфильтрованное излучение.

На фиг.2 показано расположение чувствительных площадок 5 на мультиплексоре.

На фиг.3 показано расположение нижних электродов 3 на МФП.

На фиг.4 показан верхний платиновый электрод 1 МПФ, где цифры в кружках означают: 1 - места напыления платины, 2 - окна в электроде для прохождения видимого и ИК излучения.

Технический результат изобретения обеспечивается за счет того, что алмазный матричный фотоприемник имеет в два раза больший шаг по оси X и Y (фиг 2), чем матричный кремниевый мультиплексор 6, что позволяет регистрировать не только УФ излучение в фоточувствительных элементах матричного фотоприемника 3, связанных с матричным кремниевым мультиплексором 5 индиевыми столбиками 4, но и видимый свет с ИК-излучением, которые, проходя в промежутках между нижними электродами 3, достигает чувствительных площадок кремниевого мультиплексора 5, на которых не установлены индиевые столбики.

Технический результат изобретения достигается благодаря тому, что гибридная фоточувствительная схема (ГФС) содержит: алмазный матричный фотоприемник (МФП), индиевые столбики 4 и кремниевый мультиплексор 6 с чувствительными площадками 5.

В состав МФП входят: верхний плоский электрод 1, алмазная пластина 2 и нижние электроды 3 чувствительных элементов алмазного МПФ.

Плоский верхний электрод 1 алмазного МФП служит для приема падающего излучения, на который подается напряжения смещения. На верхнем плоском электроде 1 формируется матрица строго расположенных вдоль осей X, Y отдельных фотоприемников, посредством напыления полупрозрачного для УФ излучения слоя платины на алмазную пластину 2 (фиг.2).

Плоская алмазная пластина 2 предназначена для детектирования УФ излучения, изготовляется посредством вырезания из природного или искусственного алмаза или посредством выращивания алмазных пленок искусственным способом CVD методом из газовой фазы метан 3% - водород 97%.

Нижние электроды 3 чувствительных элементов алмазного МФП служат для сбора электрического сигнала, возникшего в результате детектирования УФ излучения в каждом отдельном фотоприемнике на алмазной пластине, и изготавливается посредством напыления металла, например золота, на алмазную пластину 2 с размерами плоского торца индиевого столбика 4.

Индиевый столбик 4 предназначен для передачи электрического сигнала с нижнего электрода 3 чувствительного элемента алмазного МФП на чувствительную площадку 5 кремниевого мультиплексора 6, который выполнен путем нанесения индия через маску на нижний электрод 3 чувствительного элемента алмазного МФП и чувствительную площадку 5 кремниевого мультиплексора 6, с последующим сплавлением половинок во время сборки. Нижние торцы индиевых столбиков 4, через чувствительные площадки 5, гальванически соединены с верхней плоскостью кремниевого мультиплексора 6.

Число индиевых столбиков на каждой из осей не менее двух. Матрица нижнего электрода 3 алмазного фотоприемника по оси X и Y имеет в два раза шаг больше, чем матрица электродов чувствительных площадок 5 кремниевого мультиплексора 6. (Рис.3). Индиевые столбики, соединяющие электроды 3 алмазного МФП с электродами чувствительных площадок 5 кремниевого мультиплексора, расположены в шахматном порядке на матрице электродов 5 кремниевого мультиплексора 6. Поэтому нижние электроды 3 чувствительных элементов алмазного МФП соединены гальванически индиевыми столбиками только с нечетными или четными чувствительными площадками 5 кремниевого мультиплексора.

Чувствительные площадки 5 с размерами нижнего плоского торца индиевого столбика 4 выполнены на основе КМОП (комплементарная логика на транзисторах металл-оксид-полупроводник) технологии (Тришенков М.А. Фотоприемные устройства и ПЗС. Обнаружение слабых оптических сигналов. - М: Радио и Связь, 1992. - 400 с.: ил.) и предназначены для ввода электрического сигнала, в случае если они соединены с алмазным МФП индиевым столбиком, в мультиплексор 6, и детектирования видеосигнала на открытых площадках мультиплексора.

Плоский кремниевый мультиплексор 6 осуществляет усиление, коммутацию и обработку сигналов, поступающих на его чувствительные площадки 5, и выдает электрический сигнал на системы отображения информации, при этом изготовляется он на основе КМОП технологии (Тришенков М.А. Фотоприемные устройства и ПЗС. Обнаружение слабых оптических сигналов. - М.: Радио и Связь, 1992. - 400 с.: ил.).

ГФС работает следующим образом (Рис.1). При подаче на электрод 1 излучения 7, его УФ составляющая поглощается и вызывает на чувствительных элементах алмазного МПФ (1, 2, 3) фототок, который через индиевые столбики 4 поступает на кремниевый мультиплексор 6 и детектируется как ультрафиолетовый сигнал. Видимый свет 8, без поглощения, проходит в промежутках между чувствительными элементами алмазного МПФ и попадает на чувствительные площадки кремниевого мультиплексора 5, где поглощается и детектируется как видеосигнал.

Указанные задачи, увеличение срока службы за счет исключения попадания жесткого УФ излучения на мультиплексор и возможность регистрации изображения одновременно и в ультрафиолетовом, видимом и ИК-диапазоне спектра, решаются посредством того, что матричный фотоприемник состоит из алмаза, который является фильтром для жесткого УФ излучения и имеет в два раза больший шаг по оси X и Y, чем матричный кремниевый мультиплексор, что позволяет с одной стороны не попадать УФ излучению на мультиплексор, и с другой стороны проходить через алмазную пластину видимому свету и ИК излучению в промежутках между нижними электродами МПФ.

Использование в предлагаемой ГФС МПФ на основе алмаза позволяет с одной стороны детектировать УФ излучение, а с другой стороны фильтровать его с целью защиты кремниевого мультиплексора. Увеличение в два раза шага МФП на основе алмаза и расположение фотоприемников УФ-излучения в шахматном порядке позволяет видимому излучению проходить сквозь алмазный МФП и детектироваться на свободных чувствительных площадках 5 кремниевого мультиплексора 6.

Принципиальным отличием предложенной конструкции является то, что с одной стороны алмазный МПФ задерживает все жесткое УФ излучение (УФ излучение задерживает алмаз, а платина частично пропускает УФ-излучение, однако, задерживает ИК излучение). С другой стороны видимое и ИК излучение беспрепятственно проходит через МПФ (через окна верхнего электрода (фиг.4) и через промежутки между нижними электродами) и детектируется на свободных чувствительных площадках 5 мультиплексора. 6.

На основании изложенного можно утверждать, что отличия предложенного устройства от аналогов являются существенными, поскольку в указанном сочетании они обеспечивают положительный эффект - расширение детектируемого диапазона и защиту мультиплексора от жесткого УФ излучения. Для создания ГФС практически на всех этапах могут быть использованы стандартные технологические процессы, что говорит о возможности ее промышленного применения.

Пример реализации ГФС.

Был изготовлен и испытан опытный образец ГФС.

Верхний электрод 1 алмазного МФП выполнен путем напыления платины толщиной 0,00004 мм, имеет габариты 4,2×4,2 мм и форму, представленную на фиг.3.

Алмазная пластина 2 из природного алмаза IIа типа и имеет ширину и длину, равную этим размерам электрода 1, а толщина равна 0,3 мм.

Нижние электроды 3 выполнены путем напыления золота толщиной 0,001 мм и имеют габариты: 0,02×0,02 мм.

Индиевые столбики 4 имеют габариты: ширина 0,015 мм, длина 0,015 мм и высота 0,008 мм.

Чувствительные площадки 5 кремниевого мультиплексора имеют габариты: ширина×длина×толщина = 0,015×0,015×0,02 в мм.

Кремниевый мультиплексор 6 имеет габариты: 10,03×10,85×5 мм.

Технические характеристики опытного образца ГФС.

Спектральный диапазон чувствительности, мкм

УФ канал 0,19-0,23
Видимый и ИК канал 0,4-0,9

Порог чувствительности, Вт/Гц½

УФ канал 9·10-12
Видимый и ИК канал 6·10-10

Технический результат изобретения достигнут - расширен детектируемый диапазона излучения, за счет одновременной регистрации изображения в ультрафиолетовом, видимом и ИК спектре. Увеличен срок службы ГФС за счет исключения попадания жесткого УФ излучения на мультиплексор.

Отличительные признаки изобретения

Матрица алмазного фотоприемника по оси X и Y имеет шаг в два раза больше, чем шаг матрицы кремниевого мультиплексора, и нижние электроды 3 чувствительных элементов алмазного МПФ расположены в шахматном порядке, кроме того, нижние электроды 3 чувствительных элементов алмазного МПФ соединены гальванически индиевыми столбиками только с нечетными или четными чувствительными площадками 5 кремниевого мультиплексора 6.

Гибридная фоточувствительная схема, содержащая: алмазный матричный фотоприемник (МФП), индиевые столбики (4) и кремниевый мультиплексор (6) с чувствительными площадками (5), причем в состав МФП входят: верхний плоский электрод (1), на который подается напряжение смещения, алмазная пластина (2) и нижние электроды (3) чувствительных элементов алмазного МПФ, с которых снимается сигнал, при этом нижние электроды (3) гальванически связаны через индиевые столбики (4) с расположенными в виде прямоугольной матрицы с осями X и Y чувствительными элементами (5) кремниевого мультиплексора (6), причем число индиевых столбиков на каждой из осей X и Y не менее двух, отличающаяся тем, что матрица алмазного фотоприемника по осям X и Y имеет шаг в два раза больше, чем шаг матрицы кремниевого мультиплексора, и нижние электроды (3) чувствительных элементов алмазного МПФ расположены в шахматном порядке, кроме того, нижние электроды (3) чувствительных элементов алмазного МПФ соединены гальванически индиевыми столбиками только с нечетными или четными чувствительными площадками (5) кремниевого мультиплексора (6).



 

Похожие патенты:
Изобретение относится к гибридному органически-неорганическому мономерному материалу, а именно к способу его получения. .

Изобретение относится к устройствам фотоэлектрического преобразования и системе формирования изображения. .

Изобретение относится к области микроэлектроники, в частности к полупроводниковым приемникам, предназначенным для регистрации излучений и заряженных частиц. .

Фотодиод // 1512430

Изобретение относится к области информационно-измерительной и вычислительной техники, а именно к системам сбора данных в исследованиях по ядерной физике и физике элементарных частиц, и может быть использовано для сбора информации со стримерных камер координатных детекторов годоскопического типа большой площади.

Изобретение относится к области научного приборостроения, позволяет создавать и исследовать объекты размерами до 10 -10 метра. .

Изобретение относится к области ядерной физики и техники и может быть использовано для создания детекторов для контроля радиоактивности окружающей среды и обнаружения быстрого изменения концентрации радона в воздухе.

Изобретение относится к матричным детекторам ионизации газа для радиографических исследований рентгеновского или -излучения высокой энергии и основано на эффекте ионизации вторичных электронов, образуемых при взаимодействии излучения с рабочим газом под давлением.

Изобретение относится к области ядерной физики, в частности к газоразрядным детекторам ионизирующего излучения, обеспечивающим регистрацию энергии и координат ионизирующего излучения.

Изобретение относится к области технической физики, а точнее - к области регистрации нейтронов. .

Изобретение относится к области полупроводниковой электроники и может быть использовано при создании многоэлементных фотоприемников. .

Изобретение относится к технической физике, точнее - к области регистрации нейтронов. .

Изобретение относится к области полупроводниковой электроники и может быть использовано при создании многоспектральных и многоэлементных фотоприемников. Гибридная фоточувствительная схема содержит алмазный матричный фотоприемник (МФП), индиевые столбики и кремниевый мультиплексор с чувствительными площадками, расположенными на нем в шахматном порядке в виде прямоугольной матрицы и по числу равными числу индиевых столбиков. В состав МФП входят алмазная пластина и расположенный на ней верхний плоский электрод, а также нижние электроды чувствительных элементов МФП, по числу равные числу индиевых столбиков, расположенных под алмазной пластиной. На нижней стороне алмазной пластины сформированы в шахматном порядке легированные бором площадки, верхние контактные поверхности четных или нечетных нижних электродов гальванически соединены с нижней поверхностью алмазной пластилины, а верхние контактные поверхности нечетных или четных нижних электродов гальванически соединены с площадками, легированными бором. Нижние контактные поверхности нижних электродов через индиевые столбики гальванически соединены с чувствительными элементами кремниевого мультиплексора. Изобретение обеспечивает расширение детектируемого диапазона излучения в 75 раз за счет одновременной регистрации изображения в УФ и ИК-спектре частот излучений. 3 ил.

Устройство предназначено для использования в космической технике, в частности для регистрации микрометеороидов и частиц космического мусора. Устройство регистрации микрометеороидов и частиц космического мусора содержит подложку, которая представляет собой микроканальную пластину, играющая одновременно роль коллектора иона и соединенную с источником высокого напряжения, а анод микроканальной пластины соединен с усилителем, соединенным с блоком обработки сигналов. Технический результат - повышение чувствительности и упрощение устройства. 2 ил.

Изобретение относится к технике измерения электрических величин, а также к технике определения характеристик электронных потоков с магнитным удержанием и может быть использовано в высоковольтных и сильноточных электронно-лучевых приборах, находящих применение в электронной технике, при реализации разнообразных технологических процессов и в физическом эксперименте. Способ включает выделение тормозного рентгеновского излучения с участка поверхности твердого тела, бомбардируемого электронами, измерение характеристик тормозного рентгеновского излучения и определение энергетического распределения в пучке электронов на основе данных о тормозном рентгеновском излучении. В любой последовательности измеряют энергетический спектр тормозного рентгеновского излучения исследуемого электронного пучка и спектры тормозного рентгеновского излучения моноэнергетических пучков, создаваемых в той же системе формирования в условиях пренебрежимо малого разброса по энергии электронов в пучках, измеряют энергетические спектры тормозного рентгеновского излучения для моноэнергетических электронных пучков при n дискретных значениях энергии электронов в этих пучках, на основе данных об энергетических спектрах тормозного рентгеновского излучения для моноэнергетических электронных пучков рассчитывают функцию ядра обратного интегрального преобразования и определяют энергетическое распределение электронов в исследуемом пучке путем выполнения операции обратного интегрального преобразования с полученным ядром к функции, описывающей спектр рентгеновского излучения исследуемого электронного пучка. 4 ил.

Настоящее изобретение относится к люминесцентному фотогальваническому генератору (1) и волноводу для использования в таком фотогальваническом генераторе. Фотогальванический генератор содержит фотогальванический элемент (4) и волновод, содержащий прозрачную матрицу (2), имеющую частицы неорганического люминесцентного материала, рассредоточенные в ней, и/или неорганический люминесцентный материал, расположенный по меньшей мере на одной ее стороне. Волновод ассоциирован с фотогальваническим элементом (4), так что при использовании по меньшей мере часть света, излученного из люминесцентного материала, поступает в фотогальванический элемент (4), чтобы создать напряжение в элементе. При этом неорганический люминесцентный материал имеет максимум поглощения по меньшей мере в одной из ультрафиолетовой области, видимой области и инфракрасной области, ширину линии поглощения 50 нм или более, ширину линии испускания 20 нм или менее и Стоксов сдвиг 50 нм или более. Также предложен волновод для использования в фотогальваническом генераторе. Фотогальванический генератор (1) является альтернативой или усовершенствованием известных фотогальванических генераторов, которые обычно страдают от недостатка удельного выхода мощности. 2 н. и 12 з.п. ф-лы, 3 ил., 1 табл.
Наверх